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a b s t r a c t

Dimensionality analysis of magnetotelluric data is a common procedure for inferring the main properties
of the geoelectric structures of the subsurface such as the strike direction or the presence of superficial
distorting bodies, and enables the most appropriate modeling approach (1D, 2D or 3D) to be determined.
Most of the methods currently used assume that the electrical conductivity of individual parts of a struc-
ture is isotropic, although some traces of anisotropy in data responses can be recognized. In this paper
we investigate the imprints of anisotropic media responses in dimensionality analysis using rotational
invariants of the magnetotelluric tensor. We show results for responses generated from 2D synthetic
anisotropic models and for field data that have been interpreted as showing the effects of electrical
anisotropy in parts of the subsurface structure. As a result of this study we extend the WAL dimensional-
ity criteria to include extra conditions that allow anisotropic media to be distinguished from 2D isotropic
ones. The new conditions require the analysis of the strike directions obtained and take into account the
overall behavior of different sites in a survey.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Electrical anisotropy in the Earth, caused by electrical conduc-
tivity varying with orientation, is a property that is increasingly
being taken into account in the interpretation of magnetotelluric
data. Electrical anisotropy in the crust can be caused by pre-
ferred orientations of fluids, sulfides or fractures (Wannamaker,
2005), whereas in the upper mantle, it is linked to the splitting
of seismic SKS waves (Eaton and Jones, 2006), and is explained
by either hydrogen diffusivity in olivine crystals (Wannamaker,
2005; Wang et al., 2006) or by the presence of partial melt
elongated in the direction of plate motion (Yoshino et al.,
2006).

Significant developments have been achieved regarding the
study of electrical anisotropy using magnetotellurics. These deal
with modelling and inversion schemes, which include anisotropy
(Pek and Verner, 1997; Weidelt, 1999; Wang and Fang, 2001; Li,
2002; Yin, 2003; Pek and Santos, 2002, 2006), the analysis of mag-
netotelluric responses affected by anisotropy (Reddy and Rankin,
1975; Saraf et al., 1986; Osella and Martinelli, 1993; Heise and
Pous, 2003; Heise et al., 2006), and the investigation of the intrinsic
properties and processes causing electric anisotropy (Gatzemeier
and Tommasi, 2006). Some of the aforementioned papers were
published in a special issue dedicated to electrical and seismic con-
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tinental anisotropy (Eaton and Jones, 2006). A review of earlier
work can be found in Wannamaker (2005).

To date there have been no studies specifically discussing the
effects of anisotropy on rotational invariants or its complete dimen-
sionality characterization. The goal of this paper is to identify
electrical anisotropy using dimensionality analysis based on the
rotational invariants of the magnetotelluric tensor. Data were gen-
erated from various synthetic models with electrical anisotropy
using the 2D code of Pek and Verner (1997). The results from a
set of field data that has been interpreted as exhibiting the effects
of anisotropic Earth structure (from the COPROD dataset) are also
discussed.

2. Background

2.1. Dimensionality analysis in magnetotellurics

In the magnetotelluric (MT) method (e.g. Vozoff, 1991; Simpson
and Bahr, 2005), dimensionality analysis is a common procedure
for determining, prior to modeling, whether the measured data
or computed responses (impedance tensor, Z; tipper, T; apparent
resistivities, �ij; and phases, ϕij) at a given frequency (ω) correspond
to 1D, 2D or 3D geoelectrical structures. It also allows identifi-
cation and quantification of distortions (Kaufman, 1988; Groom
and Bailey, 1989; Smith, 1995) and, when applicable, recovery of
the directionality (strike) of the structures. Dimensionality analysis
techniques search for particular relationships between the compo-
nents of the magnetotelluric impedance tensor, Z(ω) (e.g. Cantwell,
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Fig. 1. Diagram of the real and imaginary Mohr circles generated after a complete
rotation of the Mxy and Mxx components of the MT tensor. In black: parameters and
circle associated with the real part. Grey: the equivalent for the imaginary part. After
Lilley (1998a).

1960), or related functions, in order to identify each dimensional-
ity type. Additional information can be obtained from the induction
arrows (i.e., tipper vectors). The dimensionality analysis technique
that sees the most widespread use is that of McNeice and Jones
(2001). This technique uses the Groom and Bailey (1989) decom-
position method to find the best fitting 2D parameters for a set of
sites at different period bands. Lilley (1993) introduced the use of
Mohr circles to display and analyze magnetotelluric data, allowing
to distinguish their dimensionality and the presence of galvanic
distortion. In two-dimensional cases, the regional geologic strike
is estimated from either the real or imaginary parts of the mag-
netotelluric tensor (�hr, �hq, Eqs. (113) and (114), Lilley, 1998a).
Lilley and Weaver (2009) presented a Mohr circles analysis for data
with phases out of quadrant, although not particularly related with
anisotropy.

