
GEOPHYSICS. VOL. 53. NO. 12 (DECEMBER 1988): P. 1565-1576. 13 FIGS.. 3 TABLES. 

Magnetotelluric Inversion for minlmum structure 

J. Torquil Smith* and John R. Booker* 

ABSTRACT 

Structure can be measured in terms of a norm of the Others result in systematic overfitting of low fre- 
derivative of a model with respect to a function of depth quencies, a “red” fit, and extraneous deep structure. A 
,f(z), where the model m(z) is either the conductivity cr or robust statistic is used to test for whiteness: the fit can 
log cr. An iterative linearized algorithm can find models be made acceptably white by varying the depth function 
that minimize norms of this form for chosen levels of ,j’(~) which defines the norm. An optimum norm pro- 
chi-squared misfit. The models found may very well be duces an inversion which does not introduce false struc- 
global minima of these norms, since they are not ob- ture and which approaches the true structure in a rea- 
served to depend on the starting model. Overfitting data sonable way as data errors decrease. Linearization 
causes extraneous structure. Some choices of the depth errors are often so small that models of CT (but not 
function result in systematic overfitting of high fre- log o) may he reasonably interpreted as the true con- 
quencies. a “blue” fit, and extraneous shallow structure. ductivity averaged through known resolution functions. 

INTRODUCTION 

One-dimensional (I-D) inversion remains an important tool 
for interpreting magnetotelluric (MT) data. There are many 
instances, particularly at very low frequencies, when multidi- 
mensional effects may be approximated by a frequency- 
independent static distortion and only a I-D interpretation is 
necessary (Weidelt, 1972; Larson, 1977). Also, I-D inversions 
are routinely performed to constrain starting models for 2-D 
or 3-D modeling or inversion. 

In solving any inverse problem, one seeks not merely a 
model which lits a given set of data, but also knowledge of 
what features in that model are required by the data and are 
not merely incidental to the manner in which the model was 
obtained. This is particularly important in 1-D models intend- 
ed as starting points for 2-D or 3-D models, since un- 
constrained details may persist in later iterations and be mis- 
takenly interpreted as significant structure. 

lems. like the inversion of MT data, by linearization about 
models fitting the data (e.g., Parker, 1970; Oldenburg, 1979). 
Unfortunately, the averages are unique only for models close 
to the models about which the linearization was made. Olden- 
burg reports quite different averages for different models of 
log CT (where o is the conductivity in S/m) fitting the same MT 
data when the averaging functions are centered in low- 
conductivity areas. This result casts doubt on the uniqueness 
of his averages in the better resolved high-conductivity zones. 
A later study by Oldenburg (1981), using averages of log G 
determined by his linearized log o model-construction algo- 
rithm, reached conclusions regarding the conductivity beneath 
the Pacific plate which later had to be recanted (Oldenburg et 
al., 1984). 

Evaluating what features are resolved has been well studied 
for the linear inverse problem. Backus and Gilbert (1968) 
show how to construct averages of models that are uniquely 
determined by the data. These averages are the truth viewed 
through peaked resolution functions, whose locations may be 
varied. Knowledge of the resolution functions and the vari- 
ances of the averages allows critical evaluation of details in the 
structure. 

The same methods have been applied to nonlinear prob- 
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Gven the uncertainties surrounding nonlinear effects in MT 
inversion, we argue that one should seek models that have the 
minimum structure possible for some tolerable level of misfit 
to the data. If a minimum-structure model exhibits a particu- 
lar feature. we have confidence that that feature is required. 
Conversely, if a minimum-structure model does not exhibit a 
particular feature, then that feature certainly is not required 
by the data. 

We also show that the nonlinear errors (i.e., those resulting 
from linearization) made in interpreting minimum-structure 
models of o as averages of the true conductivity through reso- 
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ABSTRACT 

Structure can be measured in terms of a norm of the 
derivative of a model with respect to a function of depth 
{(;:). where the model m(z) is either the conductivity cr or 
log cr. An iterative linearized algorithm can find models 
that minimize norms of this form for chosen levels of 
chi-squared misfit. The models found may very well be 
global minima of these norms, since they are not ob­
served to depend on the starting model. Overfitting data 
causes extraneous structure. Some choices of the depth 
function result in systematic overfitting of high fre­
quencies, a "blue" fit, and extraneous shallow structure. 

INTRODUCTION 

One-dimensional 0-0) inversion remains an important tool 
for interpreting magnetotelluric (MT) data, There are many 
instances, particularly at very low frequencies, when multidi­
mensional effects may be approximated by a frequency­
independent static distortion and only a I-D interpretation is 
necessary (Weidelt, 1972; Larson, 1977), Also, 1-0 inversions 
are routinely performed to constrain starting models for 2-0 
or 3-0 modeling or inversion. 

