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SUMMARY
The magnetotelluric impedance tensor is de¢ned in terms of seven independent para-
meters that are invariant under a rotation of the horizontal axes on the surface of the
Earth, plus an angle that de¢nes the orientation of the axes of reference. The invariants
are algebraically related to but nevertheless di¡erent from those recently proposed by
Szarka & Menvielle (1997). They have been chosen in such a way as to have clear
representations on aMohr circle diagram and also to reveal geoelectric properties of the
Earth near the site where the impedance data are measured. The ¢rst two invariants
de¢ne the properties of a 1-D earth when the next four invariants are negligibly small. If
the next two are also non-negligible, the earth is 2-D with a strike direction that can be
recovered. The last three invariants indicate di¡erent degrees of three-dimensionality
and the discussion of them with reference to small-scale galvanic distortion in an
otherwise 1- or 2-D structure largely retraces the insightful pioneering work of Bahr
(1988). The properties of the invariants are illustrated with numerical calculations for a
synthetic model consisting of a small conductive anomaly in the form of a cube at the
surface of an otherwise 2-D earth that is divided by a vertical fault into regions with a
strong resistivity contrast. Results are presented for synthetic data that contain only
numerical noise, and for data to which 2 per cent random Gaussian noise has been
added. The theoretical properties of the invariants are veri¢ed by the pure numerical
data, and are con¢rmed statistically by the noisy data.

Key words: electromagnetic induction, impedance tensor, invariants, magnetotellurics,
skew.

1 INTRODUCTION

Rotational invariants of the magnetotelluric (MT) impedance
tensor have long been used to provide information about the
geoelectric structure underlying the sites where impedance
data are measured.Well-known examples are the Berdichevsky
and determinant impedances (Berdichevsky & Dmitriev 1976;
Ranganayaki 1984; Ingham 1988; Park & Livelybrooks 1989),
which were introduced to represent in some sense an `average
impedance' from which a 1-D interpretation of the structure
could be deduced. Others are the skew parameter of Swift
(1967), which has been widely applied to MT data to determine
whether the underlying structure can have a 2-D interpretation,
and the phase-sensitive skew of Bahr (1988), which indicates
whether the data can be attributed to distortions caused by a
small localized anomaly or are associated with a truly 3-D
regional structure.
Fischer & Masero (1994) have argued that since the 2|2

impedance tensor is complex valued, it should possess eight real
invariants corresponding to the eight real elements de¢ning the

tensor. They were able to identify seven invariants including
one less familiar in magnetotelluricsöthe Frobenius normö
and concluded that the eighth parameter was associated with
the orientation of the axes in which the tensor was expressed
relative to principal axes. Their arguments were illustrated geo-
metrically by reference to the ellipses traced out by the tensor
components in the complex plane as the axes of measurement
rotate (Word et al. 1971; Eggers 1982).
Following the approach suggested by Fischer & Masero

(1994), Szarka & Menvielle (1997), henceforth referred to as
S^M, have recently analysed the rotational properties of the
impedance tensor in great detail, and have systematically
examined the algebraic relations between the various invariants
that had been previously introduced. They also proved that
there are indeed seven mutually independent invariants in
terms of which all other invariants can be expressed, and that
three of them, rather than just two as previously thought
(Fischer & Masero 1994), are associated with the determinant
of the impedance tensor. Two such sets of seven independent
invariants, one called the `magnetotelluric set' and the other a
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`mathematical set', were selected by S^M as those playing
fundamental roles, the choice depending on whether one wished
to follow historical practice in MT studies or mathematical
tradition. For a geometrical illustration of their results, S^M
chose to use the Mohr circle diagrams ¢rst introduced by Lilley
(1976, 1993a,b,c) as an alternative method of representing MT
data graphically. They are particularly illuminating in this con-
text because rotational invariants are immediately identi¢ed as
¢xed geometrical properties of the Mohr circles.
The aim of this paper is to consolidate the various approaches

to an interpretation of the impedance tensor into a single treat-
ment. First we argue that, in our opinion, the Mohr circle
is the preferred graphical representation of an impedance
tensor because it is the natural generalization of the simplest
representation of a complex-valued vector in a plane. We
then introduce a set of seven independent invariants that are
di¡erent from but related to the invariants derived by Fischer
& Masero (1994) and S^M. All of them are associated with
invariant properties of the Mohr circles, which not only makes
their mutual independence geometrically obvious, but also
clearly reveals their relationship to the various invariants
proposed by other authors. The invariants are chosen in such a
way as to have a physical interpretation that allows one to
assess the properties of impedance tensors, including those
that have been a¡ected by galvanic distortion in the manner
elaborated by Bahr (1988) and Groom& Bailey (1989), whatever
the orientation of the axes in which they have been measured.
The paper concludes with some applications to synthetic data
generated by a 3-D modelling program.

2 INVARIANTS OF THE MT TENSOR

In MT investigations the measured data are usually made avail-
able as the real and imaginary parts of a (frequency-dependent)
tensor M de¢ned by

e~M . b , (1)

where e exp (iut) and b exp (iut) are, respectively, the horizontal
electric and magnetic ¢elds of angular frequency u, recorded at
some site on the Earth's surface at time t. Many writers prefer
to deal with the impedance tensor Z~k0M instead (k0 is the
permeability of free space), and write the de¢ning equation as
e~Z . h, where h is the horizontal magnetic intensity measured
in A m{1. However, since measurements of magnetic variations
are generally quoted in nT, i.e. units of b, we prefer to work
with eq. (1) while avoiding the unfortunate but not uncommon
practice of using the misnomer `impedance tensor' to describe
M. We call M the `magnetotelluric tensor' or simply the
MT tensor. It is assumed that any physically meaningful MT
tensor has a non-vanishing determinant with, in particular, its
imaginary part non-vanishing. (The need for this assumption is
clear from a consideration of the simplest possible problem of
induction in a homogeneous earth.)
Let x- and y-axes on the surface (z~0) of the earth de¢ne

the directions of north and east respectively. The positive z-axis
points downwards into the earth. Then in the notation of linear
algebra, withM represented by its 2|2 complex-valued matrix
M, and the ¢elds e and b by the column vectors e and b, eq. (1)
becomes e~Mb, or

e1

e2

� �
� M11 M12

M21 M22

� �
b1

b2

� �
. (2)

A rotation of the (x, y) axes through an angle h in a right-
handed sense about the positive z-axis is represented by the
rotation matrix

Rh~
cos h sin h

{ sin h cos h

 !
, (3)

application of which to eq. (2) yields new vectors e0 and b0,
where

e0~Rhe~RhMRT
hRhb~M0b0 , M0~RhMRT

h . (4)

Here RT is the transpose of R. In the notation of Weaver
(1994), the components of M0 are

M011~f1zf2 sin 2hzf3 cos 2h , (5)

M012~f4{f3 sin 2hzf2 cos 2h , (6)

M021~{f4{f3 sin 2hzf2 cos 2h , (7)

M022~f1{f2 sin 2h{f3 cos 2h , (8)

where we have de¢ned

f1~m1zig1~
1
2
(M11zM22) , (9)

f2~m2zig2~
1
2
(M12zM21) , (10)

f3~m3zig3~
1
2
(M11{M22) , (11)

f4~m4zig4~
1
2
(M12{M21) , (12)

so that the matrix representation of the MT tensor takes the
form

M~
m1zm3 m2zm4

m2{m4 m1{m3

 !
zi

g1zg3 g2zg4

g2{g4 g1{g3

 !
.