Weaver et al. (2000) (based on Lilley, 1993, 1998a; Fischer and
Masero, 1994 and Szarka and Menvielle, 1997) presented a com-
plete dimensionality criteria based on the rotational invariants
(WAL invariants) of the magnetotelluric tensor (M(ω), defined as
the relationship between the electric field E(ω) and the magnetic
induction B(ω); M(ω) = (1/�0)Z(ω)). The WAL rotational invariants
comprise seven independent (I1, I2, I3, I4, I5, I6 and I7) parame-
ters and one dependent (Q) parameter. They can be represented
by Mohr circle diagrams (Lilley, 1993) (Fig. 1), and, except I1 and
I2, they are taken as sines of angles, which implies an ambiguity in
the quadrant to which each angle belongs. Also with the exception
of I1 and I2, they are dimensionless and normalized to unity, with
their vanishing having a physical interpretation that is related to
the geoelectric dimensionality (see Weaver et al., 2000, for a full
description of the invariants).

WAL dimensionality criteria, based on the vanishing or not
of some of the invariants (I3–I7), are summarized in Table 1.
Dimensionality analysis using WAL criteria has been implemented,
including data errors and band averages (Martí et al., 2004), in the
WALDIM code (Martí et al., 2009). Given that on field, therefore
noisy data, the invariants are rarely precisely zero, the program
uses two threshold values (as suggested by Weaver et al., 2000): �,
for I3–I7; and �Q, for invariant Q; below which the invariants are
taken to be zero.

It is also important to note the parameters that can be derived
from the invariants for specific dimensionality cases: In 1D cases,
invariants I1 and I2 provide information about the 1D magnitude
and phase of the geoelectric resistivity (�1D and ϕ1D). In 2D, the
strike angle (referred to as �2D) can be obtained from the real and
imaginary parts of the MT tensor, with �1 and �2 giving the same
value for the strike angle (see expressions in the Appendix A). In 2D
cases affected by galvanic distortion (identified as 3D/2D), the strike
angle (�3D/2D) is computed considering both the real and imaginary
parts of the MT tensor and the distortion parameters, as �1 and �2
(Smith, 1995), which are linear combinations of the Groom and
Bailey (1989) twist and shear angles (ϕt = �1 + �2, and ϕe = �1 + �2).
In 2D cases (which are particular cases of 3D/2D), the strikes com-
puted as �1, �2 and �3D/2D (see Appendix A) are equivalent and the
values of ϕt and ϕe are negligible.

It must be remembered that the WAL criteria, as well as the other
dimensionality analysis methods, are based on the assumption that
the geoelectrical structures are isotropic.

Another tool used to infer the dimensionality in isotropic media
is the phase tensor (Caldwell et al., 2004), which is not affected
by galvanic distortion (hence only 1D, 2D and 3D cases can be
identified). It can be represented by an ellipse, characterized by 4
parameters, the 3 rotational invariants ˚max, ˚min (principal direc-
tions) and ˇ, and the non invariant angle ˛ (see Caldwell et al.,
2004, for a more detailed description). In 1D cases, the ellipses are
circles (˚max = ˚min). In 2D, ˚max and ˚min have different values,
� indicates the strike direction and ˇ is null. In 3D, ˇ is non-zero.
Heise et al. (2006) used the phase tensor diagrams to represent
the responses of models with electric anisotropy. We will compare
the phase tensor analysis with the WAL dimensionality criteria for
some of the examples presented below.

2.2. Electrical anisotropy and modelling

The properties of an anisotropic medium need to be expressed in
a tensor form. For the case of electrical anisotropy, the conductivity
(	, reciprocal of the resistivity �, 	 = 1/�) adopts the general form
of a symmetric tensor with non-negative components,

	 =
[

	xx 	xy 	xz

	yx 	yy 	yz

	zx 	zy 	zz

]
, (1)

where x (North), y (East) and z (vertically downwards) are the
orthogonal axes of a Cartesian coordinate system. The conductivity
tensor can represent an intrinsic property of the material (micro-
scopic anisotropy) (Negi and Saraf, 1989), or it can represent the
result of mixing in a preferred orientation of two or more media
with differing conductivities (macroanisotropy) (e.g. Wannamaker,
2005). The resolving power of the MT method and the depths at
which anisotropic media are typically located (lower crust, upper
mantle), usually make it impossible to distinguish between them
(Weidelt, 1999).

Using Euler’s elementary rotations the conductivity tensor can
be diagonalised and its principal directions obtained, namely the
strike, dip and slant anisotropy angles (˛S around z-axis, ˛D around
x′-axis and ˛L around z′ ′-axis) (Fig. 2). Hence, the conductivity
tensor can be specified by six parameters: the three conductiv-
ity components along the principal directions (	 ′

xx, 	 ′
yy and 	 ′

zz) and
their corresponding angles.

Particular cases of anisotropy, specified in terms of the rela-
tionships between the components along the principal directions
of the conductivity tensor, are azimuthal anisotropy (	 ′

xx = 	 ′
zz or

	 ′
yy = 	 ′

zz , anisotropy in only one direction, x or y) and uniaxial
anisotropy (	 ′

xx = 	 ′
yy /= 	 ′

zz). In the latter,anisotropy can only be
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Table 1
Dimensionality criteria according to the WAL invariant values of the magnetotelluric tensor (modified from
Weaver et al., 2000). Row “2D” with the grey background is extended in Table 3 where structures with anisotropy
are considered.

identified by the vertical component of the electric and magnetic
fields (Negi and Saraf, 1989).

For anisotropic media, the MT forward problem must be solved,
in general, using a numerical approach. The code of Pek and Verner
(1997) uses the finite-difference method to obtain the responses
for 1D and 2D anisotropic media.

