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Absiract. The treatment of eleciromagnetic induedon in theee-dimensional
stractuces is simplified by converting Maxwell’s equatiens to a linear inhama-
geneous vector integral equation over the demain where the e_lectriml conduc-
tivity deviates from & borizonwlly layered structare. An algorithm for the calb-
culation of the (rensor) kernel s given. The integral equation is solved either by
an iterative method or by matrix inversion, In an application the complete
elecreomannedic sucfice Held of 2 simple conducrivity anomaly and induction
arrow maps are given. The gradual ceansition fram three <o two dimensions is
investigared for a particular model.

Ky verds: Bleciromagnetic Induction — Electeical Conductivity — Condue-
vity Anomalies,

1. Introduction

Numericai solutions of the three-dimensional modelling problem of
clectromagnetic induction are only searcely encouvntered in the current
literature (e. g, Jones and Pascoe, 1972; Lines and Jones, 1973). This is
not due ro mathematical difficultics, but results from the fact that the usual
reduction of Maxwell's equations to finite differences, including into the
domain under consideration the aie hali-space, requires large computer
storage and is time consuming as well,

A reduction of computer time and storage is achieved by applying
surface and volume integral techniques based on Green’s tensor. Consider
for example an anomalous three-dimensional conductivity structare of
finite extent embedded in a normal conductivity structure consisting of
horizoatlly stratifed half-space. Thea given an external source ficld,
Maxwell's equations have to be solved under the condition of vanishing
anomalous field at insinity, Atleast three approaches to a numerical solution
of this problem are possible. Approach A is to choose a basic domain
{including the air laver) as large as possible and to solve within this domain
Maxwell’s equations by finite ditferences, subject either to the now only
#pproximate boundary condition of zere anomalous field or to a more
tefined impedance boundary conditien (Fig. 1, top). This is the approach
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Fig. }. The three different choices of 1 basic domain {(boundaty hatched) for
model calculations :

of Jones and co-workers, A first reduction of the basic dommin s achicved
by considering only the anomalous shb which containg the conductivity
anomaly (Fig. 1, cenrre). Within this slb, Maxwell's equations ate
solved by finite differences as hefore, but now all field values outside the
anomalous slab are expressed by a susface integral in terms of the
tangential component of the anomalous clectric field at the horizontal
boundaries of the slab. At the vertical boundaries of the anomalous slab
approximate boundary conditions analogous to those of approach A are
applied. This is approach B. A modilied version of it for two dimensions
is used by Schmucker {1971). In approach C the basic domain is reduced

-
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still Further by deriving from Maxwell’s cquations by a Green's tensor an
jntegral equation for the clectric field involving volume integrals only over
the anomalous field vector within the anomatous domain (Fig. 1, bottom).
The houndary conditions arc incorparated in the kernel of the integral
equatian, and hence are satisfied automaticaily by the solution, "This method
bas been applied in two dimensions by Hohmann (1972) and has been for-
muhted o three dimensions by Raiche {1974}

From approach A to C the geadual zeduction of the basic domain must
be paid by increasing expenses for calculating the required keracls, Approach
C is of particulae advantage if the anomalous domain is small. If the demain
extends appreciably in hotizontal ditection (e.g. different conductivities
at the Jeft and the right of the anomalous slab), approach B is appropriate.
Approach 4 can be avoided in any case.

This paper presents a shore outline of approach B and 4 detailed de-
scription of nppmnchC, thereby teformulating the method of Raiche (1974)
i a stightly diticrent way. The basic equations are stated in Sec. 2, general
formulae for Green’s tensor For an carth with an arbitrary number of layers
ate given in Sec. 3, and a few numerical problems encountered in applying
approach C are treated in Sec. 4. The final Sec. 5 presents some results.

3. Greew's Tensor ~ipproackes 1o the Alodelling Problen
2.1, Delinitions, Basic Equations

» depotes the position vector and x, v, 7 {z positive downwards) are
cartesian coordinates, which for the sake of convenience are sometimes
also denoted by ~y, ~a, Xa Let the conductor with conductivity &(r)
occapy the half-space 2 > 0. Neglecting the displacement current, assuming
vacuum permieabilicy and a harmonic time Eactor ¢#of throughout, the com-
plex amplitudes E and I of the electric and magnetic sield vector are related

by

cutl H() = o{r) EG) -+ 0, @n
curt H(r) = — im0, 2.2y

or combired
curl BE() + A% () = — foma Jer)s @3

ST units being used. fo{r) is the cacrent density of the external source field,
curl? = curl curl, and

k¥(r) = iaooo(P). @4
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Split oft) into a4 normal and anomalous part,
of a set of horizontal uniform fayers, (For simplicity, within the earth all
layer conductivities are assumed to be non-zero.) Hence,

¢ =05 + aq, kﬂ:kﬁ‘l"&aan:En“l“Ea, (25)

Eq being defined as the solution of

cud Ty} + k) Enly) = — iopo Jol2), [ X)
vanishing for z -+ co. Methods for the computation of Eyare well-known
{e.g. Schmucker, 1970; Weaver, 1970).