For convenience later, it is also useful to introduce the
dimensionless variables

dij~
migj{mjgi

(m24zm21)
1=2(g24zg21)

1=2 , (13)

sij~
migjzmjgi

(m24zm21)
1=2(g24zg21)

1=2 . (14)

In their recent paper, S^M identi¢ed seven independent real
invariants of the matrix M under such rotations. Those that
they called the `magnetotelluric invariants' (to di¡erentiate them
from an alternative, largely intersecting set of `mathematical
invariants') are m1 and g1, m4 and g4, det (ReM) and det (ImM),
and Im (detM). Here, we shall refer to them as the `S^M
invariants'. Their invariance can be veri¢ed directly by mani-
pulating eqs (5)^(8), although the ¢rst and third pairs are
already well-known invariants of any matrixöits trace and
determinant. The second pair, m4 and g4, are pseudoscalars;
that is, they are invariant under rotations but change sign
when the axes are inverted. When multiplied by k0, they give
the arithmetic mean of the two principal impedances in a
strictly 2-D model, which is sometimes called the Berdichevsky
impedance. We shall assume, therefore, that f4=0 (i.e.
M012=M021) in any discussion involving 1-D or 2-D models. The
¢nal invariant provides a connection between the real and
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imaginary parts of M, unlike the other six invariants, which
involve exclusively either the real or the imaginary parts, but
not both together.
The complex-valued matrix M is de¢ned by the eight real

elementsReMij andImMij , i~1, 2; j~1, 2. It can therefore be
expressed in terms of the seven invariants listed above plus one
other parameter still to be determined. Now it is obviously not
possible to write down the matrix in full unless one ¢rst sets
up a coordinate frame in which one can give speci¢c values to
the matrix elements. The chosen frame, be it the original one
aligned north/east or some other rotated frame, can be de¢ned
by a single parameter, for example by the angle between its
x-axis and some ¢xed direction associated with the matrix, and
it is this parameter that completes the de¢nition of M. Thus
the MT tensor can be uniquely characterized by the seven
independent invariants of its matrix M plus one angle that
serves to ¢x the coordinate axes in which the components of the
tensor are expressed.
Various other invariants have been proposed from time to

time, such as the aforementioned Frobenius norm, the central
impedance of Lilley (1993c) and the sum of the squared
components of the MT tensor, which belongs to the set of
`mathematical invariants' introduced by S^M. They can all be
expressed in terms of the seven S^M invariants listed above.

3 GRAPHICAL REPRESENTATION

It is instructive to discuss ¢rst the graphical representation
of a complex-valued vector in 2-space such as the horizontal
electric ¢eld e. Writing e~uziv, we can simply represent e by
two distinct vectors u and v in the x^y plane, as shown in
Fig. 1(a). The complex-valued vector e is thus de¢ned in terms
of the four real components ux, uy, ox and oy, and there are
three obvious invariants under a rotation of the axes, namely
the lengths of the two vectors, and the angle t between them
(Fig. 1a). The last invariant can be expressed in the form of
cost, and therefore in terms of u and v themselves, through

the formula

cost~
(u . v)

(u . u)1=2(v . v)1=2
. (15)

An alternative type of representation, which is more in
keeping with our algebraic approach, is to ¢x e1 and e2 axes
and to plot the values (u01, u

0
2) and (v01, v

0
2) taken by the real and

imaginary parts of e1 and e2 as the (x, y) coordinate axes are
rotated. In Fig. 1(b) the original positions of the vectors u and v
are indicated by the points P and Q respectively. As the north/
east coordinate axes in Fig. 1(a) rotate clockwise in the x^y
plane, the points P and Q describe circles in the e1^e2 plane
in a counterclockwise direction. The point at which the x0-axis
in Fig. 1(a) is aligned along the vector u corresponds to P
reaching the point P0 on the e1-axis in Fig. 1(b). The three
invariantsöthe radii of the two circles corresponding to the
lengths of the vectors, and the angle t between the radii to
the starting points of P and Q, which is the same as the angle t
in Fig. 1(a)öare again immediately apparent from the diagram.
The fourth parameter required to determine all four com-

ponents of the complex vector is the angle h0, which gives
the direction of u relative to the prescribed (northward) x-axis
in Fig. 1(a), or the starting position of P relative to the axis
of e1 in Fig. 1(b). A more formal de¢nition of h0, which does
not rely on reference to a diagram, states that it is that angle
through which the original axes must be rotated in order to
maximize u01.
The representation displayed in Fig. 1(b) is easily generalized

to a 2|2 matrix. We take M012 and M011 as the ¢xed axes,
and plot the paths traced out in the M012^M

0
11 plane by the

values of (ReM012, ReM
0
11) and (ImM012, ImM011) as the (x, y)

axes of measurement are rotated about the positive z-axis in a
right-handed sense. It follows at once from eqs (5) and (6) that

(ReM012{m4)
2z(ReM011{m1)

2~m22zm23 , (16)

(ImM012{g4)
2z(ImM011{g1)

2~g22zg23 , (17)

which are clearly circles centred at (m4, m1) and (g4, g1) and of
radii (m22zm23)

1=2 and (g22zg23)
1=2 respectively, as shown in Fig. 2.

They are, of course, the familiar Mohr circles ¢rst introduced
into magnetotellurics by Lilley (1976) and more recently studied
in great detail (Lilley 1993c, 1998a,b). The slight variation here
is that both the real and the imaginary circles have been plotted
on the same diagram, thereby revealing with clarity that t,
the angle between the radii to the starting points P and Q
on the respective circles, plays exactly the same role as the
corresponding angle for the vectors in Fig. 1(b), and there-
fore remains invariant as the axes are rotated. The other six
invariants are even more obvious from the diagram.They are the
four coordinates of the centres of the circles and the two radii.
Following the discussion at the end of Section 2 and the

suggested formal de¢nition of h0 in Fig. 1(b), we may specify
the ¢nal parameter required to complete the de¢nition of the
complex tensor as that angle h through which the axes must be
rotated in order to maximizeReM012. Di¡erentiation of the real
part of eq. (6) shows that h0 satis¢es

tan 2h0~{m3/m2 . (18)

It can be identi¢ed on the real Mohr circle in Fig. 2 as half
the angle between the radial arm to the starting point P and the
diameter parallel to the M012-axis. We shall call the coordinate
axes in which ReM012 is a maximum the `MT regional axes'.

θ

P
e

e

1

2

y

ψ
0

P
ψ

θ0

u
P

v

/

/

O

x
Q

Q

O y

x

/

e1

(a) (b)

Figure 1. Two representations of a complex vector e~uziv:
(a) traditional and (b) algebraic. In (a) rotated (x0, y0) axes are shown
with broken lines, and in (b) points P and Q represent the vectors u
and v respectively referred to the (x, y) axes in (a). As these axes rotate
clockwise, the points P and Q trace out the respective `real' and
`imaginary' circles in a counterclockwise direction, as shown. h0 is
the angle through which the (x, y) axes must be rotated in order to
maximize u01. Note that in accordance with geomagnetic convention,
the usual directions of the x and y axes have been interchanged in this
diagram.

ß 2000 RAS,GJI 141, 321^336

323Characterization of the MT tensor



4 A SET OF INDEPENDENT INVARIANTS

Four of the S^M invariants are the coordinates of the centres
of the Mohr circles, but the rest are di¡erent from the geo-
metrical invariants that have been deduced immediately from
Fig. 2. As shown by Lilley (1993c), [det (ReM)]1=2 is the length
of the tangent from the origin to the real Mohr circle, or in the
right-angled triangle OTC in Fig. 2

det (ReM)~m24zm21{(m22zm23) , (19)

a result that can be easily veri¢ed from formulae (9)^(12). A
similar result holds for [det (ImM)]1=2. Thus the third pair of
S^M invariants are related to the radii of the Mohr circles and
the coordinates of their centres. For their seventh invariant
some straightforward algebra with the aid of the de¢nitions
(9)^(12) yields

Im (detM)~2(m4g4zm1g1){2(m2g2zm3g3) . (20)

In Fig. 2, the invariant cost linking the real and imaginary
circles can be expressed in terms of the two vectors CP

�!
and

DQ
��!

by a formula equivalent to (15), in the form

cost~
m2g2zm3g3

(m22zm23)
1=2(g22zg23)

1=2 . (21)

To derive this result, we observe, with the aid of (9)^(12), that
CP
�!

has components ReM12{m4:m2 and ReM11{m1:m3 in
theM12^M11 plane, and similarly for DQ

��!
. For future reference

we deduce immediately from (21) that

sint~
m2g3{m3g2

(m22zm23)
1=2(g22zg23)

1=2

:d23
(m24zm21)(g

2
4zg21)

(m22zm23)(g
2
2zg23)

" #1=2
, (22)

the second expression following from de¢nition (13). Note
that this formula can yield a negative value for sint so that it
may give the obtuse angle between the vectors CP

�!
and DQ

��!
. It

follows from (20) and (21) that the ¢nal S^M invariant is
connected in a relatively obscure manner to the more readily
identi¢able invariant cost through the formula

Im (detM)~2fm4g4zm1g1{[(m22zm23)(g
2
2zg23)]

1=2 costg .
(23)

The ¢rst two terms on the right-hand side of this expression
and the factor multiplying cost are, of course, combinations
of previously listed invariants.
Having related the S^M invariants to obvious geometrical

invariants that can be read o¡ theMohr circle diagram, we now
ask which set of seven invariants is the most appropriate one
to use in MT studies. In seeking such a set we have been guided
by three main principles: (i) in general, the invariants should
be dimensionless; (ii) each invariant should lend itself to a
clear graphical representation on a Mohr circle diagram; and
(iii) the vanishing of the invariant should have as simple a
physical interpretation as possible. Clearly, none of the S^M
invariants satisfy criterion (i), andIm (detM) is non-vanishing
by de¢nition. In any case, the relative complexity of (23)
suggests that any physical interpretation of that invariant
would be di¤cult. Most of the geometrical invariants can be
made dimensionless by expressing them in terms of subtended
angles rather than coordinates, and they all satisfy criterion
(ii), but again some of them do not have simple physical
interpretations.