The magnetotelluric responses obtained from an anisotropic
medium are characterized by resistivity shifts, phase splits (which
are related to anisotropy contrasts rather than bulk anisotropy of
the medium Heise et al., 2006), and induction arrows not corre-
lated to the principal direction indicated by the MT tensor (Pek and
Verner, 1997; Weidelt, 1999).

Fig. 2. Diagram of successive Euler rotations applied to generate any orientation of the anisotropic principal directions, using the anisotropy strike (˛S), dip (˛D) and slant
(˛L) angles.
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Table 2
Resistivity values and orientations of the three anisotropic half-space models 1a, 1b
and 1c.

Homogeneous models
�′

xx = 50 ˝ m and
�′

yy = �′
zz = 500 ˝ m

Anisotropy angles

Model 1a ˛S = 0 ◦ , ˛D = 0 ◦ , ˛L = 0 ◦

Model 1b ˛S = 40 ◦ , ˛D = 0 ◦ , ˛L = 0 ◦

Model 1c ˛S = 0 ◦ , ˛D = 55 ◦ , ˛L = 20 ◦

3. Dimensionality analysis of synthetic anisotropic model
responses using WALDIM

In this section we present some examples for synthetic models
with anisotropy, the responses of which have been calculated using
the code of Pek and Verner (1997). In these, we have performed
the dimensionality analysis using the WALDIM code and we have
analyzed the results indicating which features are characteristic of
the anisotropic structures.

The models were chosen to increase gradually in complexity
starting from the most simple. Only 2D situations, not 3D situations,
are considered in this study as it is not possible to separate the
imprint of anisotropy from 3D effects.

Except when indicated, all the models have dimensions of
860 km (y, towards East) by 186 km (z, vertical downwards), and
are discretised using 40 (y) by 30 (z) cells, plus 11 air layers. The
responses were computed at each surface node, at the periods indi-
cated in the sections below, following the e+iwt convention for the

time-harmonic factor of the electric and magnetic fields. WALDIM
analysis was performed for each resulting MT tensor, with 1% ran-
dom noise having been added to each component. Threshold values
of � = 0.1 and �Q = 0.1, which were tested to be consistent with the
noise level applied, were used. We also tested, by representing the
results using Mohr circle diagrams (following Lilley, 1998b), that
the invariant values are obtained as sines of positive angles within
the range 0–90◦; and that the dimensionality description obtained
from the invariant parameters and Mohr circles are consistent.

3.1. Anisotropic half-space

For the simplest cases, we considered three models consisting
of anisotropic half-spaces.

The three models have azimuthal anisotropy with the same
resistivity values, �′

xx = 50 ˝ m and �′
yy = �′

zz = 500 ˝ m, and are
distinguished from each other by the orientation of the principal
directions. In the first model (1a), these coincide with the mea-
surement axes. In the second (1b), these have been rotated through
a strike angle ˛S = 40 ◦ around the z axis. In the third model (1c), a
general rotation using dip (55◦) and slant (20◦) angles has been con-
sidered (see Table 2). The responses for each model were computed
at T = 1 s, 3.2 s, 10 s, 32 s, 100 s and 320 s.

For the three models, the responses are site independent, and
only show slight variations with period due to numerical inac-
curacies. Apparent resistivity values depend on the projection of
the anisotropy direction on to the x and y axes, as shown in
Fig. 3(a). Phase values (not shown in the figure) of the off-diagonal

Fig. 3. (a) Dimensionality and apparent resistivity responses for the three anisotropic half-space models (1a, 1b and 1c), at one single site (located at the centre of the model)
for the computed periods. Strike directions are shown assuming a 2D structure (�2D) and assuming galvanic distortion over a 2D model (�3D/2D) (except at model 1a where
the two directions are coincident). xx and yy apparent resistivities in model 1a are null and hence not shown. (b) Left: Mohr diagram for the responses of model 1c. Both real
and imaginary circles are coincident and agree with a 2D structure. Right: Mohr diagram for a single period, T = 1 s, of model 1c showing the main parameters, and the strike
angles �1 and �2 (coincident with �h, Eqs. (113) and (114) in Lilley, 1998a). Note that �3D/2D cannot be represented using Mohr circles.
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components are 45◦ (xy polarization) and −135◦ (yx polarization)
(as expected from a medium without vertical variations in resis-
tivity). For model 1a, xx and yy apparent resistivities are zero, and
hence, the corresponding phases are undetermined. In contrast, for
models 1b and 1c, xx and yy phases are 45◦ and −135◦ respectively.
These responses, observed at a particular site, could be interpreted
as a case of galvanic distortion (with shear and anisotropy effects)
over a homogeneous medium.

Regarding the dimensionality analysis results, invariant values
present similar relationships for the three models, for all sites and
frequencies: I3 = I4 > �, I5 and I6 < � and Q < �Q. The exception is I7,
with values either below or above the threshold value, due to ran-
dom noise effects. The WAL criteria define the dimensionality as 2D
for all models (Fig. 3(a)) and the strike directions are well defined:
�1 ≈ �2 (=�2D), with small errors, also due to the noise added. For
models 1a and 1b, these angles are coincident with ˛S (0◦ or 40◦

respectively), and for model 1c it is 12◦, due to the projection onto
the horizontal plane of the new x′ and y′ axes, resulting from the dip
and slant rotations. The dimensionality and the strike direction also
agree with the Mohr diagrams (�hr ≈ �hq ≈ �1 ≈ �2 = 12◦), as shown
for model 1c in Fig. 3(b).