In solving any inverse problem, one seeks not merely a 
model which Ilts a given set of data, but also knowledge of 
what features in that model are required by the data and are 
not merely incidental to the manner in which the model was 
obtained, This is particularly important in 1-0 models intend­
ed as starting points for 2-0 or 3-0 models, since un­
constrained details may persist in later iterations and be mis­
takenly interpreted as significant structure, 

Evaluating what features are resolved has been well studied 
for the linear inverse problem. Backus and Gilbert (1968) 
show how to construct averages of models that are uniquely 
determined by the data. These a'lerages are the truth viewed 
through peaked resolution functions, whose locations may be 
varied. Knowledge of the resolution functions and the vari­
ances of the averages allows critical evaluation of details in the 
structure, 

The same methods have been applied to nonlinear prob-

Others result in systematic overfitting of low fre­
quencies, a .. red" fit, and extraneous deep structure. A 
robust statistic is used to test for whiteness; the fit can 
be made acceptably white by varying the depth function 
lIz) which defines the norm, An optimum norm pro­
duces an inversion which does not introduce false struc­
ture and which approaches the true structure in a rea­
sonable way as data errors decrease. Linearization 
errors are often so small that models of cr (but not 
log cr) may be reasonably interpreted as the true con­
ductivity averaged through known resolution functions, 

lems. like the inversion of MT data, by linearization about 
models fitting the data (e,g" Parker, 1970; Oldenburg, 1979), 
Unfortunately, the averages are unique only for models close 
to the models about which the linearization was made. Olden­
burg reports quite different averages for different models of 
log <J (where cr is the conductivity in S/m) fitting the same MT 
data when the averaging functions are centered in low­
conductivity areas. This result casts doubt on the uniqueness 
of his averages in the better resolved high-conductivity zones, 
A later study by Oldenburg (1981), using averages of log cr 
determined by his linearized log cr model-construction algo­
rithm, reached conclusions regarding the conductivity beneath 
the Pacific plate which later had to be recanted (Oldenburg et 
aI.,1984), 

Given the uncertainties surrounding nonlinear effects in MT 
inversion, we argue that one should seek models that have the 
minimum structure possible for some tolerable level of misfit 
to the data, If a minimum-structure model exhibits a particu­
lar feature. we have confidence that that feature is required, 
Conversely, if a minimum-structure model does not exhibit a 
particular feature, then that feature certainly is not required 
by the data. 

We also show that the nonlinear errors (i.e., those resulting 
from linearization) made in interpreting minimum-structure 
models of cr as a'lerages of the true conductivity through reso-
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lution functions can be quite small, allowing the investigator 
the use of resolution functions as a means of quantifying the 
resolution of a data set. In contrast we will show that errors 
are not small for models of log IS (nor of resistivity p), which 
may explain some of the erroneous conclusions of Oldenburg 
(1981). 

All real data have measurement errors, so that it is generally 
neither possible nor desirable to fit the data exactly. The chi- 
squared statistic 

(1) 

where Ayi are the data residuals and E, are the data standard 
errors, is a common measure of the misfit between a model 
and the data. For 1-D data with independent Gaussian errors. 
the x2 misfit of the data to the truth is distributed as the 
standard x2 for which probabilities arc given in most books 
on statistics. The expected value of x2 for the misfit of the data 
to the truth is 2N for 2N data points. Parker (1980) shows 
that when no model fits MT data exactly, the model which 
minimizes x2 (which he calls D+) consists of delta functions 
with finite conductance but locally infinite conductivity. Other 
types of models that approach the same level of misfit develop 
oscillations. As x2 decreases, the oscillations increase as they 
try to mimic the delta functions of D+. Thus, if one seeks 
models with minimum structure, it is a bad idea to demand 
that x2 be close to its minimum possible value or be much less 
than the expected value 2N. In fact, minimum-structure 
models with greater amounts of misfit (such as the 90 percent 
or 95 percent confidence limit values of x2) may be desired to 
place more conservative bounds on the amount of structure 
required. 

The x2 statistic does not give a complete picture of the 
misfit. We call a fit which distributes the normalized residuals 
uniformly across the frequency spectrum a white fit, one that 
overfits low-frequency data a red fit, and one that overfits 
high-frequency data a blue fit. It is important that an inver- 
sion not systematically overfit some frequency ranges and un- 
derfit others. We show that a red fit results in more structure 
than required at depth for a given x2 and less structure than 
required in the shallow part of the model. We use a robust 
statistic to test for whiteness and show how to make the fit 
acceptably white by tailoring the norm that defines the 
minimum-structure model. Using artificial data, we show that 
the optimum norm produces an inversion which does not in- 
troduce false structure and which approaches the true struc- 
ture in a reasonable way as the data errors decrease. 

We restrict our examples to inversions of artificial 1-D data 
with Gaussian, zero-mean independent errors of known scale, 
so that we can compare to the truth and test statistically the 
residuals to compare different inversions. Considerable cau- 
tion must be used in interpreting statistical tests made on the 
residuals left upon inverting real data, since the distributions 
and scales of the errors may be poorly known and the 1-D 
assumption is at best an approximation. 