2.2, The Volume Jntegral Method (Approach C}
Feom (2.3), (2.5}, and (2.6) follows

curl 2Ho(r) 4 AR(1Y Fo(r) =

— LR, @27

Let Gi(ig]r), =1,2,3, be the solution of

curl 2G(rofr) + I:f.(l') Gilrolv) = dy 6(r—rp), 2.8)
vanis'hing at infinity. In (2.8) and in the sequel, “denotes a unit vector.
l\lzll|[lp|_\’ (2.8) by Eq(r) and (2.7) by Gi(re[t) and integrate the difference
with tespect to r over the whole space. Green's vector theotem (e.g.
Morse and Feshbach, 1953, p. 1768)

J{U - curl 21=7 curl 20}

= %) cud U—( x U} curl Vid, @9
where dt is a volume element, 4 a sutface clement, and i the outward
normal vector, yields

Earo) = — [ &5 Gilro]) - Bir)de, i = 1,2,3, (2.10)
sinccl B, and Gy vanish at infinity. After combining all three components
and inteoducing  instead of J2,, the vector integral equation

E(re) = En{1o) - | 307 Bro[r) - EG)dr @1

the former consisting

-
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is obtained. Here 5 is the Green’s tensot (using dyadic notation)
3 3 i
(ﬁ(l‘ol" = z &y Gl("ull‘) == E Gg;(i‘all') Fiy . (2.12)
=1 {1

‘[he tensor clements Gy admit a simple physical interpretation:
(;”(rn|l') is the f-th electtic field com;_:cment of ar} oscillating etectric di~p?le
of unit moment pointing in x-direction, placed in the seraal conductivity
structute at 19} the point of obseryation is 1. Note that the first index and
aggument refer to the source, the sccond index andlargumem to thc.nb-
server. Because of the fundamental reciprocity in electromagnetism,
ohserver and source parameters are interchangeable, i.c.

Gitrolr) = Gulvre)- (2.43)

For a proof replace in (2.8) » by #', write an analogous equation for
G,(rtr'), multiply cross-wise by G and G, integrate the difference with
respect to 1’ over the whole space, and obtain {2,13) on using (2.9). Duc to
213, 21 is alternatively written

E(ro) = Ea(ro) — [ 450 EQ) - Grivglde. (2.14)

Eq. (2.11) or (2,14} is a vector Fredholm integral cquation of the
second kind for the eleetrie field K. The kernel (5 and inhomogencous
term E, depend only on the normat conductivity structure. The domain
of integration is the anomalous domain. To detwrmine the kerael (& replace
first the conductivity within the anomalous domain by its notmal values.
Then place at cach point of the domain two mutwaily petpendicular hori-
zontal dipoles and ane vertical dipole and calculate the tresulting vector
ficlds a1 cach point of this domain, At a fiest glance the work involved
appeats to be prohibitive, but it is sharply reduced by the reciprociey (2.13)
and the isotropy of the normal conductor in hotizontal disection. In partic-
ular, only one hotizontal dipole is required. Since the kexnels ace inde-
pendent of g snd Iy, the same kernels apply if the conducriviey within
the anomalows domain is changed andfor the extersal field is altered (e.g.
different polarization).

In the simplest, though physically not very intetesting case of a aniform
whole space with conductivity o the tensor elements ate siniply

KGufralr) = (B4, — 8% B dxy)e (A R) (2.15)
= {1+ - 428y — (3 I+ 8 (oer—a) (g — Nl RE e {4 e 29)
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(e.g. Morse and Feshbach, 1953, p. 1781). Here, R= r—1o), k%zr'mpwm
n=~qoR, and &y is the Kronecker symbol. For a uniform half-space the
elements are given in the appendix. A method for calculating the elements
for an arbitrary aumber of layees is presented in See, 3.

The integral cquation (2,11} or (2.14} is decomposed into a set of
linear equarions, which ate solved either by iterative techniques or by
matrix inversion. Suggestions for the vsc of either of these techniques
are given in Sec. 4. When the clectric field within the asemaly is known,
a second set of kerncls is cequired, which transform the field via (2.11) or
(2.14) into the sucface field, The kecaels for the magnetic ficld are obtained
by considering the curl of {2.11) or (2.14) witl: respect to g,

2.3. Fhe Surface Integral Method {Approach B)

Let the anomalous slab be confined to the depth range #) <% < 75,

Approach B is to solve within the anomalous slab the inhomogencous
cquation

curl 2B, (1) -+ £20) Eolr) = — £20°0 Eo() @.16)

(from (2.3), (2.5}, and (2.6)) subject to two homogeneous boundary condi-
tions at z =2 and z=11, which involve o, for z<ay and 2 >2» respec-
tively, and account for the vanishing anenalous ficld for z -+ 4 co. When
(2.16) is solved by finite diffeseaces, the discretization involves also the
field values one grid point width above and below the anomalous slab.
The sueface integral method is simply to express these values by & surface
integral in tezms of the tangential component of E, at 2, and 23, respec-
tively.

