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S U M M A R Y  
The concept of adjustment distance-the range over which induced currents in 2- or 
3-D structures re-adjust themselves to their ‘normal’ 1-D configurations outside the 
anomalous domain-first introduced into the subject of magnetotellurics a decade 
ago by Ranganayaki & Madden, is re-examined in the light of an analytical solution 
obtained previously by the authors using a generalized thin sheet model of the TM 
mode ‘coast effect’. Ranganayaki & Madden defined the adjustment distance to be 
r := (212)’’’ where z and A are respectively the integrated conductivity and integrated 
resistivity of the two layers in the generalized thin sheet. While on physical grounds 
this parameter is a reasonable estimate for many practical applications, its 
independence of the frequency of the inducing field is less than satisfactory. The 
parameter d given by the analytic solution is frequency dependent, but reduces to r 
for long periods. A more detailed comparison of the two parameters shows that r is 
always an upper bound of d under conditions likely to occur in nature and may even 
represent a significant overestimate of adjustment distance when the conductance of 
the surface layer is high, such as for an ocean. An alternative parameter for 
adjustment distance developed by Fainberg & Singer is found to be in good 
agreement with d, however, and for the model investigated varies with period in a 
similar manner over its range of validity. For more moderate values of surface 
conductance such as those found over continental regions, Ranganayaki & 
Madden’s parameter serves as an accurate measure of adjustment distance over all 
periods of interest. 
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1 INTRODUCTION 

Following the pioneering work of Price (1949), many 
authors have used a mathematical thin sheet, defined to be 
the limit of a layer of (finite) conductance r as its thickness 
~ + 0 ,  as an idealization of the surface layer of the Earth 
when solving problems in geo-electromagnetic induction 
(see Ashour 1973, for. a review). The effect of the layer is 
then reduced to a modification of the boundary condition 
applicable at the surface of the Earth. Across the thin sheet 
the horizontal electric field E is continuous but, because of 
the presence of a surface current flowing in the sheet, the 
horizontal magnetic field B is discontinuous by an amount 
p r E  where p is the permeability. 

In a very important paper published a decade ago, 
Ranganayaki & Madden (1980) (hereafter referred to as 
R-M) introduced into the analysis of geomagnetic problems 
the new concept of a generalized thin sheet, in which Price’s 

conductive sheet was underlain by a resistive layer also of 
infinitesimal thickness. The resistive layer acts as a powerful 
inhibitor of the vertical flow of currents into the conductive 
part of the sheet and, by virtue of the charge distributions 
set up, causes the horizontal electric field to be 
discontinuous across the resistive sheet while B remains 
essentially continuous. Thus with one generalized boundary 
condition it becomes possible to take into account surficial 
conductive anomalies (e.g. oceans) and sub-surface resistive 
features (e.g. the oceanic crust). 

In the TE mode with 2-D models, the resistive sheet has 
no effect because the electric field and the associated 
induced currents are everywhere horizontal. In the TM 
mode, however, it exerts a considerable influence if the 
conductive sheet is anomalous by impeding the vertical 
current flow into and out of the conductive sheet and 
thereby increasing the ‘adjustment distance’ r over which 
the induced current system readjusts to its normal 1-D 
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pattern. R-M emphasized the importance of taking this 
distance into account when making interpretations of MT 
data and derived the approximate expression for r given by 
r = (tA)’” where t is the conductance of the thin sheet and 
A is its integrated resistivity. The same parameter had arisen 
quite naturally in an earlier discussion of the distortion of 
electromagnetic fields by surface anomalies (Berdichevsky & 
Dmitriev 1976), but the concepts of ‘adjustment distance’ 
and ‘generalized thin sheet’ were first introduced by R-M. 
Given the values of t = lo4 S and A = 10” S2 m2 considered 
by R-M to be representative of an ocean and its underlying 
crust the adjustment distance is 1000 km, and even if a lower 
figure of lo6 Q m 2  is taken for the oceanic crust (Drury 
1981) it is still 100 km. However, more recent data obtained 
by Cox et al. (1986) confirm the high value of integrated 
resistivity A quoted by R-M. For land-based measurements 
the story is not quite as bad because the surface layer has a 
lower conductance, but this is partly counterbalanced by the 
increased integrated resitivity of the continental crust. R-M 
pointed out the depressing implications of their findings to 
magnetotelluric studies-the doubt they cast on the validity 
of attempting 1-D interpretations of MT data even from 
sites far removed from a coastline, and the possibility that 
numerical grids for forward model calculations would have 
to be designed to cover larger areas of the region under 
investigation than previously thought. Although the above 
remarks have been made with the 2-D coast effect in mind, 
they apply equally well to other 2- or 3-D conductive 
anomalies with an underlying resistive crust such as 
sedimentary basins. A review of problems associated with 
adjustment distance has been given by Jones (1983). 