CHOOSING THE MODEL VARIABLE 
AND RESPONSE FC’NCTION 

Three possible model variables are conductivity cr, resistivi- 
ty p = I/O. and log conductivity log o = -log p. To interpret 

a model as a linearly filtered version of the truth, it is essential 
that errors associated with linearization be small. This cannot 
he the case for p because adding a thin layer of infinite resist- 
ance (zero conductance) has no effect on the response, but can 
produce a vastly different filtered model. The same is true for 
log p and log o but not for cr. A physical argument in favor of 
o is that it is large in conductors where MT gives the most 
information and small in resistors where MT gives the least 
information. Thus, a filtered o is dominated by regions where 
we know the most, while a filtered p is dominated by regions 
where we know the least. However, despite being more nonlin- 
ear than o models, log o models reduce the masking of struc- 
ture in resistive zones through side-band leakage from con- 
ductive zones because they are less variable. Using log cr is 
somewhat akin to prewhitening in time series analysis. Mod- 
eling logo also ensures that o will be positive. 

Having chosen o as the model variable for which the in- 
vcrsc problem is most linear, we select an appropriate re- 
sponsc to measure based on a heuristic argument. In the 1-D 
MT problem, assuming a time dependence exp (-kot) and a 
piccewisc-continuous conductivity O(Z), the governing equa- 
tlon for the horizontal electric field E is 

E” = - iwpo oE, (2) 

where un is the permeability and the left side is differentiated 
twice with respect to the vertical coordinate Z. The boundary 
conditions at the surface and great depth are E(0) = E, and 
E’( Y ) = 0, respectively. Integrating once and normalizing by 
the surface field, we get 

El=) imp,, o(z) __ dz. 
E(O) 

(3) 

We detine the complex response 

E’(O. w) 
u(w) = ~ = ioB, (0. w) 

E(O, 0) E,(O, 0) ’ 
(4) 

where f3,. and E, are the magnetic and electric fields in orthog- 

onal horizontal directions. (Note that in all other sections of 
this paper y has been normalized by dividing by the standard 
errors of the measurements of r.) Since y would be linear in o 
if t(z) were independent of o, y may be more linear in CT than 
the response c = - 1:~ used by Weidelt (1972) and Parker 
(1970). This motivates our choice. Other choices could be 
made, but we are doubtful they would give linearization errors 
as small as those we have obtained. 

I;INDINC; MINIMUM-STRUCTURE MODELS 

A convenient way to minimize structure is to minimize a 
norm of a derivative of the model. Models minimizing the first 
deri\,ativc arc commonly called “flattest.” We define the flat- 
test mrx_lel as the one that minimizes 

for a given value of x’, where rn is either CT or log o and the 
function (controls the norm. The choice off haseffccts some- 
what similar to the choice of layer thicknesses in the fitting of 

Downloaded 15 May 2010 to 95.176.68.210. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/

1566 Smith and Booker 

lution functions can be quite small, allowing the investigator 
the use of resolution functions as a means of quantifying the 
resolution of a data set. In contrast we will show that errors 
are not small for models of log a (nor of resistivity pi, which 
may explain some of the erroneous conclusions of Oldenburg 
(1981). 

All real data have measurement errors, so that it is generally 
neither possible nor desirable to fit the data exactly. The chi­
squared statistic 

2 2N [L'lYi]2 
X = I - , 

i==l E;i 

(\) 

where lI.Yi are the data residuals and f:i are the data standard 
errors, is a common measure of the misfit between a model 
and the data. For 1-0 data with independent Gaussian errors. 
the X2 misfit of the data to the truth is distributed as the 
standard X2 for which probabilities arc given in most books 
on statistics. The expected value of X 2 for the misfit of the data 
to the truth is 2N for 2N data points. Parker (1980) shows 
that when no model fits MT data exactly, the model which 
minimizes X2 (which he calls D+) consists of delta functions 
with finite conductance but locally infinite conductivity. Other 
types of models that approach the same level of misfIt develop 
oscillations. As X2 decreases, the oscillations increase as they 
try to mimic the delta functions of D + Th us, if one seeks 
models with minimum structure, it is a bad idea to demand 
that X2 be close to its minimum possible value or be much less 
than the expected value 2N. In fact, minimum-structure 
models with greater amounts of misfit (such as the 90 percent 
or 95 percent confidence limit values of X2

) may be desired to 
place more conservative bounds on the amount of structure 
required. 

The X2 statistic does not give a complete picture of the 
misfit. We call a fit which distributes the normalized residuals 
uniformly across the frequency spectrum a white fit, one that 
overfits low-frequency data a red fit, and one that overfits 
high-frequency data a blue fit. It is important that an inver­
sion not systematically overfit some frequency ranges and un­
derfit others. We show that a red fit results in more structure 
than required at depth for a given X2 and less structure than 
required in the shallow part of the model. We use a robust 
statistic to test for whiteness and show how to make the fit 
acceptably white by tailoring the norm that defines the 
minimum-structure model. Using artificial data, we show that 
the optimum norm produces an inversion which does not in­
troduce false structure and which approaches the true struc­
ture in a reasonable way as the data errors decrease. 