Let V) and 17y be the balf-spaces z<Czp and 22> 20, respectively,
and let S, = 1,2, be the planes 7 =2, Let G™(rofir), ro € Vi, 1 € /00
Jy be a selution of

curl 26" ol + BANGI™M o) = b —re} (217
(F=1,2,3; w =1,2) satisfying for 1 €5)z the houndary condition
£ % GIrglry = 0. (2.18)
Ian /) and V¥, B is a solution of

curl Wa(r) + 420 Balr) =0, (219}

=
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i ; ) (2.17) by By, integrate the difference with
Multiply (2.19) by Gf", (217) by Ea, : :
sespect [Opl' over Iy, and obtain on using (2.9}, (2.18) and By »Oforr —+co

Hailro) = (17 § {8 X Eap)} - corl G oy, (2:20)
Snl

ro €V, 01 I tensor notation
Eallo) = (~1) [ cutl §6m(rolr) {£ 3 B(3} de,
Sl?l

ry {mn)
where cutl GV =3 &rcurl G-
T

This is the required mapping, which admits the representation of the

field values outside the ancmalous layer in terms of the boundary values
i ial component of By

of the (continuous) angential . i

A physieal intocpretation of Green’s vector G (rolr) subject to (2,18}
isas follows : Refiect the normal conductivity structure for <7 and 2 =z
at the planes z=2 and #=zxa respectively, place a unit dipole in ;;:

H H A .

ditection at rg € ¥y and an image dipole at logio.—',—?. (zm—-z0)%, the
moment being the oppaesite for the two horizontal dipoles a?md) the same
for the vertical dipole. Then the tangential companent of G vanishes
at =2 -

Hence, it Vi is 2 uniform half-space, G s constructed from the

)

whole space formula (2.15). Eq. (2.20) then reads

Fastta) = lro—m| | FREa ), (2.212)
Sm

o) = ol § FDElaldol, @210
SFI

Endra) = (=1 § BRx—%0) L) 4 (y—y) E0)}d4, (2:21¢)

where R = {r—rol, ki == icaproty, and
L R)e-RoRi(2 1 R5)
FOR) L & (eRoR]BY = (1 +£oR)e ¥oBI(Z1RE).
W) 2aR dR ¢ .
Eqs. (2.21a—¢) contain as jmportant subcase the condition at the air-
catth intceface (21 =0, Lo=0)- ) o ¢ the
Because of the limited range of the kcmels., ia applications ©
surface integral only a small portion of Sy is f:onSldcr.ed. For Faz and 1_3,,,
the contsibution of the region neatest to Vo i8 Most .unporrant. Assuming
Epzand Fgy ta be constant within a small disc of radius ¢ centered perpen-
dicularly over 1g, the weight from (2.21a,b) Is simply

eod — (A} FE A gerRal e,
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whete A= |zm--zn| is the vertical grid point width, Under the same con-
dirions the disc does not contribute to Zqq.

At the vertical boundaries of the anonvalous Jayer the condition E, =0
might be a very cruede approximation, in particular for a small grid, Here,
an impedance boundary condition for the rangential component gy of
the anomalous electric field,

LBy =it X curl B,

A =outward normal, &%r)=/ouea(’), performs substantially -better
(Jones, 1964, p. 325).

3. Coumpuitation of Green's Tensor

Consider a normal conductivity siructure consisting of a non-con-
ducting aix half-space {index 0) and Al uniform conducting Jayers with
conductivitics o, 2#2=12, ..., M, a1l different from zero. Let the inter-
faces be placed at the depths by =0, by, ..., by To calcutate Green's
tensor for approach C, two mutually perpendicutar horizoneal electric
dipoles and one vertical clectric dipele of unit moment have to be placed
at each poing, which will'be occupicd by the anomalous domain, and the
three components of each resulting fickd have to be deteemined for each
interior point of the domain. Because of the horizontal isotrepy, in practice
one horizontal dipole is sullicieat.

The calculation of dipole source fields within 2 layered structure is 2
classical preblem (e.g. Sommerfeld, 1935; Wait, 1970). In the applications
(e.g. clectromagnetic sownding, antenaa theory), however, only the posi-
tion of a.dipole abere and on the structure is of interest. Lacgely zeferring
to the above studies, only the madifications due to the position of the
dipole within the structare are seated.