A detracting feature of R-M’s parameter r is its lack of 
any frequency dependence; intuitively it seems unlikely that 
anomalous telluric fields of high frequency should require 
the same adjustment distance as those with very long 
periods. Fainberg & Singer (1987), referred to as F-S in the 
ensuing discussion, investigated the problem of adjustment 
distance from a somewhat different point of view by 
representing a conductive anomaly in a surface sheet of 
conductance t on top of a layered half-space whose top 
resistive layer has integrated resistivity A, by a grounded 
electric dipole; this is because the components of the 
Green’s tensor which forms the kernel of the integral 
equation satisfied by the tangential electric field in an 
inhomogeneous surface sheet (Vasseur & Weidelt 1977) are, 
in fact, given by the electric field components of such a 
dipole. Using asymptotic approximations of the field 
expressions valid for ranges greater than the penetration 
depth in the underlying medium, they found that a reliable 
estimate of impedance was given by the usual (I-D) 
Tikhonov-Cagniard formula at distances greater than 
s := (A/(Z + l/t)11’2 where Z is the impedance of the layered 
structure underneath the surface layer. Thus their analysis 
showed that adjustment distance is indeed dependent on 
frequency but reduces to the R-M value r when ( Z (  << l/t. 
More recently Menvielle & Tarits (1988) have also 
considered the role of anomalous fields in 3-D models but 
their expression for the adjustment distance also suffered 
from the fact that it was independent of frequency. 

In this paper we hope to shed further light on the 
frequency dependence of adjustment distance by returning 
to an analytical solution of the TM mode coast effect 

obtained a few years ago by Dawson, Weaver & Raval 
(1982), hereafter referred to as D-W-R. An alternative 
expression for adjustment distance will be extracted from 
this solution and the conditions under which it differs from r 
will be examined. Our analysis only applies to a specific 2-D 
model, of course, but it is a relevant one which involves the 
effect of two large surface anomalies on 1-D interpretations 
of magnetotelluric data. It also has the advantage of being 
an analytic solution in closed form from which a precise 
algebraic expression for the horizontal decay of the 
anomalous electric field can be obtained. 

Menvielle (1987) has included a nice summary of these 
various approaches to the calculation of adjustment distance 
as part of a more comprehensive review of the effect of 
conductivity heterogeneities on induced fields. He con- 
cluded that r would be a good approximation to the F-S 
parameter s for frequencies below 10-’Hz in most 
geophysical situations. No detailed calculations were 
presented, however, and no estimate of the D-W-R 
adjustment distance for comparison with r and s was 
attempted. 

2 SOLUTION O F  THE COAST EFFECT 
MODEL 

The mathematical model of the coast effect investigated by 
D-W-R is shown in Fig. 1. A (uniform) medium of 
conductivity u and (vacuum) permeability po occupies the 
half-space z > 0 in a right-handed rectangular coordinate 
system ( x ,  y, 2). The surface z = 0 contains a generalized 
thin sheet divided along the line y = 0 into two halves of 
(uniform) conductances tl (land) in y < 0 and t2 (ocean) in 
y > 0. Its integrated resistivity A is taken to be the same in 
both halves, i.e. the underlying resistive crust is assumed to 
be uniform, a condition which was also present in the 
analysis of F-S. The regional or ‘normal’ magnetic field, 
which comprises both the source field and the field of the 
induced currents at y = fm, is assumed to be uniform in the 
non-conducting atmosphere above the Earth, directed 
parallel to the x-axis in space and oscillating with angular 
frequency o in time. It can, therefore, be written as Boeiw‘i 
where i is a unit vector in the x-direction. Our notation 
differs from that used by D-W-R; in particular it should be 
noted that A denoted the conductance of the sheet 
normalized by u in the paper by D-W-R rather than the 
integrated resistivity as here, and that the roles of the 
subscripts 1 and 2 are reversed. 