4.1 The fundamental pair

In our view, the fundamental invariants for MT applications
should be based on Lilley's (1993c) real and quadrature central
impedances. For a real earth model (that is, one that is not
perfectly conducting) they are always non-vanishing, and con-
tinue to have meaning even when distortions of the electric ¢eld
by a local anomaly have the e¡ect of making the o¡-diagonal
elements of the impedance tensor equal (i.e. m4~g4~0). Since
these invariants represent the core of the tensor, there is little
point in trying to cast them into a non-dimensional form. We
prefer to express them in the dimensions of velocity rather than
electrical resistance by dividing the impedance by the factor k0
so that the ¢rst two invariants are de¢ned as

I1~(m24zm21)
1=2 , I2~(g24zg21)

1=2 . (24)

These invariants also serve to normalize the remaining
invariants. We have already used them in eqs (13) and (14)
to make the variables dij and sij dimensionless. When the
conductivity structure is 1-D (f1~f2~f3~0, f4~M12), the
familiar parameters of apparent resistivity and phase are given
by k0(I21zI22 )/u and arctan (I2/I1) respectively.

4.2 Invariants expressing 2-D anisotropy

We would like the next two invariants to express the two-
dimensionality of the structure, if relevant. That is, they should
vanish when the structure is 1-D, but otherwise contain infor-
mation about the 2-D anisotropy. A necessary condition of
two-dimensionality is that there should exist an angle h~h0

for which the diagonal elements of M0 vanish together. From

4

ηξ

ξ

11

4

η

P

12β

C

T

O

Q

D

M’

M’

αγ

0

ψ

2θ

11

Figure 2. Schematic diagram of real and imaginary Mohr circles,
with centres C and D respectively, depicting the 2|2 matrix associated
with an MT tensor. h0 is the angle through which the original
coordinate axes must be rotated in order to maximize ReM012.
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eqs (5) and (8) we see that the conditionM011~M022~0 requires

m1~g1~0 , tan 2h0~{m3/m2~{g3/g2 , (25)

which, by (18), shows that h0~h0znn/2 (n an integer), that
is, the axes are rotated so that they are parallel to the MT
regional axes de¢ned in Section 3. (Note that if f2~f3~0,
the angle h0 is not de¢ned, which is to be expected because the
structure is then 1-D.) The second statement in (25) also
implies m2g3~m3g2, or by (22), t~0. Thus conditions for two-
dimensionality can be satis¢ed geometrically by requiring that
the centres C and D of theMohr circles lie on theM012-axis, and
that the radial arms CP and DQ from the centres of the circles
to the starting points on their circumferences are parallel.
Given that these conditions hold, the anisotropy is embodied in
the radii of the Mohr circles (Lilley 1993c), which in turn are
governed by the angles c and d between the respective pairs of
lines drawn from the origin, tangent to and through the centre
of the real and imaginary Mohr circles. The angle c related to
the real Mohr circle has been marked in Fig. 2. Appropriate
invariants are therefore

I3~ sin c~
m22zm23
m24zm21

 !1=2

:
(m22zm23)

1=2

I1
, (26)

I4~ sin d~
g22zg23
g24zg21

� �1=2

:
(g22zg23)

1=2

I2
. (27)

Note that although the denominators reduce to jm4j and jg4j in
a strictly 2-D environment, we have retained the more general
forms (26) and (27), which continue to have the simple geo-
metrical interpretation in terms of the angles c and d, even
when f1=0. The values of I3 and I4 range from 0 when there
is no anisotropy (i.e. when the model is 1-D) to 1 when the
anisotropy is extreme (i.e. jM021j/jM012j?0 or? with respect to
the regional axes).

4.3 Three invariants related to galvanic distortion

The remaining invariants should express the three-dimensionality
of the structure. It is well known (Lilley 1993c) that when
the centres of the Mohr circles depart from the M012-axis, the
structure is 3-D. The invariant angles of inclination of OC and
OD with respect to the M012-axis, a and b respectively, are
therefore two of the potential candidates for measuring certain
aspects of three-dimensionality. In practice, it is more useful,
when de¢ning the next two invariants, to work with the sines of
the angles bza and b{a, which are clearly independent since a
and b are. The seventh and ¢nal invariant must be related to the
remaining independent invariant angle t, whose sine is given
by (19). Now it is obvious from Fig. 2 that tan a~m1/m4 and
tan b~g1/g4, so that by de¢nitions (13) and (14) and some
simple trigonometry we obtain three independent invariants

sin (bza)~s41 , sin (b{a)~d41, sint~d23 csc c csc d , (28)

which re£ect the three-dimensionality of the structure. If
s41~d41~d23~0 and f4=0, then the conditions (25) for
two-dimensionality are satis¢ed.
It is now desirable to ensure that the invariants also have

simple physical interpretations. We shall do this by examining
the conditions under which it is possible to interpret the three-
dimensionality of theMT tensor as originating with distortions
of the measured electric ¢eld by small-scale anomalies in a

regional 1-D or 2-D structure. This assumption, ¢rst postulated
by Larsen (1977), is fundamental in the various tensor decom-
position schemes that have found widespread application in
recent years (Zhang et al. 1987; Bahr 1988; Groom & Bailey
1989). The anomaly is assumed to be small in size and located
at a shallow depth (relative to the inductive scale length in the
host medium) so that, over the frequency range of measurement,
the regional electric ¢eld is essentially uniform and maintains
its surface value over the vertical extent of the anomaly. The
charges that accumulate on the boundaries of the anomaly
and their associated electric ¢elds are therefore in phase with
the regional electric ¢eld at the surface and are independent
of frequency. It is the electric ¢eld of these charges that gives
rise to the local `galvanic distortion' of the measured electric
¢eld, resulting in the `channelling' of the regional telluric
currents either into the anomaly if it is conductive relative to
the regional geology, or around it if it is resistive. It is assumed,
however, that the distortion has negligible e¡ect on the
regional magnetic ¢eld (Agarwal & Weaver 1999).
For convenience in the following discussion we introduce a

new invariant,

Q~[(d12{d34)2z(d13zd24)2]1=2 , (29)

and note that Q~0 if and only if d12~d34 and d13~{d24.
It is not an independent invariant, because by expanding
the squared terms under the square root in (29), simplifying
algebraically, and substituting from (26), (27) and (28), we ¢nd
that

Q~[ sin2 cz sin2 d{2 sin c sin d cos (b{a{t)]1=2 ,

which relates the invariance of Q to its dependence on four of
the independent invariant angles c, d, (b{a) and t already
de¢ned. We note also the identity

(s13{s24)(d12{d34):(d13zd24)(s12zs34)

zd41(s22zs33){d23(s44zs11) , (30)

which can be veri¢ed by reference to the de¢nitions (13) and
(14) and some routine algebra. If Q~0 and d41~0, with
m1=0, g1=0, m4=0, g4=0, i.e.

m4g1~m1g4 , d12~d34 , d13~{d24 , s41=0 ,

then by multiplying the second and third of these equations
by m1, replacing the factors m1g4 by m4g1 as given by the ¢rst
equation, and ¢nally adding or subtracting the resulting
two equations, we obtain d12~d13~0. It follows at once that
d23~d24~d34~0 as well. Furthermore, if Q~0 and d41~d23,
substitution in (30) yields

0~d41(s44zs11{s22{s33)~d41I1I2 Im (detM) ,

the last step following from (20). Since Im (detM)=0 accord-
ing to our assertion about the physical nature of the impedance
tensor at the end of the ¢rst paragraph of Section 2, it follows
that d41~0, which returns us to the conditions discussed above,
so that the same conclusions can be drawn. If s41~0 as well,
then the same results still hold, but if m4 and g4 remain non-
vanishing, we then have m1~g1~0, which reproduces conditions
(25) for a purely 2-D structure. This case will therefore be
disregarded in the discussion of galvanic distortion. (The other
possibility, in which m4~g4~0 with m1 and g1 non-vanishing, is
a special case brie£y mentioned later.)
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In summary, if Q~0, then d41~d23 if and only if d41~0 and
we may further conclude that d12~d13~d23~d24~d34~d41~0.
A particular result that follows from these equations is