Iet the dipole with moment in xp-dircetion be plheed in the ge-th laver
at rg, and let G{ro|F) be the resulting ficld in the w-th layer at point r.
The continuity of the tangeatial compenents of the clectric and rmagnetic
field at interfaces leads to the conditions

£ % (G —GF) = 0, £ % curl Gt —am =0,

a1
&= hy,m=1,..,1.
Gy is represented with the a.id of 2 Herez vector #:
G raly) = A3 al'() — grad div &0, &%)
where & =impaoy and 2" satisfies
A = AL wP ) — B S —ro) . (33

 the dipole is placed at r==0), z==z¢. The vertica
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icudri i i d and
cylindrical co-ordimate system (r,2) s adopted
For tve e | and horizonal dipole

requise different treatnient.

oy Verkical Dipele
a2 has & yertical component only,

w0 = an(), .4
where mpz satisfies
) = Kaalle) — S0 rolkin- 6.5

Eq. (3.1)-implies the bouadary conditions

- 9 m-—-1 wy — b 3.6
G171 b oy =0, B (a5 T — ) = 0,z ="ln {3.6)

The general solution of ciceular symmetry of the homegeneaus version
of {3.5) can be built vp From terms of the form

[ol@) Jo(sn)s where fiy == Eonie=hinl, ad =gk, =0y, M (3.7a-c)

with fg=D0; s is the constant of separation and j.o the zero order Bcssc;
function of the fist kind, The plus and minus sign denote upward ane
downward teavelling waves, respectively. ‘The salwtion of (3.5) for a uni-
form whole-space with ¢ =0y 18

el 5 pragte-al Jo(siylr, R =[r—rol.  (3-B)

@
o
iy Balrrs i e
]
Now tet for OZm= M

P
“ - s l}'DAmfm. z< 2 3.9
= g (Pl + Pon) fods, where Py = Vst B f 22 70" 3.9
A5, HE, yoond iy ate also functions of 55 yp and par being so adjusted
that g =By =1. The absence of downgoing waves for z<<0 and up-

N = gt
going waves for 23z 2g, i %0 is in the Al-th laver, yields A =584 =0,
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Stacting with AF =1, 45 =0, the bouﬁdaty conditions imply for
1=m < pt the recurrence relations
AE — le—L -1 + o AE .
) ( o + o Em-1 Aip-1 o1
.10y
i -1} - _
(2w ) g,
Tin @
where
1
o= 7 extpWni-tml, = 0,..., M—1, (3.11)

Similarly starting with Bl =0, By =1, Eq. (3.6) yiekds for M—1>n
== g the backward securrence relations

B = (ﬂl“ + w).ﬁ Bha + (L‘TE ES fi"ﬂ) £h Bae. (312)

LT T dp P

*In the case p = &/ no recurcence is required for B3;. Having computed
A and B via (3.10) and (3.12), yo and yar are determined from

(ro 17 — p3e BL) f7 (oo = Grar BY —y0 1) £ (0) = _‘_{;‘_3__ 613
Aol

The fitst equality results from (3.9) for z =zq, the sccond from the fact
that the diffesence in the upgoing (downgoing) waves for z 5> 2g and 2 <29
is due to the primary excitation, given by (3.8). Hence,

yom Sy Bl 3 Bt '
dae, by A8 .14y
et L AL '
dra k) dfA8) 7
whetcff :ff (o) and
MAB) = 4} B A BY, {3.15)

Whea =7 is determined, the tensor elements &, ., Gay, Gy are cal-
culated via (3.4) from (3.2). The field in <0 is simply

=
Gf =—prad q v €% Jyrds) (3.16)

B
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7 A Horizontal Dipole

Let the dipole be directed atong the x-axis, The Hertz vector has two |

- components now:

AP = () & + 22 () £. (3.17)

From (3.3) follow the diflerential equations

A = A e — S —rokh, daf= 22 a%. (3.1Ba,b)
Tq. (3.1) vields kour boundary conditions at z=hpt

Y gy =0, (3.19a,b)

a m
m-l mo0 L T
G-l Txz I Txz s '——az {om

disrt ' —alf}=0. (319¢d)

Fip—-1 -'l:"‘s.l — Om g =10,
Condition {3.19d) couples g and app. — Particular solutions of the
homogeneous versions of (3.18a,b) arc

S35} Juler} cos g and Tz [alar) sian
where fy is the n-th oeder Tessel function and fiz if given by (3.7b). S.I{ICC
the excitation 3s expressed by (3.8), Jfo is appropriate for ,z- Condnwn{
(3.19d) then shows thae Jy casi is she cerect choice for ey {¢ reckoned
positive from the x-axis in direction to the y-axis). Let for 0= < M