Since there is no dependence on the variable x among the 
model parameters, the field components are functions of y 
and z only and Maxwell’s equations with displacement 

o = o ,  p = / h  

Y 

T 
I = 0- 

0 

TI ( l a d )  r, (ocean) 

X (resistive crust) 
: = o+ 

* 
U PO 

Figure 1. The mathematical model. 
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currents neglected decouple into the three scalar equations 

axlay = - ~ , u w ,  ax/az = ~ " u v ,  
(1) d V / d z  - a W / d y  = i o X .  

Here we have written the respective magnetic and electric 
fields in their component forms B = [ X ( y ,  z), 0, and 
E = [0, V ( y ,  z), W ( y ,  z)]eiw'. That the problem is trans- 
verse magnetic (TM) with the magnetic field everywhere 
horizontal and in the x-direction is determined by the 
prescribed form of the normal field and the 2-D nature of 
the model. From (1) we obtain immediately 

a2x a2x 
ay' az2 
- + - = ia'x 

as the differential equation governing the behaviour of the 
field inside the Earth. Here we have defined 

a: = == m s  (3) 

with 6 denoting the skin depth in the underlying half-space 
of conductivity u. Above the surface of the Earth where 
u = 0, it follows from the first pair of equations in (1) and 
the nature of the field at infinity that 

X = B,. (4 )  

Across the conductive part of the generalized thin sheet V 
is continuous but there is a discontinuity in X proportional 
to the density of the surface current in the sheet; across the 
resitive part V is discontinuous while X remains the same. 
As shown by D-W-R this leads to the generalized 
boundary condition 

x(Y, o+) - ( t / u ) X ' ( y ,  0 + )  - Ar d 2 X ( y ,  O+)/ay2 = B ,  (5) 

on the underside of the generalized thin sheet. In the 
derivation of (5) D-W-R assumed that both t and A were 
uniform. In the model this condition is satisfied except at the 
origin where t has a jump discontinuity. Thus a singularity 
in the field at the origin can be expected. 

As y + fm, X must approach the 1-D solutions 

B ,  exp (-zafi) 
1 + t ,af i /u ' 

B ,  exp ( - z a f i )  

1 + t,afi/u ' 

X , ( Z )  := X( -a, 2) = 

X,(Z) := X(+mj  2) = 

which satisfy (2) and (5) when all y dependence is removed. 
The problem is therefore better formulated in terms of an 
anomalous field 

X(Y,  2) - X * ( z )  = : f ( Y r  z )  = f + ( Y ,  2) + f - ( Y f  2) (8 )  

where f + ( y ,  2) = 0 for y < 0 and f - ( y ,  z) = 0 for y > 0. It is 
also convenient to introduce the normalized parameters 

t' := t /a ,  A' := Aa. (9) 

Then f continues to satisfy (2), but is subject to the 
boundary conditions 

f+(m, 2) = 0, f-(-m, z) = X,(Z) - XAZh 
f ( Y ?  00) = 0 (10) 

and according to (5) 

(1 - ia2t;A#)f-(y ,  O + )  - t i f l ( y ,  O + )  + t;A'f"y, O + )  

= (t, - t,)aVLX,(O) (11) 

for y < 0, and 

(1 - ia2t;A')f+(y,  o+) - r g : ( y ,  o+) + t g ' f : ( y ,  o+) = o 
(12) 

for y > O .  Moreover, the first of conditions (10) can be 
stated more precisely by the assertion that f + ( y ,  z )  = 
O(ePcy) as y + m  (where c > O  is some real constant) in 
accordance with the usual diffusive decay of an anomalous 
field. 

The boundary value problem in f with mixed boundary 
conditions on the surface z = 0 was solved by D-W-R using 
the Wiener-Hopf technique. The procedure followed was to 
take the Fourier transform of f ( y ,  2) with respect to y to 
obtain a function F ( q ,  z) which is analytic in the strip 
-c < $m r] < 0 of the complex r]-plane and whose solution 
in z > 0 is 

The functions F- and F+ whose sum is F are analytic in the 
respective regions 9 m  r] < 0 and 9m 71 > -c  and satisfy the 
Fourier transforms of boundary conditions (11) and (12). It 
is not necessary to concern ourselves further with the 
intricacies of the calculation here as full details have been 
published by D-W-R. We need only to quote the form of 
their final solution for the horizontal electric on the surface 
z =o-. 