(m24zm21)(g
2
4zg21)( sin

2 c{ sin2 d)

~d24s24zd34s34{d12s12{d13s13~0,

so that sin c~ sin d or I3~I4.
Let us suppose that the coordinate axes are rotated, as in (4),

into the direction of strike in the regional 2-D structure. The
electric ¢eld e0 observed in the primed frame of reference is, of
course, a distortion of the true regional electric ¢eld �e0, and
the corresponding measured MT tensor M0 will not, therefore,
take the anti-diagonal form associated with a 2-D structure.
That property belongs to the regionalMT tensor �M0 de¢ned by
�e0~ �M0b0. Here we have used a bar on the symbol to distinguish
regional (2-D) values from those actually measured in the
primed (rotated) frame of reference. Following Bahr (1988), we
maywrite e0~A�e0, where thematrixA, whose elements, by virtue
of the remarks above, are real and frequency-independent,
represents the distortion of the electric ¢eld in the rotated
frame of reference. Smith (1995) expressed the distortion
matrix A in the form

A~
g1 cos�1 {g2 sin�2

g1 sin�1 g2 cos�2

 !
, (31)

with the simple physical interpretation that �1 and �2 are the
angles ranging between +n/2 through which regional electric
¢elds in the x0 and y0 directions respectively have been rotated
positively in the right-handed sense about the z-axis (vertically
downwards), and g1 and g2 are the `gains' (or ampli¢cations)
they have experienced in undergoing this distortion. It is assumed
that detA=0, or equivalently, g1=0, g2=0 and j�1{�2j=n/2.
Alternatively, one can write �e0~De0, with D~A{1 represent-
ing the matrix that undistorts the measured electric ¢eld back
into the true regional ¢eld. Writing h~1/g, we readily deduce
from eq. (31) that

D~
h1 cos�2 h1 sin�2

{h2 sin�1 h2 cos�1

 !
sec (�1{�2) . (32)

Since �M0b0~�e0~De0~DM0b0, it follows that �M0~DM0~
N sec (�1{�2), where for j~1, 2

N1j~h1 cos�2 ReM02j tan�2z
ReM01j
ReM02j

 !"

ziImM02j tan�2z
ImM01j
ImM02j

 !#
, (33)

N2j~{h2 cos�1 ReM01j tan�1{
ReM02j
ReM01j

 !"

ziImM01j tan�1{
ImM02j
ImM01j

 !#
. (34)

Clearly, decomposition of the measured tensor into a 2-D form
is possible if and only ifN11~N22~0 when the axes are rotated

through some angle h~h0. This condition can only be met if

ReM011
ReM021

~
ImM011
ImM021

,
ReM022
ReM012

~
ImM022
ImM012

, (35)

so that eqs (33) and (34) give

N11~h1M021 cos�2
ReM011
ReM021

z tan�2

� �
, (36)

N22~h2M012 cos�1
ReM022
ReM012

{ tan�1

� �
. (37)

The required decomposition of M then follows with distortion
angles de¢ned by

tan�1~ReM022/ReM
0
12 , tan�2~{ReM011/ReM

0
21 . (38)

Eqs (35) state that the arguments (phases) of the complex
elements are equal in the ¢rst and second columns of M0

respectively, a fundamental property of small-scale galvanic
distortion in a 2-D region that was emphasized by Bahr (1988).
(More precisely, the arguments could also di¡er by 1800
because, by de¢nition,{n < argw¦n radians for any complex
number w, but this would only have the e¡ect of changing the
sign of both the real and imaginary parts so that their ratio
remains the same.)
As an aid to considering when conditions (35) can be

satis¢ed, we note the following identities, which are readily
veri¢ed from eqs (5)^(8) together with de¢nitions (13) and (14):

ReM011ImM021{ReM021ImM011

~[(d12{d34) cos 2h{(d13zd24) sin 2hzd41{d23]I1I2 , (39)

ReM022ImM012{ReM012ImM022

~[(d12{d34) cos 2h{(d13zd24) sin 2h{d41zd23]I1I2 , (40)

ReM011ImM012{ReM012ImM011

~[(d12zd34) cos 2h{(d13{d24) sin 2h{d41{d23]I1I2 , (41)

ReM011ImM012zReM021ImM022

~[(s12zs34) cos 2h{(s13{s24) sin 2h{d41{d23]I1I2 . (42)

Identities (39) and (40) show that the equalities (35) hold if
either of the conditions

d12~d34 , Q~0 , i:e: d13~{d24 , d41~d23 , (43)

d41~d23 , Q=0 , h~h0 , tan 2h0~
d12{d34
d13zd24

(44)

are satis¢ed.
We have seen that the conditions in (43) imply d12~d13~

d24~d34~0, which substituted into eq. (41) gives

ReM011ImM012~ReM012ImM011 . (45)

Combined with eqs (35) this result states that the arguments
(phases) of all the complex elements ofM0 are equal or di¡er by
1800, and this will also be true of M in the frame of measure-
ment, because (45) holds for any angle h. Moreover, since the
distortion matrix A is real, the arguments (phases) of the two
non-vanishing elements of the regional MT tensor will also
be equal. This implies that either the regional host structure is
1-D, or that the (distorted) measurement has been made at a
location in a 2-D region where the regional E-polarization and
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B-polarization (impedance) phases happen to be the same even
though the two apparent resistivities are di¡erent. In other
words, it is impossible to determine from a single measurement
of a 3-D MT tensor whose elements are all in phase whether it
represents data subjected to (real) galvanic distortion by a local
anomaly in a 1-D or in a 2-D host region; and if it is the latter,
then the direction of strike is indeterminate. The one exception
is when s41~0, because, provided that f4=0, the conditions
then degenerate to those for a simple 2-D model with no
distortion, for which the angle of strike is given by eq. (25).
(If f4~0 with f1=0, it follows that there is an angle h0 given
by tan 2h0~m2/m3~g2/g3 for which M0 becomes diagonal,
indicative of an extreme distortion of a 1-D or 2-D regional
MT tensor with the distortion angles �1 and �2 both equal to
+n/2.)
We now concentrate on conditions (44) above. Suppose

¢rst that for the three invariants expressed in eq. (28) s41=0
and d41~d23~0. Setting d41~d23~0 in the identity (30), sub-
stituting in (42) multiplied through by (d12{d34), and noting
that its right-hand side then vanishes for the value of h0 given by
(44), we obtain by comparison with (39) and (40)

{
ReM011
ReM021

~
ImM022
ImM012

~
ReM022
ReM012

~{
ImM011
ImM021

. (46)

It may be deduced immediately from eqs (38) that �1~�2~�
(say), so that, in the language of Groom & Bailey (1989), the
resulting distortion is simply a pure twist without shear. In
the special case g1~g2~g~1/h, it follows that D~hR� or
A~gR{�, where R is the rotation matrix (3). Such a distortion
represents a local rotation of the regional electric ¢eld through
an angle {� and its ampli¢cation by a factor g; it could be
caused by nothing more than a misalignment of the electrodes
during the ¢eld experiment (Cox et al. 1980; Bahr 1988).
Next, we assume d41=0. Unfortunately, the vanishing of d23

(or sint) alone does not appear to have a simple physical
interpretation. The form of eqs (39) and (40) suggests that
more useful information could be extracted from the invariant
d41{d23. If d41=0, its vanishing implies d23~d41, while other-
wise d41 and d23 must vanish together as assumed in the previous
case. Moreover, we deduce from eqs (28) that

d41{d23~ sin (b{a){ sin c sin d sint , (47)

which shows how the invariant d41{d23 is related to sint.
It is also closely associated with the `phase-sensitive skew'
of Bahr (1988, 1991), which in our notation is de¢ned as
(I1I2jd41{d23j)1=2/jf4j.
Let us suppose, therefore, that d23~d41=0. The MT tensor

can always be decomposed into a 2-D form with the angles
�1 and �2 in the distortion matrix given by (38) and the angle of
the 2-D regional strike given by (44). There is, however, a way
of normalizing this invariant that leads to a simpler inter-
pretation of its meaning. Let h1 and h2 be the angles, whose
existence is assumed for now, through which the axes must be
rotated in order to satisfy the ¢rst and second of eqs (35)
respectively. Then the di¡erence between these two angles must
be the same whatever the original frame of reference, that is,
the angle h1{h2 is an obvious invariant. In a regional 3-D
structure the two eqs (35) cannot be satis¢ed simultaneously,
so that h1 and h2 are di¡erent; but we have seen already
that if there is only localized 3-D distortion in an otherwise
2-D region, then h1~h2~h0. Thus h1{h2 is an invariant that

vanishes when small-scale galvanic distortion occurs in a 2-D
host region, but is otherwise non-vanishing in a general 3-D
region. Now the ¢rst of eqs (35) is equivalent to the left-hand
side of (39) vanishing, and the resulting equation for h1 can be
expressed in the form