For models 1b and 1c, for which the anisotropy directions are
not aligned with the measuring axes, two particular features are
observed: �3D/2D values (which cannot be represented using Mohr
circles) are unstable and are different from �2D (Fig. 3(a)). This
does not happen in isotropic 2D structures. In the Appendix A, the
analytical expressions used to obtain the strike directions for the
magnetotelluric tensors corresponding to a 2D isotropic model and
an anisotropic half-space are developed. In the anisotropic case,
the value of �3D/2D is indeterminate, but in the responses of the
synthetic model its values are unstable due to the effects of the
noise. The main result is that both the analytic expressions and the
responses prove that �2D and �3D/2D are not coincident in the case
of an anisotropic half-space.

For the three models, phase tensors (Caldwell et al., 2004; Heise
et al., 2006) would be represented by unit circles independent of
the orientation of the principal directions, and would thus provide
no hint of anisotropy.

In model 1a, the fact that all site responses are the same whilst
the dimensionality is 2D indicate that either all the measuring
sites are aligned with the strike direction or that the structure is
not isotropic but anisotropic. Hence, when the anisotropic direc-
tions are coincident with the measuring axes, the responses do
not allow the presence of anisotropy in a half-space to be dis-
tinguished. In contrast, when anisotropy is not aligned with the
measuring axes (models 1b and 1c), the non agreement between
the values of the strike directions �2D and �3D/2D is an indication
that the half-space over which the measurements are obtained is
indistinctly anisotropic. This is an important result, given that it is
common to state that 1D anisotropic media are indistinguishable
from 2D isotropic media. This type of anisotropic structure cannot
be identified using the phase tensor.

3.2. 1D media with one and two anisotropic layers

The first one-dimensional model presented here (model 2a) was
taken from one of the examples provided with the Pek and Verner
(1997) code. It consists of a layered structure with an embedded
anisotropic layer (Fig. 4): (�′

xx = 1 ˝ m and �′
yy = �′

zz = 100 ˝ m,
and ˛S = 30 ◦ , ˛D = 0 ◦ , ˛L = 0 ◦). The model responses were com-
puted at 10 periods between T = 1 s and T = 32,000 s.

The MT responses, which are shown in Fig. 4, are the same at
all sites. Diagonal responses are coincident (xx = yy), whereas the
off-diagonal responses show a split between the polarizations. The
off-diagonal resistivity and phases are plotted together with the
responses (xy = yx) of two models in which the anisotropic layer is
replaced with an isotropic one; the first model with a 1 
 m layer,
and the second with a 100 
 m layer (Fig. 4). Because of the rotation

Fig. 4. Cross-section of model 2a, corresponding to a layered model with an anisotropic layer, and resistivity and phase responses obtained at any site of the model. The
off-diagonal resistivity and phases are plotted together with the responses of a model with an isotropic layer of 100 
 m and a model with an anisotropic layer of 1 
 m.
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Fig. 5. Top: Cross-sections of models 2b and 2c, consisting of 1D models with two
anisotropic layers. Bottom: Dimensionality pattern of the corresponding responses,
with the principal angles and distortion angles indicated.

(˛S) of the principal directions, the values of the off-diagonal resis-
tivities and phases for the model with the anisotropic layer are
smoother than those for the models with the isotropic layers.

The WAL dimensionality criteria (I3 = I4 > �, I5, I6 and I7 < � and
Q > �Q) indicate 2D structures with �2D = 30◦ (=˛S) for all periods
(Fig. 4), except for T = 1 s at which the criteria indicate 1D struc-
ture because the skin depth (5 km) is smaller than the top of the
anisotropic layer. For the periods at which 2D structure is indicated,
the strike direction computed as �3D/2D is coincident with �2D and
the distortion parameters are practically null.

The effects of the inclusion of a second anisotropic layer just
below the first one were also investigated by considering the third
layer of model 2a to be anisotropic as well. In the first of these mod-
els (model 2b), this new anisotropic layer has the same resistivity
values as the upper one, but with the main directions rotated at
an angle ˛S = 45◦. In the second model (model 2c), both the resis-
tivity values (�′

xx = 1 ˝ m and �′
yy = �′

zz = 10 ˝ m) and ˛S (45◦)
were changed in the new layer. The dimensionality pattern for
both (Fig. 5) is, from the shortest to the longest period: 1D (corre-
sponding to the first isotropic layer), 2D with a 30◦ strike direction
(corresponding to the first anisotropic layer), 3D (due to an abrupt
increase in the value of invariant I7 caused by the inclusion of the
second anisotropic layer), and finally 2D, with an approximately
39◦ strike, a value in between the two anisotropy strike values of
the two layers (30◦ and 45◦). In all the 2D cases, as had happened

in the case with a single anisotropic layer, the directions �2D and
�3D/2D are coincident.