We restrict our examples to inversions of artificial \-0 data 
with Gaussian, zero-mean independent errors of known scale, 
so that we can compare to the truth and test statistically the 
residuals to compare different inversions. Considerable cau­
tion must be used in interpreting statistical tests made on the 
residuals left upon inverting real data, since the distributions 
and scales of the errors may be poorly known and the 1-0 
assumption is at best an approximation. 

CHOOSING THE MODEL VARIABLE 
AND RESPONSE Ft.:;'>;CTlON 

Three possible model variables are conductivity a, resistivi­
ty p = I/a, and log conductivity log a = -log p. To interpret 

a model as a linearly filtered version of the truth, it is essential 
that errors associated with linearization be small. This cannot 
be the case for p because adding a thin layer of infinite resist­
ance (zero conductance) has no effect on the response, but can 
produce a vastly different filtered model. The same is true for 
log p and log (J but not for a. A physical argument in favor of 
("j is that it is large in conductors where MT gives the most 
information and small in resistors where MT gives the least 
information. Thus, a filtered a is dominated by regions where 
we know the most, while a filtered p is dominated by regions 
where we know the least. However, despite being more nonlin­
ear than a models, log a models reduce the masking of struc­
ture in resistive zones through side-band leakage from con­
ductive zones because they are less variable. Using log a is 
somewhat akin to prewhitening in time series analysis. Mod­
eling log (J also ensures that a will be positive. 

Having chosen a as the model variable for which the in­
verse problem is most linear, we select an appropriate re­
sponse to measure based on a heuristic argument. In the 1-0 
MT problem, assuming a time dependence exp ( - iool) and a 
piccewise-continuous conductivity a(z), the governing equa­
tion for the horizontal electric field E is 

En = -ioo~oaE, (2) 

where 110 is the permeability and the left side is differentiated 
twice with respect to the vertical coordinate z. The boundary 
conditions at the surface and great depth are E(O) = Eo and 
£'( Y. ) = 0, respectively. Integrating once and normalizing by 
the surfacc ficld, we get 

£'(0) r' E(z) 
F:(O) = Jo ioo~() O"(z) E(O) dz. (3) 

We define the complex response 

£'(0, 0)) iooBr (0, (0) 
Y(O))=--= , 

E(O, (0) Ex (0, (0) 
(4) 

where By and E, are thc magnetic and electric fields in orthog­
onal horizontal directions. (Note that in all other sections of 
this paper Y has been normalized by dividing by the standard 
errors of the measurements of y.) Since y would be linear in a 
if t:(z) were independent of a, Y may be more linear in a than 
the response (" = - I/y used by Weidelt (1972) and Parker 
(1970). This motivates our choice. Other choices could be 
made. but we are douhtful they would give linearization errors 
as small as those we have obtained. 

FINDING MINIMLM-STRUCTURE MODELS 

A convenient way to minimize structure is to minimize a 
norm of a derivative of the model. Models minimizing the first 
derivative arc commonly caIled "flattest." We define the flat­
test mouel as the one that minimizes 

F(m, n = -- df·(z) i' [ dm]2 
. 0 df{zj . 

(5) 

for a given value of Xl, where f11 is either a or log a and the 
function f controls the norm. The choice off has-eficctssome" 
what similar to the choice of layer thicknesses in the fitting of 
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layered models. The simplest choice is f’= z. However, this 
choice is !ik~e!y to !ead to a red fit with unnecessary structure 
at depth, because the resolution of MT data generally de- 
creases with depth. The deeper structure required to fit low- 
frequency data typically has a longer length scale and contrib- 

utes less to F(m, z). Thus, low-frequency data will be easier to 
fit and will end up with smaller residuals. To compensate for 
this effect one can contract the elrective scale of the derivative 
at depth by choosing f’(z) such that 

for some q and z0 > 0. Equation (6) is a useful parame- 
terization for J since it includes the obvious choices off= z 
and f= log (z + zO). Below, we compare models using f= z, 
,f= log (z + zO). and ./= - I/(; + zO), corresponding to 11 = 0, 
-1,and -2. 

The constant a0 in the definitions of,fensures that the inte- 
gration of dfn/df to recover m is not singular. Physically, z,, is 
required because the resolution length approaches a constant 
at the Earth’s surface rather than appmoachingzero. We some- 
what arbitrarily choose z0 equal to half the penetration depth 
Re (c) (Weidclt, 1972) for the highest frequency in the data. 
SlilCC we cxmot hope tu resoivc structure much shallower 
than this. Conceivably, one could adjust the lit of middle fre- 
quencies, as compared to high frequencies, by varying zO. 

Marchisio (1985) (see also Marchisio and Parker, 1984) pre- 
sents a fully nonlinear inversion which minimizes a quantity 
that is a bound on F(log o, -_) when the model is close to a 
uniform slab over an infinitely conducting half-space. While a 
significant advance in nonlinear inverse theory, Marchisio’s 
solution is not necessarily the flattest and is likely to produce 
a red tit with structure at depth that is not required by the 
data. Whittall and Oldenburg (1986) also present several non- 
linear inversions which minimize various norms of the impulse 
response of the model rather than norms of the model itself. 
This is another step in the right direction. but still falls short 
of finding truly minimum-structure models. 