= _ v ll)oC;lthI)zszU 490
£ i! (D, + Ou)fods, wheee G = 63l fim =270 (320

rxr = ¥

Then the determination of CE. DL, bg, amd daris quite similar to .(lm

of 415, By o, a0d jar, respeetively. Thus the boupdary conditions
, A tively. 18 oneed
(3.19a,15) yield for 1w <l p starting with Cp=1, Cg=0:

ch={1= ﬂ'-‘—‘) ot Chon + (s o EJ) gt Ciet, (321

Aan *m

and starting with Di =0, Dy =1tor M—1Z=p=p:

D} = (1 + ’_‘) & D + (1 = ﬁ‘) & Dt 322)

®m T
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Again, there is no recurgence required foc ys— M. The unknowns )
and 8y a1c dotermined similarly to (3.13) and (3.14): ’

Sg = * + ot -

= aaen) Cadet Patie L

dw=—" (i (2
o d (G 0y e T Ed )

where £ = ;f(zu), and the A-symbol is defined in 3.15). The computation
of 71y, is slightly more complicated. Let

o«
Aot — g (B + Ba) 1 cosd ds,

where

e [T 100 F) fin, x <0 (3.24)
VlewrGin - darFlm) fa, 22 20

Since at each iaterface four new coefficients are introduced, whereas
there are only the two boundary conditions (3.1%9¢,d), vwo additional
conditions are imposed by equating at each interface the coefficients of £
and dg (ot ey and da1} separately, thus obtaining four pairs of decoupled
recureence telations {using (3.21 and (3.22) to remove %) and DE):

Ejn = (1 + %) Zne Fpet + (t =z ,’_3;.;‘:‘) Gt By, (325)

L "n

Fin

i

(1 & f-'f'-i) g1 Froy + (l ¥ ‘?"‘i) gt Py
Bm [:
(3.26)

IS

oy (1 — ‘7'-","]“) (Ch 4+ Cad,

2ay o1

i

+ Bui) = . Bnm o m
G (1 ES T;';—) G Gral + (l 7 ﬁﬁ;—l) & Gty (327

HE s (] + M) & Hba + (1 = B+t £ Hon
B Bn

5 ¢ _
- (l - i) T (Dt + Do),

i Tyl

(3.28

whete i = o

=
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To determine ey and gyr, Fg. (3.24) is considered at z=zxq. Since 72
o singularity, upward and downwatd teavelling waves agree. Hence,

enE; +60F: = a1 G,f-i—a.‘qu.

has

of
2o = {d(F, G}do + (G, H) dx} | G, B), (3.2%a)
ear = {d(F, B} do + AE, H) S} | (G, E). (3.29b)

So far, the starting values for the recurrence (3.25)-—(3.28) have not been
speciﬁed. Since in the last layer there is no upward travelling wave
pelow the source,

G =1, Gy = Hir = Hyr =0 (3.302)
is 2 correct choice of the initisl values of (3.27) and (3.28). For the air laycr,
a cotresponding choice of Eé =1, Eg=Fg=F4 =0 would be appro-
priate, if the air had non-zero conductivity, In the case of oy =0, (3.25)
and {3.26) break down. As o remede recurrence has o stact at o =2 and
the coefficients for # =1 must be specified. Assume for the moment that
the air half-space is slighiby conductin§, i.c. bf# Q. Whereas 7z is only an
auiliary function, the quantitics Lial and dival, enteding in (3.2), have
1 physical meaning and st be finite for 2 < 0. Let

®
kaal, = [ Boesz fy cosddr
0

Then div ag is finite if (EDA-[‘)U),’;E% is finite for gg 0. Hence, &g == do.
Satistying the boundary condition (3.19¢) at z+=0 by iq““tifg the coef-
ficients of ep and dp separately, yvields £1 +£1 =0, F{+Fy =1 Speci-
fying ep as the amplitude of the upward propagating wave in the fiest
layer, the final starting valucs

Fie=—1,Ef =1, Fi=1,Ff =0 (3.301)
are abuined, This completes the treatment of the horizontal dipoie.

Now, an using (3.2), (3.9), (3.20), and (3.24) all tensof clements can be
given explicitly, Let

nl

= {12+ ordJo s+ ?12_5 (G + By — Rl — R} 1 s,
4 g

w©

Up= — Zlf S {(Oh + On) — a(Rin — R} Jz 1,
[}
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& opr

Us=—[{Pys -+ Pu) Jos®ds,
L]

o
Uy = ‘DJ’ A e Y

wheze Uy = Ui(zg, 2, M, i=1, ..., 4 Then
ez =Uy -+ Up €058, 6Ty = Gl = U sings cosd, Gllym Uy + Uy sintg
Giz =Ly cosd, Gy =1y sind, G2 =y,

o= 1] 2]
The ml_sstng clcmcn_ls Gaz, Gyz can also be expressed by Q and R
terms, or simpler on using the reciprocity (2.13), as

Gl =—1Ul#, za, 1) cosg, GI1 =—Uy(z, 2o, 1) sing.