We can summarize that in a 1D medium with one anisotropic
layer, dimensionality is 2D with a well defined angle �2D (equiv-
alent to ˛S, or a projection of the anisotropic directions onto the
horizontal if other rotations have been performed), which has the
same value as �3D/2D, as would happen in an isotropic medium.
In this case the only hint that anisotropy is present is the fact
that the responses are the same at all sites, except when the
anisotropy angle is 0◦, for which responses are equivalent to those
of a 2D model with measurements along the strike direction. When
two different anisotropic layers are considered, the dimensionality
varies with period: from 2D (corresponding to the first anisotropic
layer), to 3D, and back to 2D.

3.3. 2D anisotropic media

In this section, we considered two groups of models based on the
examples used in Reddy and Rankin (1975) and Heise et al. (2006).
The first group contains models in which the electrical properties
vary only in the horizontal direction; the models in the second
group possess more general two-dimensional variations.

3.3.1. Anisotropic dyke
The models in the first group (Fig. 6) consist of a vertical dyke

intruded into a medium with differing electrical properties. Initially
we consider a model in which both the dyke and the surroundings
are isotropic (model 3a, �dyke = 10 ˝ m and �surroundings = 100 ˝ m).
A second model (model 3b) consists of an anisotropic dyke (�′

xx =
3 ˝ m, �′

yy = 10 ˝ m, �′
zz = 20 ˝ m, and ˛S = 30 ◦ , ˛D = 0 ◦ , ˛L = 0 ◦)

sandwiched by an isotropic medium of � = 100 ˝ m. In the third
model, both the dyke and the surroundings are anisotropic. The
responses for the three models were computed at one period per
decade between T = 1 s and T = 10,000 s.

For the isotropic model, 3a, the dimensionality is 1D at sites
located outside and far from the dyke (Fig. 6(a)). Inside and sur-
rounding the dyke, the dimensionality is 2D (0◦ strike), except at
the first periods for the sites located at the centre of the dyke for
which the dimensionality is 1D. At these periods these sites are too
far from, and hence not affected by, the dyke boundaries.

For model 3b (anisotropic dyke surrounded by an isotropic
medium), the dimensionality pattern outside the dyke is similar
to that of model 3a (Fig. 6(b)): mainly 1D and 2D (with 0◦ strike). At
the edges of the dyke and at the longest periods the dimensionality
is 3D/1D2D. For sites located over the dyke is the dimensionality is
3D, except for the shortest periods at the central part, for which the
dimensionality is 2D with a strike of 30◦. In these 2D cases, the strike
direction is coincident with the anisotropy angle ˛S. However, the
direction given by �3D/2D has a different value (60◦) from that of �2D
(30◦), in contrast to what was observed for the anisotropic half-
space models (models 1b and 1c), and the distortion parameters
are not negligible (ϕt = 2◦ and ϕe = −14◦).

When both the dyke and surroundings are anisotropic (model
3c), the dimensionality is more complex. Nevertheless there are
clear differences with the results observed for the previous models
3a and 3b, and there are distinctive features associated with each
region of the model (Fig. 6(c)). Outside the dyke and far from its
edges the dimensionality is 2D with �2D = 55◦, which is different
from the value given by �3D/2D (with variable values, as shown in
Fig. 6(c)). Still outside but closer to the dyke edges, the dimension-
ality is mainly 3D/2D with a strike direction of around 75◦ or 80◦

and distortion parameters ϕt negligible and ϕe = −10◦. At the edges,
the dimensionality is either 3D/2D or 3D/1D2D. The 3D/2D cases
obtained both outside the dyke and at the edges have the peculiar-
ity that, according to the invariant parameters, the dimensionality
should be 2D, but the strike directions are inconsistent (�1 /= �2).
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Fig. 6. Cross-section of models 3a, 3b and 3c and the corresponding dimensionality patterns. Only one out of every 4 sites is plotted. For model 3a, in the 2D cases, the strike
angle is 0◦ .

It would therefore not be possible to rotate and obtain a regional
2D tensor. Instead, the impedance tensor is better described as
3D/2D with the �3D/2D strike and distortion angles that are small
but not negligible (Martí et al., 2009). The use of these strike and
distortion angles allows, in isotropic structures, the decomposition
of the impedance tensor to be performed and a 2D tensor recov-
ered. Inside the dyke, at the shortest period, the dimensionality
is 2D, with �2D = 30◦ = ˛S, inconsistent with �3D/2D (70◦), and with
non-negligible values of the shear distortion angle (ϕe = −10◦). As
the period increases, the dimensionality becomes 3D, 3D/2D (with
�3D/2D = 75◦, ϕt = −12◦ and ϕe = −10◦), and finally 3D/1D2D.

From the above dimensionality description, the presence of
anisotropy can be recognized in the 2D cases, for which the strike
directions given by �2D (which agree with the anisotropic azimuth)
and �3D/2D are different (Fig. 6). Moreover, there are also cases that
should be 2D according to the invariants, but for which �1 /= �2.
Therefore, these cases are described as 3D/2D, with the strike
direction (�3D/2D, computed from the real and imaginary parts of
the tensor) close to the sum of both anisotropic directions (80◦).
�hr and �hq do not provide the correct strike direction either, as
they are computed using the real or the imaginary parts separately.
Also, for sites over the dyke and at the edges, some 3D/1D2D and
3D cases are obtained.

3.3.2. 2D conductive bodies and an anisotropic layer
The second set of models is taken from the 2D examples used in

Heise et al. (2006). This set explores phase splits in responses from
anisotropic structures, and the identification of anisotropy using
phase information (in particular, the phase tensor).