Constable et al. (1987) present a many-layered, linearized 
inversion that minimizes the sum of the squared first differ- 
ences (or second differences) of adjacent layers of their models, 
for a given mistit. Their inversion minimizing the first differ- 
ences should give very similar results to one minimizing F, in 
the limit of vanishing layer thicknesses and a sufficiently deep 
final layer. Since Constable et al. weight all differences equally, 
their choice of layer thicknesses (as a function of depth) plays 
the role of the functionJ(z) in controlling the “color” of the fit 
to the data. 

We minimize structure directly by minimizing F(m, ./;) in a 
stable linearized scheme. Let ma(z) be the starting model of oD 
or log crO for the current step and m, = m, + Am be the model 
considered for the next step. Let yi for i = 1 to N be the real 
part and for i = N + 1 to 2N be the imaginary part of the 
measured data normalized by their standard errors 6,. Simi- 
larly, iet yoi and yi, be the data predicted by w10 and m, 
normalized by the standard errors. The normalized misfits 
e,, = yi - y,,, and e,, = yi - yi, have total squared misfits xz 
and xi, respectively. 

If Am is small, perturbing equation (3) and neglecting 
second-order terms in Am gives 

-rli - yo, = jmgi(zj Am(z) dz. 
0 

For m = cs and i = 1 to N, 

(see Oldenburg, 1979). When i = N + 1 to 2N, one takes 
the imaginary part and when m = log o, yi is replaced by 
crO (z)gi (2). Letting 

s 

a 
r, = &)m, (2) dz, (9) 

0 

we can write 

s 

aD 
Yl{ - Yo, + I-i = si(z)m,(z) da. (10) 

0 

Integrating by parts, 

s 

m 
yi, - yo, + Fi + Gi(0)m,(O) = Gi m’ dz, (11) 

0 

where 

n 
G,(z) = 

i 
Yi (x) dx (12) 

and 

m’ = dm/dz. (13) 

If our goal were to fit the yi,s to the yis exactly and m,(O) 
were known, replacing yi, with yi. equation (11) would pro- 
vide 2N constraints to the minimization of F. However, since 
our goal is to tit the y,,s to the yis only to some prescribed x:, 
we replace yi; by yi - c,,, rewrite equation (11) as 

yi - yo, + Fi - Gi(0)m,(O) = 
I 

mGim’ dz + e,,, (14) 
0 

and minimize 

w(m,, x:, S,) = F(m,,f) + h,x: 

with the linearized constraints (14). 

(15) 

In the Appendix we show how to choose p, so that mini- 
mizing W(m,, xf, p,) results in the smallest F for a specified 
value of x: when the linearization inherent in equation (7) is 
valid. If m,(O) is also unknown, we solve simultaneously for 
the m,(O) which minimizes W(m,, x:, h,). 

Our algorithm is a method of keeping the change to the 
model small enough at each iteration so that the linearization 
is valid. yet large enough so that the flattest model with the 
desired x2 is arrived at quickly, without an excessive number 
of forward calculations. The process involves choosing the 
target xf < _xi. calculating mi by minimizing W(m,, xf, B,) 
using the linearization, and then forward modeling to com- 

pute x,‘, the actual x2 attained by the model m, + ubm, and 
W(m, + aAm, xf , p,), where 0 < u I I. If aAm is small 
enough, the linearization will hold; and W(m, + aAm, xb. 0,) 
will be smaller than W(m,. xi. S,), its value for the previous 
model. We then begin another iteration, further reducing the 
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layered models. The simplest choice is I = z. However, this 
choice is likely te lead to a red fit with unnecessary structure 
at depth, because the resolution of MT data generally de­
creases with depth. The deeper structure required to fit low­
frequency data typically has a longer length scale and contrib­
utes less to F(m, z). Thus, low-frequency data will be easier to 
fit and will end up with smaller residuals. To compensate for 
this effect, one can contract the effective scale of the derivative 
at depth by choosing I(z) such that 

df(z) = (z + ZO)'1 

liz 
(6) 

for some 11 and Zo > O. Equation (6) is a useful parame­
terization for I, since it includes the obvious choices of f = z 
and f = log (z + zo). Below, we compare models using f = z, 
f = log (z + 2 0), and I = - I/(z + zo), corresponding to II = 0, 
-I, and -2. 