Q sin (2h1{2h0){d41zd23~0 , (48)

whereQ is de¢ned in (29) and h0 in (44). Similarly, the second of
eqs (35) is satis¢ed when the left-hand side of (40) vanishes, so
that h2 is given by

Q sin (2h0{2h2){d41zd23~0 . (49)

An immediate consequence of these equations is the necessary
and su¤cient condition jd41{d23j¦jQj=0 for the angles h1 and
h2 to exist, and it follows that when this condition is satis¢ed
h0~(h1zh2)/2, that is, h0 de¢nes the bisector of the angle
h1{h2. Substitution for h0 in either (48) or (49) immediately
yields the solution

sin (h1{h2)~(d41{d23)/Q . (50)

When d41~d23, we obtain h1~h2~h0 as required for galvanic
distortion in a 2-D region.
It is now clear that the remaining three independent

invariants are most usefully de¢ned as follows:

I5~ sin (bza)~s41 , I6~ sin (b{a)~d41 (51)

and

I7~ sin (h1{h2)~
d41{d23

[(d12{d34)2z(d13zd24)2]1=2
. (52)

Note that their trigonometric representations show that the
invariants I3, I4, jI5j, jI6j and jI7j are all bounded above and
below by 1 and 0 respectively. We recall also that when I6~0
and Q~0, the numerator of I7 also vanishes and I7 becomes
indeterminate.

4.4 Discussion

When Ij~0 ( j~3, 4, 5, 6), the model is 1-D. It follows
immediately from these conditions that Q~0 so that I7 is
unde¢ned for a 1-D structure.
If Ij=0 ( j~3 or 4), I5~I6~0 with f4=0, and either I7~0

or, if it is unde¢ned,Q~0, then the model is 2-D with the angle
of strike given by (25). (In the latter case the phases in
E-polarization and B-polarization are equal.) In the special
case f4~0, there is local distortion in a 1-D or 2-D region such
that M0 assumes a diagonal form in the frame de¢ned by the
angle h0 satisfying tan 2h0~m2/m3~g2/g3.
If Ij=0 ( j~3 or 4, 5), I6~0, and I7 is unde¢ned with Q~0,

then d12~d13~d23~d24~d34~d41~0 and the arguments or
phases of all four elements of the MT tensor are equal, thereby
indicating small-scale galvanic distortion in a 1-D region or at
a point in a 2-D region where the phases are the same for both
E-polarization and B-polarization. Bahr (1991) has devised
an invariant `phase di¡erence measure', de¢ned in the notation
of this paper by k~[I1I2(jd41jzjd23j)]1=2/jf4j, which plays a
similar role to Q in that it reduces to zero when all the tensor
elements have the same phases (arguments). It does not
distinguish, however, between equal phases and a pure twist of
the ¢eld because it obviously vanishes when I6~I7~0 as well;
Q cannot vanish when I7~0.
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The conditions Ij=0 ( j~3 or 4, 5), I6~I7~0, which imply
d41~d23~0 or b~a and t~0, indicate galvanic distortion
representing a pure twist, without shear, of the local electric
¢eld in a 2-D region. The direction of strike in the regional
structure is given by (44).
The conditions I6=0, I7~0 indicate that h1~h2 so that

eqs (35) are satis¢ed, and therefore the MT tensor can be
decomposed by rotation and real distortion into a regional 2-D
tensor. The angle of rotation h0 is given by eq. (44), which agrees
with the result originally obtained by Bahr (1988, eq. 19).
[It is worth pointing out that when I5~I6~I7~0, so that
m1~g1~0, d23~0, and the structure is purely 2-D with no
galvanic distortionöthe case described in the second para-
graph of this sectionö(44) reduces to tan 2h0~{d34/d24,
which readily simpli¢es to the required expression (25).]
To perform the decomposition we note that the inverse of
�M~DM0 can be written, with the aid of (31), as

M0~A �M0:
cos�1 { sin�2

sin�1 cos�2

 !
0 g1 �M012

g2 �M021 0

 !
. (53)

It represents four complex (eight real) equations in the four
real and two complex unknowns g1, g2, �1, �2, �M012, �M021. As
Smith (1995) has pointed out, however, the parameters g1
and g2 are revealed in (53) as nothing more than frequency-
independent scaling factors of the elements of �M0. Thus it
is the `static shifts' g1 �M012 and g2 �M021 of the regional tensor
components that become the actual unknown quantities along
with �1 and �2, rather than the original unscaled values. The
number of real unknowns is therefore reduced to six, and g1
and g2 become indeterminate. Two underlying assumptions
in Smith's analysis were (i) that the regional structure is indeed
2-D, and (ii) that the measured values of the MT tensor are
provided in the frame of reference aligned along the regional
strike, thereby implying h0~0. Thus Smith assumed that the
values of M0ij rather than Mij are given, and he regarded (53)
as an overdetermined system of eight real equations in six
real (two complex plus two real) unknowns. Our approach is
slightly di¡erent.We require the condition I7~0 to be satis¢ed
with the angle h0 given by eq. (44) before proceeding with the
decomposition. Thus the knowledge of h0 allows one to deter-
mine M0 from M by rotation, and the fact that I7~0 means
that eqs (38) are e¡ectively prescribed, thereby providing
the solutions for �1 and �2 and rendering four of the eight
equations (53) redundant. The remaining four equations are
just su¤cient in number to determine the modi¢ed complex
elements g1 �M012 and g2 �M021 of the regional tensor, which can be
expressed in the form

g1Re �M012~sgn (ReM012)[(ReM
0
12)

2z(ReM022)
2]1=2 , (54)

g1Im �M012~sgn (ImM012)[(ImM012)
2z(ImM022)

2]1=2 , (55)

g2Re �M021~sgn (ReM021)[(ReM
0
11)

2z(ReM021)
2]1=2 , (56)

g2Im �M021~sgn (ImM021)[(ImM011)
2z(ImM021)

2]1=2 , (57)

where, as usual, sgn x is de¢ned to be z1 if x > 0 and {1 if
x < 0.
Finally, if I7=0 [including the case when jd41{d23j >jQj=0,

which implies there are no rotated frames in which eqs (35)
are satis¢ed], then the structure should be assumed to be
regionally 3-D.

The properties and geometrical representations of the seven
invariants I1 to I7 have been summarized for easy reference in
Table 1.
With real data that includes random instrumental noise

(often assumed to be Gaussian) as well as `geological noise'
arising because actual geoelectric structures never conform
to the idealized models considered in the preceding theory,
we cannot expect invariants to vanish precisely. Even the
responses of purely synthetic con¢gurations generated by 3-D
forward modelling programs will necessarily be contaminated
with numerical noise caused by round-o¡ and the approxi-
mations introduced by discretization. Given that 0¦jIj j¦1,
( j~3, 4, 5, 6, 7), as noted at the end of Section 4.3, it is
suggested that physical interpretations of the structure based
on the vanishing of one or more invariants are approximately
realized if the absolute values of the relevant invariants assume
values of 0.1 or less, or equivalently, that the angles whose sines
the invariants represent are less than about 5:70. (To test for
the special case f4~0, we would require m4/I1: cos a < 0:1
and g4/I2: cos b < 0:1.) This is a subjective decision, but as
shown later, it appears to be satisfactory when the data are
subject to 2 per cent noise, and it is consistent with the practice
introduced by Bahr (1988, 1991), who set his `phase sensitive
skew' and `phase di¡erence measure' to zero if they were less
than 0.1.