Model 4a contains an anisotropic layer (with main directions
along the x, y and z axes) and two conductive blocks. Model 4b is
isotropic and contains two conductive blocks similar to those in
model 4a (Fig. 7). Heise et al. (2006) show how both models give
similar phase tensor and induction arrow responses, except at the
longest periods, where the induction arrows for the isotropic model
are significant, whereas in the anisotropic model they are almost
null.

Rotational invariants and dimensionality of the responses of
these two models were computed between 1 s and 30,000 s (Fig. 8).
The invariants have similar values for both models, and hence the
dimensionality displays similar patterns for both models. In gen-
eral, the dimensionality is 1D for periods up to approximately 100 s,
and 2D for the rest. However, the dimensionality of the first and
last sites, located on top of the conductive blocks, is different for
each model. For model 4a dimensionality is 1D up to 100 s, then
becoming 2D as a consequence of the directionality introduced by
the anisotropic layer, affecting all sites. For model 4b all the cases
are 1D as these sites are not affected by the lateral contrasts at
the limits of the two conductive bodies. The phase tensor ellipses,
which were computed for both models for the first site, also show
this difference between the two models (Fig. 9). These results con-
firm that for 2D models with anisotropic structures aligned with
the main directions, both the invariants and the phase tensor pro-
vide the same information, and that for this example they cannot
distinguish between the anisotropic and isotropic models.

Additionally, we considered model 4a and modified the
anisotropic layer by applying a rotation of the principal directions
(˛S = 30◦). The dimensionality of the responses of the resulting
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Fig. 7. Cross-sections of models 4a and 4b (from Heise et al., 2006), used to compute
the responses from general 2D models with anisotropic structures.

Fig. 9. Phase tensor diagrams corresponding to site 1 (located at 0 km) for models 4a
and 4b. The horizontal axis indicates the value of the phase tangent. These diagrams
are very similar to those obtained for the last site (site 33, located at 250 km).

Fig. 8. Dimensionality patterns corresponding to the responses of models 4a and 4b and 4c. All sites where responses have been computed are shown. Blank zones inside
the diagrams correspond to cases for which none of the defined criteria were met and hence for which the dimensionality could not be determined.
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Fig. 10. Phase tensor diagrams corresponding to the responses of model 4c, for
5 periods between 1 s and 10,000 s. One out of every two sites is shown, except
between 100 km and 150 km, where only one out of every 4 sites is represented.
The minor and major axes of the ellipses indicate the value of the phase tangent in
the way that the radii of the circles at 1 s are equal to 1.

model, identified as 4c, is shown in Fig. 8(c). The dimensionality
pattern is significantly more complex than for the previous mod-
els. Up to 100 s, the dimensionality is similar to that of models 4a
and 4b (mostly 1D with 2D cases at the rightmost side of the model
due to the shallow conductive structure). For periods around 100 s,
most of the 1D cases become 2D (�2D being consistent with �3D/2D)
or 3D/2D (with an approximately 15◦ strike). At longer periods, the
general trend is that the cases that were 1D and 2D in models 4a and
4b become 2D and 3D, respectively; with some 3D/2D and 3D/1D2D
exceptions. In all 3D/2D cases (most of them at 100 s), as happened
for the model with the anisotropic dyke (3c), invariant values indi-
cate 2D dimensionality, but, given that the two strike directions, �1

and �2, are significantly different, the impedance tensor is better
described as 3D/2D with �3D/2D. This observation is a clear indica-
tion of the presence of anisotropy in the structures, with anisotropic
directions non-aligned to the principal structural directions. In the
phase tensor diagrams of these model responses (Fig. 10) an equiv-
alent effect can be observed at 100 s: the values of ˇ are negligible
(note that only angle values lower than 3◦ are considered negligi-
ble), whereas the main directions of the ellipse differ significantly
from the strike angle ˛.

Hence, for 2D models, both the WALDIM criteria and the phase
tensor diagrams are able to identify the presence of anisotropic
structures with principal directions not coincident with the mea-
suring axes.

4. Anisotropy in field data: the COPROD dataset

In this final section we refer to one case of field data that has
been associated with anisotropy. This is the well known COPROD2
dataset, from southern Saskatchewan and Manitoba (Canada),
which revealed the presence of the North American Central Plains
conductivity anomaly (NACP) (Jones and Craven, 1990; Jones et al.,
1993). This dataset was used to test inversion codes (see Jones,
1993). Some of the 2D models that were obtained consisted of
multiple isotropic high conductivity bodies separated by resistive
regions. Jones (2006) revisited the data and, using one of the sites
on top of the NACP anomaly as a reference (85 314), proposed
a 2D anisotropic model. This model consists of a thin superficial
conductive layer (3 
 m), a 100 km thick lithosphere of 1000 
 m,
in which a single anisotropic block (�′

xx = 0.5 ˝ m along strike,
�′

yy = �′
zz = 1000 ˝ m) is embedded, and a basal conducting layer

of 10 
 m. The off-diagonal responses for this model are in good
agreement with those of the observed data, reproducing the split
between TE and TM modes.

We computed the dimensionality for the synthetic tensors of
the sites located over the anisotropic body. We obtained 1D cases,
and 2D cases with 0◦ strike (anisotropy aligned with the measuring
directions) (Fig. 11(a)).