The constant Zo in the definitions off ensures that the inte­
gration of dm/d( to recover m is not singular. Physically, Zo is 
required because the resolution length approaches a constant 
at the Earth's surface rather than apPLoachin&zero. We some­
what arbitrarily choose 20 equal to half the penetration depth 
Re (c) (Weidelt, 1972) for the highest frequency in the data. 
since we cannot hope- iu resolve structure mucli shallower 
than this. Conceivably, one could adjust the fit of middle fre­
quencies, as compared to high frequencies, by varying 2 0 , 

Marchisio (1985) (see also Marchisio and Parker, 1984) pre­
sents a fully nonlinear inversion which minimizes a quantity 
that is a bound on F(log cr, .::) when the model is close to a 
uniform slah over an infinitely conducting half-space. While a 
significant advance in nonlinear inverse theory, Marchisio's 
solution is not necessarily the flattest and is likely to produce 
a red fit with structure at depth that is not required by the 
data. Whittall and Oldenburg (1986) also present several non­
linear inversions which minimize various norms of the impulse 
response of the model rather than norms of the model itself. 
This is another step in the right direction, but still falls short 
df finding truly minimum-structure models. 

Constable et al. (1987) present a many-layered, linearized 
inversion that minimizes the sum of the squared first differ­
ences (or second differences) of adjacent layers of their models, 
for a given misfit. Their inversion minimizing the first differ­
ences should give very similar results to one minimizing F, in 
the limit of vanishing layer thicknesses and a sufficiently deep 
final layer. Since Constable et al. weight all differences equally, 
their choice of layer thicknesses (as a function of depth) plays 
the role of the functionf(z) in controlling the "color" of the fit 
to the data. 

We minimize structure directly by minimizing F(m, f) in a 
stable linearized scheme. Let mo(z) be the starting model of cro 
or log 0'0 for the current step and ml = mo + ~m be the model 
considered for tbe next step. Let "(i for i = 1 to N be the real 
part and for i = N + 1 to 2N be the imaginary part of the 
measured data normalized by their standard errors Ei . Simi­
larly; let Yo; and YI, be the data predicted by mo and m l 

normalized by the standard errors. The normalized misfits 

eo, = Yi - Yo, and e l ; = Yi - "('; have total squared misfits X~ 
and xi, respectively. 

If ~m is small, perturbing equation (3) and neglecting 
second-order terms in ~m gives 

(7) 

For m = IT and i = 1 to N, 

(8) 

(see Oldenburg, 1979). When i = N + 1 to 2N, one takes 
the imaginary part and when m = log cr, g; is replaced by 
0'0 (Z)gi (z). Letting 

r; = f" gi(z)mO (z) liz, (9) 

we can write 

YI; - Yo; + r i = lOO gi(z)ml(z) dz. (10) 

Integrating by parts, 

Yli - Yo; + r i + Gi(O)ml(O) = I'v Gim' dz, (11 ) 

where 

(12) 

and 

m' = dm/dz. (13) 

If our goal were to fit the YI,S to the YiS exactly and ml(O) 
were known, replacing y" with y" equation (11) would pro­
vide 2N constraints to the minimization of F. However, since 
our goal is to fit the Y 1, S to the YiS only to some prescribed X;, 
we replace y,; by Yi - e", rewrite eq uation (11) as 

Yi - Yo, + r i - Gi(O)ml(O) = 1"" Gim' dz + eli' (14) 

and minimize 

(15) 

with the linearized constraints (14). 
In the Appendix we show how to choose ~, so that mini­

mizing W(ml' l}, ~t) results in the smallest F for a specified 
value of X; when the linearization inherent in equation (7) is 
valid. If m,(O) is also unknown, we solve simultaneously for 
the m,(O) which minimizes W(m" X;, ~t). 

Our algorithm is a method of keeping the change to the 
model small enough at each iteration so that the linearization 
is valid, yet large enough so that the flattest model with the 
desired X2 is arrived at quickly, without an excessive number 
of forward calculations. The process involves choosing the 
target X; < X~, calculating m l by minimizinjS- W(mi , X}, ~,) 
using the linearization, and then forward modeling to com­
pute X~, the actual X2 attained by the model mo + a~m, and 
W(l1lo + a~l11, X~, ~,), where 0 < a ~ I. If a~m is small 
enough, the linearization will hold; and W(mo + a~m, X~, ~t) 
will be smaller than W(l11o. X~. ~,)' its value for the previous 
model. We then begin another iteration, further reducing the 
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target, until XI reaches our ultimate goal. However, the value 
of W may increase at any step because aAm is too large for 
the linearization to hold. The remedy depends on whether the 
large uAm is due to trying to flatten the model too much in a 
single step or attempting to decrease the misfit too much. To 
determine which is the case, we use the linearization to find 
the model mf which minimizes W(m,, x:: pf) with ps selected 
so that x: = xi. Th’ 1s produces a Am, which flattens the 

model without reducing the misfit. We then compare the size 
of Am, to Am - Am,.. For simplicity. we compare using the 
maximum of the absolute value of the functions (/, norm). If 
AmY is similar in size to Am - ArnJ.. too much flattening is to 
blame, and we reduce LI by a factor of 2. If Amf is much 

smaller than Am - irmf, too iargc an atiempted deerease in 
x2 is to blame. We must then repeat the minimization with a 
smaller decrease in the target x:. The change aAm can always 
be made small enough for the linearization to hold, and W 
will decrease. Then n+, + aAm is used as the starting model for 
the next iteration. To avoid unnecessary failed steps, we never 
choose xf less than 0.1~~~ nor do we change a by more than a 
factor of 2 between tries. To be certain that we reach a mini- 
mum of W and F, we must iterate until Am, is negligible. All 
the necessary decisions in the process can be made automati- 
cally and our algorithm typically converges from a half-space 
to a model with the expected x2 in about eight iterations. 
These iterations are quite rapid, since only one or two forward 
calculations are generally needed to find an m, which reduces 
W. (When modeling log rs, starting models with unnecessary 
structure often increase the number of iterations required.) 