The sign is reversed, since the interchangeof sauree and teceiver change;
¢ by 71 The ninc clements of & can be expressed in teems of the four auyjl.
iary functions U} to L'y, For i=1, 2, 3 reciprocity requices ilze, 2, A=
Utz 2o, ). Hence, these functions have to be determined for 2< #, only,

The tensor clements which wansform the clectric field within the
anamalous donnin into the suckace field, become pacticulacly simple. Hgs
(3.196) and (3.20) yield ) '

& div a? :‘_!' {2 otr eo— (o1 + )0} €2 ]y cosd iy . {331
Hence, defining
o 3
- ’ (I
r'1=.\ dofods + o | {620 0 =23 co} fy
i ]

3

- 1
Fom P \ {4+ 01) Bg 2 2ye0} fa 5 o,
0

o A
V3:*ﬁ|'?’0/uf!fff. Vy=Jyo /1 24dr,
o o a
B |-
Iy = \ do fLde + ?\ {l-21) Sa — 2 e s0} J) £ s,
J i,
a ]

where [ = Vi(zq, 7}, Eq. (3.2) vields as tensor elements for 2z =—0:
o " -

Grr = 1] 4+ I3 cos?d, Gg., = ITasing cosd, % — s cosd
o o -

Gyr = Gy, Cop = V1 + Fasintd, Gl = K sins

Gl = ¥y cosd, Cly = 17, sing, & = v

Ed
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Tn #< 0, the clectric ficld of a dipole in x-direction {say),
oy
6l = I 80(® fo -- & J1 cosd) et s — grad div a2, {3.32)
D

whete di\'ng is given by (3.31), can be split uniquely into a toroidal part
T {putely tangeatial) and o poloidal part S,

G2=T+8, T=curl (4 p7), S = grad p;. (3.33)

The poloidal pact is due to surface charges at g =0. Since the z-com-
ponent of the first term of {3.32) is poloidal per defnition, ps and ppare

gi\'cn by
P »
ya={doslf1cospettds —dlv m, yp = g5 frsing st dr. (3.34)
Q9 [

The electric field of a vertical dipole is purely poloidal in z2<0Q (cf.
3.16)) When the kerncls for the toroidal part are calculated by (3.33) and
(3.34), the elecrric sucface field obtained by (2.14) is casily decompased into
its poloidal and toroidal part. For an elongated anomaly and a toroidal
external electric field, che resulting anomalaus field is cither almost toroidal
or poloidal, according whether the external field is parallel or perpendicular
to the strike.

In 2 0 anly the toreidal part of the surface eleciric field gives rise to
amagnetic field. Les F?{ru|r), i=1, 2, be the magnetic field at » duc to a
horizontal dipole in xy-dircction at #g. Then from (2.2)

iengrg PY(ro}r) = — curl Glgrg|1), 7= 1,2,

Defining
m =
. | o T
feapep 1Py = \ do (—--]1—]0) 1de, fepig iV = |‘ 8o faids,
5
i b
iopp Wy = -— \ do f1 5 ds,

the magnetic field kernels are

By = — Wasind cosd,  Fhy, = W) = 2 cos?d, Fl = Wy sing,

FB; = — "] — W5 sinld, 1'4,,’,, = Wy sind cosd, Fﬂ; = — W3 cos.
Hence, the determination of the electric and magnetic sucface fietd

equites the tabulation of cight additional functions {71 to 75 and ¥

to W3), all functions of zg and r. The range of r depends on the sutface

domaia, where the anomalous field is to be evaluated.
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4. Nunrical Considerations -

The integral equation (2.11) or (2.14) is solved by the simple apptax.
imate appreach of Hohmann (1971). It consists in decomposing 1h,
anomalous domain into a see of equal rectangular cells, assuming a constan
elecrric field within cach cell, Fer &V celis results a linear system of 3 N
equations and unknowns. The coefficients are essentially the tensor kernel,
integrated with respect to source coordinates (Eq. (2.14)) or abserve
coordinates {Eq. {2.11)) over a cell. Care must be exercised in c\'alualing
the contribution of the singulac cell and of its neighbouchood, In £eneral,
the mast important contribution arises from the primacy excitation iy
dircction of jts moment. Let the dimensions of 4 cell be Az, Ay, A, and by

G = (k% — 3%[ax?) e~k Ri{d £2R)

be the cxcitation in ~-ditection. For an apptoximate evaluation, the singular
eell (g is reptaced in the dirst teem by & sphere of the same volime and in
the second term by a citculae eylinder with asis in x-ditection, length J,
and cross-section Ay Ay It results
B2 [ GRyde = &P (B[ Ry) o852 — (1 1 ARg) 08 . 1,
Cs
B

where Ry=2,02, R3= 2540 4y fm, R3 =3 222y 2af(4 ).