First we define for j = 1 ,  2 the parameters 
1 I2 112 1 1 1  + i a 2 )  , v l = ( F - $ )  (14) 

x.=-- I 2)ct (4A12 t;ai 

noting that 

If 5?exj<0 the minus sign must be chosen in (15) and it 
then turns out that the function to be factorized in the 
Wiener-Hopf technique has a pole in the lower half-plane. 
If this pole lies nearer to the real axis than the branch point 
at Q = -afi it limits the domain of analyticity of F and 
thereby determines the value of c. By residue theory the 
pole also introduces an extra term when the final solution 
given by an infinite integral along a line parallel to the real 
axis is transformed by Cauchy's theorem into an integral 
along the branch cut from infinity to the branch point. 
Otherwise, if 9% xi > 0, no such pole exists, the domain of 
analyticity is limited by the branch point SO that c =  - a / ~ ,  
and the final solution contains no residue term. The sign of 
9% xi is therefore important and is determined by the values 
of the parameters t;, A' and a. 

For the time being we shall assume that the residue term 
is indeed present deferring our investigation of the 
conditions under which the condition 9% x, < 0 holds until 
the next section. The solution for the anomalous horizontal 
electric field V,(y)  := V ( y ,  0-) - V(*m, 0-) on the Earth's 
surface on either side of the origin is then given by [equation 
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(4.21) in D-W-R] 

+ n o  r G l ( u )  exp ( y d m )  du I 
for y < 0 and 

(1 - t;/t;)B,) J“ - [ A’X’ exp M - v , )  - iYY21 

+ J G n  r G , ( u )  exp ( - y d m )  du]  

POU (1 - t;X*)(l - 2A’x2) Y A Y )  = 1 + f&fi 

(17) 

for y > 0. Note that these solutions are also valid on an 
ocean floor because the electric field is continuous across the 
upper conductive part of the generalized thin sheet. 

The function h appearing in the first term is obtained from 
the Wiener-Hopf factorization; G, and G2 also involve h 
but the precise form of these functions is not required here. 
Indeed, it has been found by numerical evaluation that, for 
the range of parameter values likely to occur under natural 
conditions, the integrals are completely dominated by the 
algebraic terms on the right-hand sides of (16) and (17) as 
we shall see in Section 3. Thus, remarkably, the anomalous 
electric fields can be expressed very accurately by relatively 
simple algebraic expressions when the contributions from 
the residues of the poles are present. 

3 ADJUSTMENT DISTANCE 

In this section it is convenient to drop the subscripts j since 
our discussion is quite general and there is no  reason to 
distinguish between the regions y < O  and y > O .  We 
investigate first the conditions under which % x < 0. 
Introducing the dimensionless conductance and integrated 
resistivity, t = t ’ / s  and ,i = A’/6 respectively, where 6 is the 
skin depth defined in (3), and putting p = t’/2A’ t/2X, we 
have 
z’x = b - dp2 - 28  + 2if2 (18) 

whence the condition 9% x < 0 becomes 

Now since 

9% do2 - 2p + 2it2 = [ip’ - p + id/a2(b - 2)’ + 4t4]”’ 

and both b and %d@-2j3 +2i t2  are positive, it follows 
that (19) is satisfied if 

dip'(/? - 2)* + 4t4  > p(p + 2) 

which is satisfied in turn if T4>2P3. Expressed in terms of 
the original model parameters this condition becomes 
tk’u2a4 > 1, or 

tA3u4/Tz > 10I4/64n4 = 1.60 X 10’’ (20) 

where T = 2n/w is the period of the magnetic variations. 
While the right-hand side of (20) may seem very large, for 
the values of t and A for oceanic regions quoted in Section 1 
and with a conductivity of u = 0.1 S m-’ assigned to the 
deep crust and upper mantle, the condition becomes 
T < 7.91 X lo3 s = 2.19 hr which covers the normal range of 
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Figure 2. Variation of the real and imaginary parts of the total 
electric field V ( y ,  0-) along the surface of a coast effect model in 
which tl  = 400 S, t2 = 1.6 x lo“ S and u = 0.1 S. Solid lines 
represent the exact solutions; the dots indicate values calculated 
using only the algebraic residue terms. The four sets of graphs from 
the top downwards are for A =  10yPm2 and periods T =  10, lo2, 
lo3 and 104s respectively. The electric fields V are dimensionless 
being expressed in units of WSB,) and the y values along the abscissa 
are given in units of skin depth 6. 

periods used in MT studies. Over continental regions a 
value of t = 4 0 0 S  is more typical for surface rocks 
(Schmucker 1970) but the integrated resistivity of the 
underlying resistive crust is then more likely to be about 
10’ Q m2 which was the figure chosen by R-M. Even if we 
reduce the conductivity of the deep crust to o = 0.01/ S m-’ 
the condition continues to hold for periods less than about 
139 hr! In fact it appears that (20) will practically always be 
satisfied under naturally prevailing conditions so that the 
algebraic terms in (16) and (17) do indeed occur in the 
solution for the anomalous field. 