The data for site 85 314 was used by Martí et al. (2009) as an
example for dimensionality analysis using the WALDIM code. Up

Fig. 11. Dimensionality cases for: (a) the responses of the anisotropic model presented by Jones (2006), which fits the off-diagonal components of site 85 314 in the COPROD2
dataset; and (b) for all the components of site 85 314 from the COPROD2 dataset (modified from Martí et al., 2009).



Author's personal copy

148 A. Martí et al. / Physics of the Earth and Planetary Interiors 182 (2010) 139–151

Ta
b

le
3

D
im

en
si

on
al

it
y

cr
it

er
ia

ex
te

n
d

ed
to

an
is

ot
ro

p
ic

st
ru

ct
u

re
s,

ch
ar

ac
te

ri
ze

d
by

th
e

W
A

L
in

va
ri

an
ts

cr
it

er
ia

in
d

ic
at

in
g

is
ot

ro
p

ic
2D

.



Author's personal copy

A. Martí et al. / Physics of the Earth and Planetary Interiors 182 (2010) 139–151 149

to 10 s, the data can be described as 1D. At periods longer than
10 s invariant values indicate 2D. However, at these periods strike
angles �1 and �2 differ significantly, and hence the data were better
described as 3D/2D, with a strike direction around 80◦ and small
twist and shear distortion angles (lower than 5◦) (Fig. 11(b)). This
allowed 2D regional tensors to be obtained from tensor decom-
position. According to the tests presented here, the discrepancy
between the dimensionality descriptions from the model with the
anisotropic block and the field data lies in the fact that in the
synthetic data all the diagonal responses are null, whereas in the
field data the values of the diagonal components, especially for the
longest periods, are significant.

From our new characterization of anisotropy in dimensionality
analysis, it is clear that the dimensionality of site 85 314 is compat-
ible with a 2D model that contains at least one anisotropic block or
layer, having anisotropy directions aligned with the strike indicated
in the dimensionality analysis (in this case of around 80◦). Hence, if
the anisotropic block modeled by Jones (2006) had an anisotropic
azimuth of 80◦, the invariant values of the responses would corre-
spond to 2D structures with two different strike directions �1 and
�2. This would be in agreement with the observed data.

5. WAL criteria extended to accommodate anisotropy

The results obtained from this study have allowed specific
relationships to be established between the invariants and strike
directions that are linked to the presence of anisotropy. In general,
these conditions are not recognized from a single tensor alone, but
from the pattern at different sites and periods. The main imprint of
anisotropy can be seen in the 2D cases (according to WAL isotropic
criteria), with strike directions that are not consistent, or rela-
tionships between tensors that would not correspond to isotropic
structures. In these cases, the strike obtained is related to the
orientation of the anisotropy rather than to the structural direc-
tion. Table 3 contains the new dimensionality criteria extended to
accommodate these cases with anisotropy and to distinguish them
from isotropic two-dimensionality: anisotropic half-space, a 1D
medium with one anisotropic layer, and an anisotropic 2D medium.

However, it must be remembered that it is not always possible to
identify anisotropy when the main directions are aligned with the
measuring axes, or to retrieve all the parameters that characterize
anisotropy from the observed responses and the dimensionality
analysis alone.

Table 3 considers the dimensionality observed in a particular
tensor. In particular situations described in the text, some patterns
can be observed such as that of a 1D model with two anisotropic
layers (2D, 3D and 2D cases, as the period increases).

Hence, once the dimensionality of the full dataset is obtained (it
is recommended to plot dimensionality maps), one should check
for anisotropic imprints and patterns as described in the text, and
evaluate what type of anisotropic media might exist beneath the
survey area.

6. Conclusions

The most important contribution of this study is the demon-
stration that it is possible to identify the presence of anisotropy
in the dimensionality description given by the WAL criteria. In
addition, we have extended the WAL invariants criteria to differen-
tiate anisotropic from isotropic media. Hence, when assessing the
dimensionality of a dataset that is considered to contain anisotropy
effects, one should follow the original WAL criteria (Table 1), plus
the new conditions described in Table 3. The exception is when
the principal anisotropy directions are aligned with the measuring
axes. In this situation, if the anisotropic media is 2D, the information
contained in the induction arrows might be useful.

Another important point is that, except in very simple cases,
the anisotropy cannot be identified from one site alone. It is fun-
damental to check for the consistency of dimensionality with
neighbouring sites or periods.

Finally, the comparison of the dimensionality description
obtained using the WAL invariant criteria with that from phase
tensor diagrams allowed us to conclude that, in some cases, both
provide the same information. However, when the phases do not
change with period, such as in the case of an anisotropic half-space,
only the WAL criteria enable the anisotropy to be identified. It
is also important to note that in some cases the strike angle can
only be computed from �3D/2D, which considers the real and imag-
inary parts of the tensor, as opposed to the direction defined from
the Mohr circles, �h, which uses the real or the imaginary parts
separately.
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Appendix A.

In this Appendix A we first summarize the expressions used
to compute the strike directions from the magnetotelluric ten-
sor using Weaver et al. (2000) notation. Secondly, we derive
these expressions for the theoretical magnetotelluric tensors corre-
sponding to (A.2.1) a 2D isotropic structure, rotated an angle � from
the strike direction, and (A.2.2) an anisotropic half-space, with the
main anisotropic directions rotated an angle �S.