For symmctey reasons, these is no contribution from 5, and GF.
‘T integrals over the adjacent cells can be effected in a similar way, In the
numerical evaluation of the kemels given in Sec 3, the integeation with
respeet to 2 Is casily included by adding in the integrand the factor

2 sinh {ay Aof2) 2y, ,
by which exp {£ xyz) Is multiplied when integrated over the thickaess
of the cell centered at 2, :

The system of cquations is solved eithee iteratively (¢, g. by means of the
GauB-Scidel methad) or by matrix inversion. Because of the large storage
required, the latter method Js attractive only for small anomalous domzins.
Tt is of great advantage to exploit all symmetries. For stractures with two
vertical symmetry planes, the number of unknowns is reduced to almost
25395, and hence, the storage for matrix inversion is oaly 1716 of the ocginal
storage. For iterative miethods, both the computer time for one jteration
and the number of iterations is reduced.

The GauBi-Seidel iterative scheme converges only for maderate con-
ductivity contrasts. In numerical experiments it was found that a good
convergenee can be abuined for conductivity contrasts up to 11100 only;
Ly was used as initial guess for B. If for higher contrasts mateix inversion
is not possible, the best cemede might be to apply the powerful methad of
shifting the spectrom as described by Hutson e of. (1972, 1973).

*
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Fig. 2. Induction arrow maps for cwo diflerent conﬁgumic_ms of the anomulous

domain {rop). Vectarisl addition of the amow of the 1eft structure and of 2

similar steuctare rotated through 900 (battom). Only acrows longer chan one half
of tiwe Jength of an arcow head are shown

5. Resuits

‘The fensibility of the integral equation approach has been tested for
simple cases, Some of the results are presented below. A Co]r‘)pktc- aad
concise presentation of the anomalous fiekd vectors for a three-dimensional
model poses a difiicult problems, For a quasiwniform extc.rnal ﬁelc!, 24
displays of a funcrion over a two-dimensional army are required to give 2
complete description of the in-phase and out-of-phase past of the .elec.mc
and magnelic ficld vector fot the two mutually pcrpendlcu}ar polarizations
of the external field. Four of these displays (in-phase and om‘-of—ph.nsc
past of /4, for both polarizations) can be combined 1o yield an mduc‘ison
acow map, Examples of such maps are shown in the wpper half of 1'?1g. 2
for two difierent configurations of the anomalous domain. The bodies of
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Fig. 3. In-phase and out-of-phase pace of the anomalous elecieic field vector for

a uniform external field in x-dicection serving as reference fickl, The associated

normzl magnetic ficld points in y-dicection. A reetangutar anomatous domain,

50 km % 25 km x 10 ki of p = 12 m, embedded in & wniform hatf-space with

o= 102 m just below the surface is chosen, The period of the inducing fick is
120 sec

¢=10m ate 10 km thick and are placed immediately below the surface
of a uniform substratum of g = 10 Qm. In-phasc and out-of-phase arrows
are marked by black and white heads, respectively, Only arrows longer
than one half of the atrow head are shown. It has been proved by Sichert
(1971} that the induction arrows for a complex structure, consisting of twn
elongated, mutually perpendicular anomalies can be obirined app roximately
by vectorlal superposition of the individual acrews. Along this liae, the
lower map of Fig. 2 has been obtained by adding to the arrows of the leht
map the arrows of the same structure, rotated through 90°. Since mutual
induction Is neglected, the induction eifect is slightly overestimated.

The complete set of 24 displays for 4 diltecent high conducting jntrusion
is ilfustrated In Figs. 36, "The plots arc thought to provide a qualitative
idea of the ficlds, although quantitative results can be exteacted by a some-

~
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3e

Vig, 4, The anomalovs magactic field of the model deseribed in the caption to
- Fig. 3. The normal magaetic ficld seeves a5 reference ficld

- winat awkward procedure. The disturbing body is decomposed into cubes

with 5 km edges. There ate 10, 5, and 2 cubss ia x, v, z-ditection, respec-
tively. The complete surface field has been e:,\':\luaic‘d ona 18 % I3 grid,
Ona UNIVAC 1108 computer the detesmination of 2il kernels took 70 sec,
the solution of the integral equation and the evaluation of she .snrh.\ce ﬁc.:ld
tequited additional 50 sec for each pﬂln_rimtion, the Gauf-Seidel iterative
scheme being convergent after 10 iterations, )