5 A SYNTHETIC EXAMPLE

The synthetic model of the earth used to investigate the
behaviour of the seven invariants I1 to I7 is depicted in Fig. 3. It
consists of a conductive cubic anomaly, of resistivity 0:5 ) m
and dimensions 1 km, embedded at the surface of an otherwise
2-D structure. The centre of the cube is located 10.5 km from
a vertical fault that divides the region hosting the anomaly
(a slab of resistivity 10 ) m and thickness 5 km) from a
uniform quarter-space of resistivity 1 ) m. Beneath the slab
there is a 100 ) m resistive layer 45 km thick, which in turn is
underlain by a uniform region of resistivity 1 ) m. The direction
of strike of the fault is taken to be inclined at an angle of 400 to
the north, as shown in Fig. 3. TheMT tensor is calculated in the
(x, y) coordinate frame de¢ned by the directions of north and
east, while the rotated x0 and y0 axes in the rotated frame are
aligned respectively along and perpendicular to the fault line
on the surface of the model; the z-axis is directed vertically
downwards. The origin O is positioned so that the cubic
anomaly is symmetrically placed with respect to the y0-axis
and occupies the region {0:5 < x0 < 0:5, {11 < y0 < {10,
0 < z < 1 in kilometre units.
Numerical calculations were performed for three separate

periods of the inducing ¢eld, 1 s, 100 s and 1000 s, using a 3-D
modelling program (Weaver et al. 1999) in which integral
boundary conditions are employed at the surface and the
3-D resistivity model is permitted to approach 2-D limiting
structures on its boundaries, as in Fig. 3. In practice, the
E-polarization and B-polarization electric and magnetic ¢eld
components were calculated in the (x0, y0) coordinate frame
and then rotated through {400 for computation of the MT
tensor. We ¢rst examine the invariants of the MT tensors
calculated directly from the computer-generated solutions for
one or more periods at four particular sites that are chosen to
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illustrate the properties discussed above. Subsequently we con-
sider more realistic numerical data that has been contaminated
with 2 per cent Gaussian noise.

5.1 Noise-free results

The four chosen sites for which the computations were made
are de¢ned as follows:

SITE 1: x0~140, y0~{126 ,

SITE 2: x0~140, y0~{11:125 ,

SITE 3: x0~0:625, y0~{11:125 ,

SITE 4: x0~0:625, y0~{10:13 .

All the numerical results are quoted to three signi¢cant ¢gures.

(a) SITE 1: T~100 s.

M~
{2:28{i 2:94 1070zi 576

{1070{i 575 2:28zi 2:94

 !
,

I1~1:07 km s{1 , I2~0:576 km s{1 ,

I3~0:002 , I4~0:005 ,

I5~0 , I6~0 ,

I7~0 , Q~0:003 .

Since the site is many skin depths removed from both
the anomaly and the fault line, the MT tensor clearly
exhibits properties associated with a 1-D region. Note that
Q&0, as expected, so that I7 is unde¢ned and its computed
value meaningless. With k0~4n|10{7 H m{1, the apparent
resistivity is given by T (I21zI22 )/5~29:5 ) m and the phase
angle is arctan (I2/I1)~28:70. (The correct values for the 1-D
structure at y~{? are 29:1 ) m and 29:00.)

(b) SITE 2: T~1000 s.

M~
39:7zi 76:9 118zi 240

{132{i 267 {39:7{i 76:9

 !
,

I1~0:125 km s{1 , I2~0:254 km s{1 ,

I3~0:324 , I4~0:308 ,

I5~0 , I6~0 ,

I7~0:005 , Q~0:015 .

This site is far from the anomaly but less than a skin depth
from the 2-D fault. The invariants I1, I2, I3 and I4 are non-
negligible but I5~I6~0 and Q&0, indicating a 2-D response
with equal phases in E-polarization and B-polarization
(the computed value of I7 is again meaningless). In fact, if the
negative signs in the second row are ignored (because they
only have the e¡ect of subtracting 1800), the arguments of the
elements ofM are calculated to be 62:70, 63:80, 63:70 and 62:70,

Table 1. Summary of the properties of the seven independent invariants I1 to I7 and the dependent invariant Q. S^M (column 3) refers to Szarka &
Menvielle (1997).

Related
Invariant Mohr circle diagram S=M invariant Physical interpretation

I1~(m24zm21)
1=2

I2~(g24zg21)
1=2

OC~I1
OD~I2

m4
g4

If I3~I4~I5~I6~0, a 1-D structure of apparent
resistivity k0(I21zI22 )/u and its associated phase
arctan (I2/I1) is implied.

I3~(m22zm23)
1=2/I1

I4~(g22zg23)
1=2/I2

sin c
sin d

det (ReM)
det (ImM)

If I3=0 or I4=0, I5~I6~0, (f4=0) and either
I7~0 or Q~0, conditions for a 2-D structure with
strike angle h0 satisfying (25) are satisfied. (In the
special case f4~0, distortion in a 1-D or 2-D region
occurs as discussed in the main text.)

I5~s41~
m4g1zm1g4

I1I2
sin (bza) m1, g1

If I3=0 or I4=0, I5=0 and I6~I7~0, then the
local electric field has undergone a pure twist
(misalignment of the electrodes?) in a 2-D region with
strike angle h0 given by (44). If I7 is indeterminate
with Q~0, then there is in-phase, small-scale
distortion in a 1-D region, or in a 2-D region where the
E- and B-polarization (impedance) phases are equal.
In the latter case, the strike angle is not recoverable.

I6~d41~
m4g1{m1g4

I1I2
sin (b{a) m1, g1

If I6=0, I7~0, conditions for in-phase small-scale
distortion in a 2-D region with strike angle h0 given
by (44) are satisfied.

I7~(d41{d23)/Q
[ sin (b{a){ sin c sin d sint]/Q

~ sin (h1{h2)
Im (detM)

If I7 is non-negligible, a regional 3-D structure is
indicated. h1 and h2 are those angles through which
the axes must be rotated to make the elements in
the first and second columns of M, respectively, have
equal phases.

Q~[(d12{d34)2

z(d13zd24)2]1=2
sin2 cz sin2 d

{2 sin c sin d cos (b{a{t)

A supplementary dependent invariant whose
vanishing implies that the tensor elements have
equal arguments, that I3~I4 and d41~d23, i.e.
that I7 is undefined.
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that is, they are indeed all approximately equal. The angle of
strike calculated from eq. (25) is found to be exactly 400. Note
that I3&I4 as predicted in Section 4.3 when Q~0.

(c) SITE 2: T~100 s.

M~
228{i 54:2 812zi 619

{892{i 600 {228zi 54:2

 !
,

I1~0:852 km s{1 , I2~0:609 km s{1 ,

I3~0:271 , I4~0:090 ,

I5~0 , I6~0 ,

I7~0 , Q~0:362 .

At this shorter period the site is even further removed (in skin
depths) from the anomaly but still near enough to the fault to
register a 2-D response, although the out-of-phase response is
virtually 1-D since I4 is on the borderline of being negligible.
The angle of strike was again found to be exactly 400. An
important di¡erence from the previous case is that Q is non-
negligible so that the computed value I7~0 is now meaningful.
The site is therefore in a 2-D region where the phases are
di¡erent in E-polarization and B-polarization; in fact, the
arguments of the elements of M (with negative signs in the

second row again extracted) are found to be {13:40, 37:30,
33:90 and {13:40, which are certainly no longer nearly equal.
For later reference, we note that the non-vanishing components
of M0 in the rotated frame aligned with the strike direction of
the fault are M012~621zi 664 and M021~{1080{i 554.

(d) SITE 3: T~1000 s.

M~
68:9zi 131 174zi 353

{86:5{i 178 {34:7{i 64:9

 !
,

I1~0:131 km s{1 , I2~0:268 km s{1 ,

I3~0:516 , I4~0:490 ,

I5~0:252 , I6~{0:007 ,

I7~0:012 , Q~0:027 .

Here only I6 and Q are negligible (the latter again implying
that I7 is unde¢ned and I3&I4). Thus real distortion in
either a 1-D region or a 2-D region where the E-polarization
and B-polarization phases are the same is indicated. We have
already seen in example (b) above that at this period and lateral
displacement from the fault, the undistorted ¢elds are indeed
2-D and in phase. The angle of strike cannot be recovered
under these circumstances.

(e) SITE 2: T~100 s with a 100 twist of the electric ¢eld.