Given their presence it remains to be decided how 
dominant the algebraic terms are in comparison with the 
infinite integrals which form the remaining part of the 
solution. In Figs 2 and 3 we have plotted variations of the 
total electric field V along the surface [given by the solutions 
(16) and (17) with the 1-D solutions at infinity added on] for 
the parameter values tl  =4OOS, t2= 1.6X lo4 S and 
u = 0.1 S representing the coast effect, values of A ranging 
from lo6 to lO’Bm’, and various periods T. The 
superimposed dotted curves were calculated by ignoring the 
contributions from the integrals in solutions (16) and (17) 
and using only the algebraic terms representing the residues. 
The extraordinary accuracy of the dotted curves for most of 
the parameters considered is clearly visible from the graphs. 
Only when A takes its lowest value of lo6 Q m2 (Fig. 3) and 
the period is long (104s) is there clearly a discrepancy 
although some very slight deviation from the solid curve for 
9~ V can also be discerned when T = lo3 s (in fact the 
deviation for this period is much more apparent in other 
components of the field on the underside z = O+ of the 
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Figure 3. The first four sets of graphs from the top downwards are 
the same as Fig. 2 except that I = lo6 P m2; the final pair is for 
I = 5 x lo6 P rn2 and T = lo3 and lo4 s respectively. 

generalized thin sheet which are not shown here). As soon 
as I is raised to 5 x lo4, however, there is virtually complete 
agreement again even at the longest period. We may safely 
conclude that the algebraic terms do indeed give accurate 
values of V(y, -0) for most realistic models of the coast 
effect. Caution need only be exercised when the integrated 
resistivity is very low and the period of the field is of the 
order of hours rather than minutes. 

A suitable measure of adjustment distance is the 
horizontal range above the 1-D structures at the sides of the 
model over which the anomalous field is attenuated by a 
factor lle. This definition is the horizontal analogue of skin 
depth which is usually used as a measure of the depth of 
penetration in the vertical direction. Disregarding the 
integral terms in (16) and (17) we see that 

with the appropriate value V,(Of) chosen at the origin for 
y < 0 or y > 0. The adjustment distance d is therefore given 
by 

d = - ( 9 ~  . ) - I .  (22) 

We have confined our attention to the anomalous electric 
field because the magnetic field is constant on the surface of 
the Earth. If MT measurements are made on an ocean floor, 

however, the measured magnetic field corresponds to the 
field on the underside of the generalized thin sheet (recall 
that the magnetic field is constant across the resistive part of 
the sheet) which also has an anomalous part. The solution 
for the anomalous magnetic components X,(y) := X(y, 0+) 
- X ( k m ,  0+) were found by D-W-R to possess exactly 
the same dependence on y as the anomalous electric fields 
(in fact the latter were obtained from the former by 
differentiation) so that the adjustment distance for magnetic 
field variations on the sea-floor will continue to be given by 
d. 

It follows at once from (18) that 9.m x < 0 and since the 
present discussion is based on the premise that % x < O  
also, we deduce from (14) that 

Replacing the normalized integrated conductivity and 
resistivity by their actual values and substituting in (22) we 
obtain 

as our frequency dependent expression for the adjustment 
distance. In terms of r and the dimensionless parameters b 
and t introduced above in equation (18), we can rewrite 
(23) as 

rld = % (1 - fi + V/I2 - 2p + 2if2)1/2. (24) 

Note that if 

then rld =1 and our expression for d reduces to the 
adjustment distance r of R-M. Unfortunately it does not 
appear possible to express this condition in simpler terms, 
but one special case is worth noting. Suppose /3 < 1 and 

= f / 2 b  we may neglect second order 
terms in f/$ and (24) becomes 

<< 1; then since 

rld = 9% (1 - B + i V m ) 1 J 2  = q m .  (26) 

If p itself is small then rid = 1 - 814 and d will be very close 
to r. 