It is difficult to bc sure that we have found the Blobal mini- 

mum of F. We have tried starting models ranging from half- 
spaces to smoothed versions of D+ and have never found a 
case where the final model depended on the starting model. 
Thus it seems likely that the log CJ models found are globally 
the flattest. In a previous version of the algorithm, the decision 
to accept a model m, + aAm for use as the starting point for 
the next iteration was made solely on the basis of improved x2 
rather than W. With that criterion, the algorithm was oc- 
casionally trapped in local minima when the model variable 
was o and the starting model was very far from one fitting the 
data. These minima were easily recognized; x2 was very large 
and the model had large negative values of o. Since we 
changed the criterion. this trapping has not recurred. Other 
convergence problems may occur when the magnitude of a cr 
model approaches zero with increasing depth. In this case, 
the magnitude of (aAm ( is typically found to be of the 
order of ) CJ( cc)/ or smaller. As j o(m) 1 decreases in successive 
iterations, the algorithm successively decreases a to keep 
1 uAm(s) ( -c 1 o( cc) ( and Am, may never become negligible. 
This case occurs when the lowest frequency data are overfit 
and the best fitting Dt model ends in a resistor. [Two of the 
models presented in the results (Figures 7a and 7b) suffer this 
problem. In these cases we have let the inversion continue 
until Io(&~l) 1 -C IO-” S/m.] Fortunately, choosing a norm, such 
as F(o, -l/z + z,), which does not overfit the lowest fre- 
quency data circumvents the problem. Except for these cases, 
we have never found final o models which depended on the 
starting model. 

RESULTS AND DISCUSSION 

Level of misfit 

Requiring too small a misfit requires large oscillations mim- 
icking the best fitting model (De). Ideally, we should aim for 
the misfit that our data has with respect to the true Earth 
response. However, since we do not know the true Earth’s 
structure, the best we can do is to aim for the expected value, 
E(x*) = 2N. Even this level is not always desirable or possible, 
because the D+ misfit may approach or exceed it, particularly 
when the frequencies are very closely spaced and the misfit of 
the truth itself is larger than E(x2). Instead one may want to 
find the flattest model withy some higher level of misfit, such as 
the 95 percent confidence level. Then one can be more confi- 
dent that the structures which remain in the model are re- 
quired to fit the data. To illustrate the dangers of overfitting 
data and other points, we generated 11 frequencies of synthet- 
ic data from 3.2 x 10m3 Hz to 1.6 x lo3 Hz. Since the disas- 
trous effectsof overfitting the data are evident only if there are 
errors in the data, we added 1 percent Gaussian noise to the 
synthetic data (Table 1). 

In Figure I, we plot models of log CJ which are flattest with 
respect to log (Z + z,,) (a) with the expected misfit x2 = 22 
(model la), (b) with a much smaller misfit x2 = 4.73 (model 
lb), and (c) with the 95 percent confidence limit x2 = 33.9 
(model Ic). (We refer to models by the number of the figure in 
which they are shown, and the letter of their trace in the 
figure, e.g.. model la is shown in trace (a) of Figure I.) For 
comparison, in Figure 2 we have plotted the true model, and 
the locations of the conductances of the best fitting D+ model 
(x2 = 3.75). The values of the D+ conductances have been 
scaled into conductivities by dividing them by the distance 
between the midpoints to the adjacent spikes. These are the 
conductivities that would result from redistributing the con- 
ductances into uniform layers extending between the mid- 
points. These scaled conductances have values very close to 
the true model; this is consistent with the fact that inversion 
for conductance is well posed (cf., Weidelt, 1985). The true 
model makes no attempt to fit the errors in the data and has a 
mistit of 25.6. In this case, fitting to the expected x2 (model la) 
recovers essentially all the structure of the true model with the 
exception of the resistive zone between 1 km and 1.6 km. 
Fitting only to the 95 percent confidence limit x2 (mode1 lc) 

Table 1. Synthetic data expressed in terms of c = -l/y, gener- 
ated from model (a) of Figure 2, with 1 percent Gaussian noise 
added. 