A.1. Strike expressions

The complex parameters ςj = �j + i · 
j(j = 1, 4), are defined
as linear combinations of the magnetotelluric tensor compo-
nents: �1 = (Mxx + Myy)/2, �2 = (Mxy + Myx)/2, �3 = (Mxx + Myy)/2 and
�4 = (Mxy + Myx)/2:

M =
(

Mxx Mxy

Myx Myy

)
=
(

�1 + �3 �2 + �4
�2 − �4 �1 − �3

)
=
(

�1 + �3 �2 + �4

�2 − �4 �1 − �3

)
+ i

(

1 + 
3 
2 + 
4


2 − 
4 
1 − 
3

)
. (A1)

If the tensor corresponds to a 2D structure, the strike direction (�2D)
can be computed from using either the real or the imaginary parts
of ς2 and ς3, which lead to the same result: �2D = �1 = �2:

tan (2�1) = −�3

�2
. (A2)

and:

tan (2�2) = −
3


2
. (A3)

Both the ςi parameters and the angles �1 and �2 can be represented
in Mohr circle diagrams (for the real and imaginary parts), which
are also used to represent WAL invariants (Fig. 1).

If the 2D structure is affected by galvanic distortion, the strike
direction (�3D/2D) can be recovered using the expression:

tan (2�3D/2D) = d12 − d34

d13 + d24
(A4)
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where dij = (�i
j − �j
i)/(I1I2), and I1 and I2 are rotational invariants
of the MT tensor.

Given that 2D is a particular case of 3D/2D (where the galvanic
matrix is the identity), the same expression works to compute the
strike, so that: �2D = �1 = �2 = �3D/2D.

A.2. Particular cases

A.2.1. 2D isotropic structure

M2D =
(

0 Mxy

Myx 0

)
, (A5)

if the tensor is rotated an angle �:

M′ = R�M2DRT
�

=
(

(Mxy + Myx) sin � · cos � Mxycos2 � − Myxsin2 �

−Mxy sin2 � + Myx cos2 � −(Mxy + Myx)sin �cos �

)
, (A6)

and:

�1 = 0
�2 = (Mxy + Myx)(sin2 � − cos2 �)/2
�3 = (Mxy + Myx)sin �cos �
�4 = (Mxy − Myx)/2

, (A7)

tan (2�1) = − Re(Mxy + Myx)sin �cos �

Re(Mxy + Myx)((sin2 � − cos2 �)/(2))

= − 2sin �cos �

sin2 � − cos2 �
= − sin (2�)

−cos (2�)
= tan (2�), (A8)

and:

tan (2�2) = − Im(Mxy + Myx)sin �cos �

Im(Mxy + Myx)((sin2 � − cos2 �)/(2))

= − 2sin �cos �

sin2 � − cos2 �
= − sin (2�)

−cos (2�)
= tan (2�). (A9)

This proves that �2D = �1 = �2 = �.
Using the expression in (A4):

d12 = d13 = 0,

d34 =
(Re(Mxy + Myx))sin �cos �(Im(Mxy − Myx))/(2)

− (Re(Mxy − Myx))/(2)Im(Mxy + Myx))sin �cos �

I1I2
,

d24 =

(Re(Mxy + Myx))(sin2 � − cos2 �)/(2)(Im(Mxy + Myx))/(2)
− (Re(Mxy − Myx))/(2)Im(Mxy + Myx)((sin2 � − cos2 �)/(2))

I1I2
.

Hence:

tan(2�3D/2D)

= −d34

d24
= −2

(Im(Mxy + Myx)Re(Mxy − Myx)
− Re(Mxy + Myx)Im(Mxy − Myx))sin �cos �

(Im(Mxy + Myx)Re(Mxy − Myx)
− Re(Mxy + Myx)Im(Mxy − Myx))(sin2� − cos2�)

= −2sin �cos �

sin2 � − cos2 �
= −sin (2�)

−cos (2�)
= tan (2�),

which proves that:

�3D/2D = �1 = �2 = �.

A.2.2. Anisotropic half-space
The analytic expression of the MT tensor corresponding to an

anisotropic half-space, with the main anisotropic directions rotated
an angle ˛S is obtained using the development from Pek and Santos
(2002):

Manis = C

(
dsin (2˛S) −s − dcos (2˛S)

s − dcos (2˛S) −dsin (2˛S)

)
(i + 1),

where C is a constant, s =
√

�′
xx +

√
�′

yy and d =
√

�′
xx −

√
�′

yy.

�1 = 0

�2 = −C
d

2
cos (2˛S)(1 + i)

�3 = C
d

2
sin (2˛S)(1 + i)

�4 = Cs(1 + i)

.

Given that both the real and imaginary parts have the same value:

tan (2�1) = tan (2�2) = − (d/2)sin (2˛S)
−(d/2)cos (2˛S)

= tan (2˛S),

which proves that �2D = �1 = �2 = ˛S.
On the other hand, if the strike direction is computed using the

expression of �3D/2D, dij = 0, for any i, j because real and imaginary
parts of the tensor are identical. Consequently: tan (2�3D/2D) = 0/0,
which is an undetermination.
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