Little additional insight is gained by taking the real part in 
(24) and writing out the full algebraic expression for rld.  It 
is necessary to resort to numerical calculations to extract 
further information. 

4 N U M E R I C A L  RESULTS 

Illustrative calculations have been made for values of the 
various parameters that represent extreme limits of 
conditions likely to be found in nature. A true picture 
probably falls somewhere in the middle of the cases to be 
discussed here. For the conductance of an ocean we have 
assumed the conductivity of seawater to be 4 S m-' and the 
average ocean depth to be 4 km giving t2 = 1.6 x lo4 S. The 
conductance of a surface layer of rocks on the landward side 
of a coastal boundary is taken to be t1 = 400 S as in Section 
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Figure 4. Variation of the adjustment distance d in km (solid line) 
with period T in s for a generalized thin sheet of integrated 
resistivity 10' Q mz, and conductances 1.6 x lo4 S (upper diagram) 
and 400 S (lower diagram). Graphs depicting the corresponding 
variations of the parameter s due to F-S (dotted line) and the 
horizontal (broken) lines giving the values r of the adjustment 
distance of R-M are also shown. 

3. Two different values of the integrated resistivity of the 
crustal layer will be used, A = lo9 Q m2 and A = lo6 Q m2, 
representing the estimated upper and lower bounds of the 
range of values expected to occur in nature. As an average 
value of the conductivity of the deep structure we shall take 
u =  0.1 S m-'. 

Figure 4 shows the variation with period of the 
adjustment distance d defined by (23) for a model in which 
d = lo9 Q m2. Curves for both y < 0 (conductance tl) and 
for y > 0 (conductance t2) have been plotted, along with the 
corresponding curves for the adjustment distance s due to 
F-S and horizontal straight lines representing the 
adjustment distance r of R-M. The frequency dependence 
of the adjustment distance is immediately apparent from the 
curves and, as expected, d diminishes with decreasing 
period. Caution must be exercised, however, when 
interpreting the results for short periods because the thin 
sheet model may cease to be a valid representation of the 
real Earth. For example, the ocean depth of 4km must 
always be small compared with the skin depth in seawater 
which effectively imposes a lower bound of about 1600 s on 
the range of admissible periods when considering a deep 
ocean. The agreement, both in magnitude and trend, 
between the frequency-dependent parameters s and d is 
remarkable considering the completely different ways in 
which they were derived. The theory of F-S is more 
general, of course, having been developed for a layered 
substructure; the fact that it agrees so well with a result 
obtained from an exact analytic solution for a particular 
problem is convincing evidence of its general validity. 

Figure 5 depicts the same variations when the integrated 
resistivity takes the smaller value d = 106Q m2. Here the 
adjustment distances are much reduced, of course, because 

"g 

' O  t 1 
01 I 
10 102 103 10' 

T Lsl 

Figure 5. The same as Fig. 4 but for a thin sheet of integrated 
resistivity lo6 Q m2. The values of s as given by the plotted values of 
lA/(Z + l/r)I''* become inaccurate at periods greater than 4250 s in 
the upper diagram (t = 1.6 X lo4 S) and 280 s in the lower diagram 
( r  = 400 S). The dashed curves diverging from the main graphs at 
these points indicate the variation of penetration depth I / & ,  the 
range beyond which the asymptotic expansions used in the F-S 
theory are valid. 

vertical currents flow more freely with a less resistive layer 
and the induced current system can more readily adjust to 
its 'normal', purely horizontal flow away from the coastline. 
Another difference is that the F-S formula breaks down at 
longer periods (above 4250 s when t = 1.6 x lo4 S and above 
280s when t = 4 0 0 S )  because at these periods the 
penetration depth l /cr  in the underlying half-space becomes 
greater than s, and the asymptotic expansions on which the 
theory of F-S is based are then only valid at ranges beyond 
l / a  which increases with fl, as indicated by the steeply 
diverging dashed curves in Fig. 5. 