A 100 misalignment of the electrodes is simulated by rotating
the calculated electric ¢eld components by only {300 rather
than the {400 through which the magnetic ¢eld components
are rotated after they have been calculated in the frame de¢ned
by the strike of the fault. The matrix and invariants of the
resulting MT tensor are

M~
69:2{i 157 760zi 619

{918{i 581 {365{i 54:1

 !
,

I1~0:852 km s{1 , I2~0:609 km s{1 ,

I3~0:271 , I4~0:090 ,

I5~{0:342 , I6~0 ,

I7~0:001 , Q~0:361 ,

which are completely di¡erent from the corresponding ¢gures
for the untwisted ¢eld at the same site given in example (c).
Here I6 and I7 are vanishingly small but Q is non-negligible,
which indicates a pure twist of the electric ¢eld in a 2-D region.
The angle of strike is given by eq. (44) as exactly 400 and when
the axes are rotated by this angle into the frame de¢ned by the
strike, the matrix M0 of the MT tensor becomes

M0~
{188{i 96:2 611zi 654

{1070{i 546 {108{i 115

 !
.

The equations (46) should give the same angle of twist {�.
In fact, we obtain the four values 9:970, 9:990, 10:00 and 9:970,
which to two signi¢cant ¢gures are indeed all equal to the
actual twist of 100.

Figure 3. (a) The surface plane z~0 viewed from above and
(b) vertical cross-section in the plane x0~0 of the model chosen for
numerical investigation. The small anomaly is a 1 km3 cubic block,
depicted by the black region in the diagram, whose centre is 10:5 km
from a 2-D fault dividing a two-layered slab 50 km thick from a con-
ductive region of resistivity 1 ) m that also underlies the slab. The
anomalous block has a resistivity of 0:5 ) m. The x0-axis representing
the fault line is inclined at an angle of 400 to the x-axis de¢ning the
direction of north, as shown.
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(f) SITE 3: T~100 s.

M~
392{i 39:9 1190zi 863

{588{i 390 {200{i 4:24

 !
,

I1~0:894 km s{1 , I2~0:627 km s{1 ,

I3~0:473 , I4~0:378 ,

I5~0:072 , I6~{0:142 ,

I7~{0:025 , Q~0:308 .

Here I6 is non-negligible while I7 is negligible and de¢ned
(because Q is non-negligible), which points to small-scale,
in-phase distortion in a regional 2-D setting. The angle of
strike was recovered from eq. (44) as 42:20 and in the frame
rotated through this angle M0 is given by

M0~
425zi 211 623zi 667

{1150{i 585 {233{i 256

 !
.

Thus, according to eqs (38),

�1~{20:50 , �2~20:20

if the ratios of real parts are used, while the ratios of imaginary
parts give

�1~{21:00 , �2~19:90 .

It would be appropriate to use the ¢rst two values when calcu-
lating the distortion matrix acting on Re �M0 and the second
pair for the matrix distorting Im �M0. From eqs (54)^(57) we
have

g1 �M012~665zi 714 , g2 �M021~{1230{i 622 .

Since we know from example (c) the true 2-D regional tensor
at the given period and distance from the fault, it is possible
to calculate g1 and g2 theoretically for this synthetic model
even though they would be indeterminate with real data
and no prior knowledge of the regional tensor. Dividing the
equations above by the corresponding equations at the end of
example (c), we obtain

g1~1:07zi 0:002 , g2~1:14{i 0:007 ,

which are virtually real numbers, as they should be. Setting the
imaginary parts to zero and using the values for �1 and �2 from
above, we ¢nd from (31) that the distortion matrices A acting
on the real and imaginary parts of �M0 are

1:01 {0:391

{0:375 1:06

 !
and

1:00 {0:385

{0:384 1:07

 !
respectively. Likewise, the corresponding inverse matrices
D:A{1 are given by (32) as

1:15 0:424

0:407 1:09

 !
and

1:16 0:418

0:417 1:09

 !
.

When the last two `undistorting' matrices act on the respective
real and imaginary parts of M0 given above and the resulting
matrix is rotated back through the {42:20 calculated from
eq. (44), the matrix

M~
232{i 57:7 830zi 613

{875{i 602 {232zi 57:6

 !

is recovered, which is very close to the true 2-D matrix given by
M in example (c).

(g) SITE 4: T~1 s.

M~
{3420{i 1550 3800zi 4220

{6700{i 5010 1750zi 942

 !
,

I1~5:32 km s{1 , I2~4:62 km s{1 ,

I3~0:557 , I4~0:283 ,

I5~{0:222 , I6~0:092 ,

I7~0:216 , Q~0:278 .
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Figure 4. Grey-scale contour maps in the surface plane z~0 of the
seven invariants andQ for a period of 1 s. From top to bottom the plots
are of the invariants I1 (left) and I2 (right), I3 and I4, I5 and I6, I7 andQ
in the upper diagram; they are compared with the corresponding plots
of the seven S^M invariants m4 (left) and g4 (right), det (ReM) and
det (ImM), m1 and g1, andIm (detM) shown in the lower diagram.The
vertical and horizontal scales give the coordinates x and y respectively
in kilometres. The invariants I1, I2, m4, g4, m1 and g1 are expressed in
units of km s{1, and det (ReM), det (ImM) and Im (detM) in units
of km2 s{2.
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At this short period the skin depth in the cubic block is only
0.36 km, which means that its dimensions are equal to 2.8 skin
depths. It can therefore no longer be considered as a small
anomaly that merely distorts the electric currents induced in
the regional structure. It acts at this period as a fully 3-D body
in its own right; currents are induced in the block and their
phases change signi¢cantly over its thickness. This is an
example of induction in a 3-D body and, appropriately, I7 is
de¢ned and non-negligible.
In Figs 4 and 5, the variation of the seven invariants and Q

for the three periods 1, 100 and 1000 s over the entire surface
plane is displayed in grey-scale diagrams and compared with
the corresponding variation of the S^M invariants. These plots
portray a revealing overview of the underlying structure. At
the short 1 s period in Fig. 4, the 3-D cubic anomaly is seen
in all the invariants. Away from the anomaly the response is
generally that of a 1-D structure because all the invariants
other than I1 and I2 are very small or, in the case of I7,
indeterminate in those regions where Q is small (dark). The
light bands in I3 and I4 near y~0 indicate that the region of
two-dimensionality is relatively narrow at this short period,

and the edges of the anomaly show up as 2-D boundaries in
the same plots. At the period of 100 s shown in the left-hand
columns of Fig. 5, the anomaly virtually disappears in the plot
of I7 but is apparent in the plots of I5 and I6, thereby pointing
to real distortion in a 2-D region as discussed in example (f)
above. The wider region of two-dimensionality associated with
the greater skin depth at this period is apparent in I3 and I4.
Finally, for the 1000 s period in the right-hand columns of
Fig. 5 the anomaly is invisible in I6 and I7 but is highlighted
in I5, while I3 and I4 indicate extensive regions of two-
dimensionality associated with the fault along y~0. There
is also a wide band of small Q values between the fault and
the anomaly that maps the region where the 2-D E- and
B-polarization phases are nearly the same and also where I7 is
unde¢ned.
The variation of the S^M invariants depicted in the lower

diagrams of Figs 4 and 5 are less easy to interpret physically.
The anomaly is revealed in all of them for all three periods,
as is the 2-D fault except in the plots of the invariants m1
and g1, which vanish in both 1-D and 2-D regions. Thus it
seems di¤cult to ascertain what physical role the anomaly is
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Figure 5. The same as Fig. 4 for periods of 100 s (left two columns) and 1000 s (right two columns).
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playing from a mere perusal of the contour maps for the S^M
invariants; it is those in the upper diagrams that reveal useful
information in a systematic manner.

5.2 Calculations with noisy data

Real data are not single observations but samples of many
measurements that are subject to instrumental and other noise.
For a more realistic investigation, therefore, it is pertinent
to examine the statistical behaviour of the invariants when
the tensor elements have been treated with random noise. Jones
& Groom (1993) undertook such a theoretical study in con-
nection with the Groom^Bailey decomposition and showed
that the shear parameter behaved robustly when Gaussian
noise was added to the data, and that while the twist values
were generally more widely scattered about their true value
than the shear values, they were still relatively stable compared
to the strike angle, whose behaviour could be fairly unstable.