In 21l subsequent figures, anly the anomatous ficlds are shown._Thc
modulus of the corresponding normal field scves as refc.[cncc.. Flg. 3
preseats the electric field for a uniform external electric hci:i in .\-:r%ltc‘cuon.
The associated normal magnetic field poiats in _\--ditecuu'n.. \Vithl!.‘l the
good conductor, the I5-component breaks down, It exhibits a discon-
tinuity at the Front and xear surface since the normal compenent of the
curcent density is continuous there, The Fy-component dilfers appr?:cxably
from zeto only near the corners, The signs are easily understood wsing r.he
idea of the clectric currents being sucked into the good conductor. The



104 P, Weidelt
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Tig. 5. Tn-phase and out-of-phase pact of the anomatous electrie field vector for
a upifaroy external Feld in -y-direction assaciated with a normal magactic field
in a-discction. The same anomalous domain and pericd as in Tig. 3

magnitude of the S,-componcat is of the order of Zp. Iis origin are
surface chatges: negative charges at the front bending the current lines
towards the surface and positive charges at the rear reflecting the lines
from the surlace, Fig. 4 shows the corresponding magnetic field. The signs
are understood using che idea of magnetic Field lnes expelled from the
good conductor.

Figs. § and 6 display the electric and magnetic field for an external
magnetic field in x-direction associated with an ¢leceric field in -y-direction.
With the present choice of the dimensions of the disturbing body,
this polatization sesembles the two-dimensional H-polarization, i.e. the
anomalous magnetic ficld vanishes if the anomaly is extended to infinity at
both ends. In the same limit the former polatization degenerates into the
E-polarization case. :

After decomposing the kernels G and G according to (3.33) and (3.34)
the poloidal and toroidal part of the electric surface field can be obtained

w
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Electromzgnetic Induction in

Fig. 6. The anomalous magretic licld vector of the model of Fig. 5

separately. For the 5 and Ly component of Fiz. 3 this Is done in Figs.
Taand 7b.

Einally, the transitio
ed for a pacticular mod
dimensional description is ad
exceeds three times its widih.

 from three to two dimensions has been investigat-
¢l. Fig. 8 illustrates that on a central profile a two-
fequate if the length of the disturbing body

6. Conelusion

haique based on Green’s tensor tuens out 10
hece-dimensional inducion problems,

it is suitable for small anomalous domains, and hc:e_ it is of p'.lrticu!at
advantage if the anomatous field is zequired fora ser of different conductiv-
ities within the anomatous domain andfor diferent external felds, For
the time consuming computation of the pertinen kernels has to be caricd
out once only. Work is still necessaty to develop efective iterative methods
it the conductivity contrast s large (>100:1). For large anomalsms do-
mains, a finite ditference technique combined \"{th a surface integral
boundary condition appeats to be the most promising approach.

The intcgral equation tce
be a useful tool ia treating t
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Fig. Ta. Toroidal and poloidal part of the fz-compenent of F
Fig. Tb. Toroidal and anomatous part of the Ey-component of Fig. 3




108 P Weldele

Appendine

The Teasor Blements for a Uniform Half-Space

For a uniform half-space with o,{z) — g these clements have alread,?
been given by Raiche (1974) in terms of integrals. However, all integra-
tiens can be cacried out explicitly, Using source coordinates xp, o 2
and the abbeeviations.

BE = (x—x2 + (3—v0)? + (3 2 20)?,
B

#

I

exp (—koRe)/(da s}, =2 4 g, £ = ioppao,

«— (aJaz){fu (%&u[feﬁz—zu]) : Ko(%kn[fh bat znl)} 12,

whete Fyand Kgare modilied Bessel fuactions of oeder zero, first and second
kind, it results for z, 2930

A8 Gop == (B — 33x2)B + (931827 (ey — B,
B Gy = 8 Gy = — (220 > )3,

£ Grp = — (Y3 x 39) s,

8 Gyy = (k6 — D)D) 1 (3%22%) {are — ),
By Gyp = — (3¥ay82) 2,

kb Gop = — (0992031,

53 Coy = — (3%828v)x-,

b G = (48 — %25

The vettical components Gr, Gz Gy, vanishing for 2 - -|-0, tend
for z -—0 to the limiting values

3 Gr = — (02D Bza)y, kS Gyo = — (3Bydzely,
£ Gy = -— (22023,

where
=@l [Io 5 ulho-—sel) - Ko (L ko 20} 22,

R = (o) o+ (y—30)® + 26,

Since jn applications aa intepration over the source or obsecver coordi-
mates (Eqgs. (2,14) and (2.11), respectively) is involved, most of the above
ditterentiations nced not 1o be carried out, {Use 8]dx —=—d)dxg, 3f8y =
—dfdyo, and ¢.g. du 3z =—Gusidzo, Duifds =—du-fdzg.)

k4
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