The most important conclusion to be drawn from Figs 4 
and 5, however, is that for all period ranges of interest d is 
smaller, and over an ocean (or on the sea-floor) generally 
much smaller, than the adjustment distance of R-M. For 
example, if we take 1 hr as a typical period and choose the 
lower value of d for the oceanic crust (Fig. 5 ) ,  the 
adjustment distance on the sea-floor is predicted to be only 
about 87km rather than the 126km given by r. This is 
reassuring for it means that MT measurements with ocean 
bottom instruments may not be as contaminated with 'coast 
effect' noise as previously predicted. At the same period on 
the landward side of the coast the value of d coincides 
almost exactly with r, and only at shorter periods is d visibly 
less than r in both Figs 4 and 5. In fact, for the parameters 
we have chosen over land, becqmes 2 n  x 104/fl 
when = 10' C2 m2 and 0 . 8 n l f i  when A = lo6 Q m2. Thus 
the approximation (24) will be reasonable for Th3200s  in 
the latter case and, since = 2 x lo-' is very small, we 
expect to find r = d for periods greater than 3200 s which is 
confirmed by the broken line curves in Fig. 5. We cannot 
use (24) for the larger value of i; direct calculation shows 
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significance should not be unduly emphasized. It has been 
devised for a quite specific model under well-defined 
conditions and therefore represents a rather different 
approach t o  the problem from that taken by F-S who 
presented a more general treatment of the decay of 
anomalous magnetotelluric fields and who found somewhat 
different expressions for a frequency-dependent adjustment 
distance. In particular, we have required the integrated 
resistivity in the surface sheet to  be laterally uniform. Our 
interpretations have been made for various combinations of 
conductance and integrated resistivity values without explicit 
mention of this fact; it should be borne in mind that the 
coast-effect variations presented here are based on the 
assumption that the oceanic and continental crust both have 
the same integrated resistivity which is probably not true in 
practice. Ideally one would like to  be able t o  solve the 
problem analytically for a model in which the value of A as 
well as t is different for y < 0 and y > 0 but this does not 
appear possible. The importance of our result rests on  its 
confirmation of a frequency dependence in the adjustment 
distance which is similar to  the one obtained by F-S and in 
its suggestion that under naturally occurring conditions 
the simple expression obtained by R-M can give an 
overestimate of the range over which induced current 
systems re-adjust themselves to  their 1-D patterns on  the 
oceanic side of a coastline, but remains quite accurate on 
the landward side despite the absence of any dependence on 
frequency. 

Figure 6. Graphs of r / d  against the normalized integrated resistivity 
A for various values of the ratio t ' / A '  = 28. From bottom to top the 
values of 28 associated with the nine curves are 
lo-', lo-', lo-', 1, 10 and 100 respectively. 

that the left-hand side of (25) does not decrease much below 
0.2 over the entire range of periods up  to  10000s. 
Nevertheless the parameter of R-M is in excellent 
agreement with the frequency-dependent adjustment dis- 
tance over the land mass for the whole range of typical M T  
periods. 

In Fig. 6 we have plotted r / d  against i for various values 
of 28 = r'/A'. The interpretation of these curves requires 
more effort but they contain a great deal of information 
because they are independent of u and T. It is apparent in 
Fig. 6 that for a given set of parameter values there is a 
critical period, defined by the value of i where the relevant 
curve begins to  rise from the horizontal axis for r / d  = 1, 
above which d is approximately equal to  r and below which 
d becomes progressively smaller than r with decreasing 
period. In general, the trends that can be  gleaned from the 
graphs are that d / r  becomes smaller as the conductance t 
increases and as the period T decreases. 

5 CONCLUDING REMARKS 

Investigation of the analytic solution of a highly idealized 
thin sheet model has revealed a frequency dependence of 
the adjustment distance that was not present in the 
parameter r = (~12)~'' introduced by R-M. The  frequency- 
dependent adjustment distance is always less than r for 
period ranges of interest and fortunately gives values 
significantly less than the enormous distances predicted by 
R-M for oceanic regions with a very resistive crust. Over 
continental regions where the conductance of the surface 
layer is smaller, r still represents an upper bound of possible 
values of d but the difference between the two parameters 
becomes insignificant for all practical purposes. These 
results suggest that one may take a less pessimistic view of 
the reliability of 1-D interpretations of sea-floor mag- 
netotelluric measurements in the T M  mode at locations 
reasonably distant from a coastline because they will be less 
affected by the coast effect than previously suggested, and 
that numerical grids of extravagant size are  not necessarily 
required for accurate numerical modelling of anomalous 
regions. 

The formula for adjustment distance developed in this 
paper is more complicated than the expression for r and its 
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