As a result, they have advocated ¢xing the twist and shear
parameters to their average values before determining the
angle of strike from noisy or real data.
Here we conduct a similar investigation of parameter

stability in the presence of noise by simply calculating sample
means and standard deviations of all seven invariants Ij,
the dependent invariant Q and the strike angle h0. First, the
calculations of the previous section were repeated for noisy
data formed by adding randomGaussian noise with a standard
deviation of (I21zI22 )

1=2/50 to the elements of the MT tensor,
that is, 2 per cent Gaussian noise using the central impedances
(divided by k0) as a representative value of the tensor. The
process was repeated many times, so that random samples of
various sizes could be selected. For the results presented here
we chose a sample size of 100.
In Figs 6 and 7 we have plotted the values of the invariants

Ij ( j~1, 2, . . . , 7), the dependent invariant Q and the strike
angle h0 for 100 realizations of the noisy data calculated for the
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Figure 6. Plots of 100 realizations of the independent invariants Ij ( j~1, 2, . . . , 7), the dependent invariant Q, and the strike angle h0 for events (a)
to (d) listed in Section 5.1 when Gaussian noise is added to the tensor elements. The solid lines represent the true values calculated from the original
(noise-free) tensor. Note that I7 is unde¢ned when Q&0, examples (a), (b) and (d), while the strike angle is indeterminate in (a) and (d).
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examples (a) to (g) considered in Section 5.1. They are shown as
points scattered about the `true' (noise-free) values indicated
by the solid line. All calculations are shown, even though
with our prior knowledge of the model it is known that some
of the parameters will be highly unstable, i.e. theoretically
indeterminate. The statistics of the calculations in the form of
means and standard deviations are tabulated alongside the
calculated true values in Table 2.
It is apparent at once from a quick perusal of the ¢gures and

accompanying table that I7 is widely scattered in examples (a),
(b) and (d), with large standard deviations, and its indeter-
minacy is con¢rmed by the clustering of Q near zero with its
mean at least 1.5 standard deviations less than 0.1, which is the
upper limit of our measure of `negligible'. In all the other
examples the mean of Q stays well above this value so that the
associated values of I7 are meaningful. Further examination
of these special cases when Q&0 show that in (a) invariants
I3 to I6 all have means close to zero at least three standard
deviations less than 0.1 so that the conditions for a 1-D

structure are clearly ful¢lled. The angle h0 is, of course, unde¢ned
in a 1-D region, which accounts for its scatter in Fig. 6 and
large standard deviation in Table 2. In (b) I3 and I4 have small
standard deviations but their means are well above 0.1, while I5
and I6 are still clustered about zero, with standard deviations
well inside the negligible range; the structure is therefore 2-D
with similar phases in E- and B-polarization, and the strike
angle h0 de¢ned by (25) is seen to be 400+30, the error range
being de¢ned by the standard deviation. Finally, in (d) the
mean of I5 is no longer small, distortion in either a 1-D region
or in a 2-D region with similar phases in E- and B-polarization
is indicated, and the large standard deviation shows that any
calculated h0 is unreliable, as expected.
For the remaining cases whenQ&= 0, it is clear that the values

of I7 are more widely scattered than those of the other six
invariants (which appear to be quite robust in their behaviour),
with standard deviations typically about 0.1, that is, at the
limit of our range of tolerance. Nevertheless, the mean values
of I7 are close to the noise-free values and in particular the
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Figure 7. As in Fig. 6 for the events (e) to (g) listed in Section 5.1. Note that the strike angle cannot be determined in case (g) where I7&= 0.
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distinction between a negligible I7, examples (c), (e) and (f),
and a non-vanishing value indicating a full 3-D induction
rather than galvanic distortion, example (g), is quite clear. The
strike angles determined from (25) for (c) and (44) for (e) and
(f) are also less tightly constrained, but in cases (c) and (e)
they give accurate mean values with standard deviations of
about 2:30 while in (f) the mean value is actually about 0:50
more correct than the noise-free `true' value, but the standard
deviation is just over 30. The results for I7 and h0 in (f) have also
been displayed in Fig. 8 as histograms showing the number of
realizations in intervals of 0.05 for I7 and 10 for h0. Although
the spread in I7 is at the limit of acceptability, the distribution
of its sample values is well behaved. Likewise, the clustering of
the values of h0 around its mean value resembles a slightly
biased normal distribution and shows none of the erratic
behaviour of strike angle calculations that has sometimes been
observed.

6 CONCLUDING REMARKS

The primary intent of this paper was to devise an improved
set of seven independent invariants of the MT tensor and to
seek, in a systematic manner, simple physical interpretations
of their vanishing in successive order, particularly with a view

to identifying possible 3-D galvanic distortions in a regionally
2-D structure. All the proposed invariants can be identi¢ed
geometrically on a Mohr circle diagram, and all except the ¢rst
two (which de¢ne the fundamental `core' of the tensor)
have been expressed as the sine of an easily identi¢able angle.
In the course of the investigation, there emerged an eighth
(dependent) invariant that plays an important role in identify-
ing those special circumstances under which the direction
of the regional 2-D strike becomes indeterminate and also
when the data are undistorted but the (impedance) phases
are the same in both E- and B-polarizations. The theoretical
properties and physical interpretations of the invariants have
been con¢rmed with the aid of 3-D calculations based on a
simple synthetic model that, for di¡erent periods, includes all
the various con¢gurations of interest. An elementary analysis
of the behaviour of the invariants when 2 per cent Gaussian
noise was added to the tensor showed that the ¢rst six
invariants appeared quite robust and that the seventh invariant
was able to discriminate between full 3-D induction and small-
scale 3-D galvanic distortion in an otherwise 2-D regional
structure, even though it was less tightly constrained than
the others. The corresponding angle of strike was also less
robust statistically but it was determined, for this level of noise,
with mean values of very acceptable accuracy and standard

Table 2. True (noise-free) values compared with the means and standard deviations of a random sample of 100 values of the seven
independent invariants for the events (a) to (g) listed in Section 5.1, calculated with 2 per cent Gaussian noise added to the elements
of the MT tensor.Where I7 and h0 are known to be indeterminate (becauseQ&0), the true value entries are left blank. Note that the
calculated noise-free value of h0 in (f) contains su¤cient numerical noise that its `true' value is given as 42.20 rather than the known
value of 400.

True Mean Standard True Mean Standard True Mean Standard
value value deviation value value deviation value value deviation

I1 1:07 1:07 0:018 I1 0:125 0:126 0:004 I1 0:852 0:854 0:016
I2 0:576 0:574 0:018 I2 0:254 0:253 0:004 I2 0:609 0:609 0:016
I3 0:002 0:021 0:009 I3 0:323 0:323 0:031 I3 0:272 0:272 0:017
I4 0:005 0:037 0:021 I4 0:308 0:310 0:017 I4 0:090 0:093 0:025
I5 0 0:004 0:032 I5 0 0:003 0:034 I5 0 0:004 0:028
I6 0 0:003 0:034 I6 0 0:001 0:037 I6 0 0:002 0:031
I7 0:070 1:838 I7 0:169 1:39 I7 0 0:007 0:089
Q 0:003 0:041 0:022 Q 0:015 0:047 0:022 Q 0:362 0:362 0:029
h0 45:10 26:30 h0 40:00 39:60 3:060 h0 40:00 39:70 2:380

(a) (b) (c)

I1 0:131 0:132 0:004 I1 0:852 0:854 0:016 I1 0:894 0:897 0:016
I2 0:268 0:267 0:004 I2 0:609 0:608 0 I2 0:627 0:626 0:016
I3 0:516 0:512 0:037 I3 0:271 0:272 0:016 I3 0:472 0:470 0:020
I4 0:491 0:493 0:019 I4 0:090 0:093 0:025 I4 0:378 0:381 0:029
I5 0:252 0:254 0:033 I5 {0:342 {0:338 0:027 I5 0:072 0:076 0:028
I6 {0:007 {0:005 0:037 I6 0 0:002 0:030 I6 {0:142 {0:140 0:031
I7 {0:016 0:949 I7 0:001 0:006 0:087 I7 {0:025 {0:025 0:112
Q 0:027 0:053 0:026 Q 0:361 0:361 0:029 Q 0:308 0:309 0:030
h0 48:60 24:90 h0 40:00 39:70 2:340 h0 42:20 41:70 3:230

(d) (e) (f)

I1 5:32 5:33 0:107
I2 4:62 4:62 0:105
I3 0:557 0:558 0:024
I4 0:283 0:283 0:022
I5 {0:222 {0:218 0:026
I6 0:092 0:093 0:029
I7 0:216 0:220 0:122
Q 0:278 0:281 0:031
h0 64:80 3:200

(g)
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deviations ranging from 2:30 to 3:20. These properties will
become less reliable when greater amounts of noise are present
in the data, but the results are su¤ciently encouraging to
suggest that the set of invariants proposed here might provide
another approach to analysing MT data to complement the
well-known tensor decomposition schemes currently in use.
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Figure 8. Histograms of (a) I7 and (b) strike angle h0 in degrees, for a
sample of 100 realizations of the response in case (f) calculated when
2 per cent noise is added to the tensor elements.
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