Frequency Re (c) 
(HL) (m) 

0.003 I835 39577. 
0.0159155 10587. 
0.0954930 2726. 
0.3183099 1378. 
0.9549297 722.4 
3.183099 427.4 
6.366 198 350.1 

IS.9 IS49 246.2 
63.66198 138.82 

159.1549 93.94 
I 59 1.549 28.34 

Imag (c) 1 std error 
(m) (m) 

- 62879. 526. 
- 22403. 175. 
-5866. 46. 
-2359. 19. 
-1 132.3 9.5 
- 470.8 4.5 
- 303.1 3.3 
- 203.2 2.3 
- 110.77 1.27 
- 76.43 0.86 
- 28.40 0.28 
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target, until X~ reaches our ultimate goal. However, the value 
of W may increase at any step because aAm is too large for 
the linearization to hold. The remedy depends on whether the 
large aAm is due to trying to flatten the model too much in a 
single step or attempting to decrease the misfit too much. To 
determine which is the case, we use the linearization to find 
the model mf which minimizes W(m j , X}, I3f ) with I3f selected 
so that X} = X6· This produces a Amf which flattens the 
model without reducing the misfit We then compare the size 
of Amf to Am - Ami' For simplicity, we compare using the 
maximum of the absolute value of the Yunctions (t oc norm). If 
Am, is similar in size to Am - Amf , too much flattening is to 
blame, and we reduce a by a factor of 2. If Amf is much 
smaller than fs.m - fs.m f' too large- aIT attempted decrease in 
Xl is to blame. We must then repeat the minimization with a 
smaller decrease in the target X;. The change aAm can always 
be made small enough for the linearization to hold, and W 
will decrease. Then mo + aAm is used as the starting model for 
the next iteration. To avoid unnecessary failed steps, we never 
choose x; less than 0.1 X~, nor do we change a by more than a 
factor of 2 between tries. To be certain that we reach a mini­
mum of Wand F, we must iterate until Amr is negligible. All 
the necessary decisions in the process can be made automati­
cally and our algorithm typically converges from a half-space 
to a model with the expected X2 in about eight iterations. 
These iterations are quite rapid, since only one or two forward 
calculations are generally needed to find an m l which reduces 
W. (When modeling log cr, starting models with unnecessary 
structure often increase the number of iterations required.) 

It is difficult to be sure that we have found the ylobal mini­
mum of F. We have tried starting models ranging from half­
spaces to smoothed versions of D + and have never found a 
case where the final model depended on the starting model. 
Thus it seems likely that the log cr models found are globally 
the flattest. In a previous version of the algorithm, the decision 
to accept a model 1110 + aAm for use as the starting point for 
the next iteration was made solely on the basis of improved X' 

rather than W. With that criterion, the algorithm was oc­
casionally trapped in local minima when the model variable 
was G and the starting model was very far from one fitting the 
data. These minima were easily recognized; X2 was very large 
and the model had large negative values of cr. Since we 
changed the criterion. this trapping has not recurred. Other 
convergence problems may occur when the magnitude of a cr 
model approaches zero with increasing depth. In this case, 

. the magnitude of I aAII1( Jj) I is typically found to be of the 
order of I cr( Jj) I or smaller. As I cr( Jj) I decreases in successive 
iterations, the algorithm successively decreases a to keep 
I aAm( C0 JI < I crt ex) JI and Am J may never become negligible. 
This case occurs when the lowest frequency data are overfit 
and the best fitting D f model ends in a resistor. [Two of the 
models presented in the results (Figures 7a and 7b) suffer this 
problem. In these cases we have let the inversion continue 
until I cr( ex» I < 10- 8 Sjm.] Fortunately, choosing a norm, such 
as F(a, - l/z + zo), which does not overfit the lowest fre­
quency data circumvents the problem. Except for these cases, 
we have never found final cr models which depended on the 
starting model. 

RESULTS AND DISCUSSION 

Level of misfit 

Requiring too small a misfit requires large oscillations mim­
icking the best fitting model (D+). Ideally, we should aim for 
the misfit that our data has with respect to the true Earth 
response. However, since we do not know the true Earth's 
structure, the best we can do is to aim for the expected value, 
E(X 2

) = 2N. Even this level is not always desirable or possible, 
because the D+ misfit may approach or exceed it, particularly 
when the frequencies are very closely spaced and the misfit of 
the truth itself is larger than E(X2). Instead one may want to 
find the flattest modeL with. some. higher level of misfit, such as 
the 95 percent confidence leveL Then one can be more confi­
dent that the structures which remain in the model are re­
quired to fit the data. To illustrate the dangers of overfitting 
data and other points, we generated 11 frequencies of synthet­
ic data from 3.2 x 10- 3 Hz to 1.6 X 103 Hz. Since the disas­
trous effects of overfitting the data are evident only if there are 
errors in the data, we added 1 percent Gaussian noise to the 
synthetic data (Table 1). 

In Figure I, we plot models of log cr which are flattest with 
respect to log (z + zo) (a) with the expected misfit X2 = 22 
(model la), (b) with a much smaller misfit X2 = 4.73 (model 
I h), and (e) with the 95 percent confidence limit X2 = 33.9 
(model 1 c). (We refer to models by the number of the figure in 
which they are shown, and the letter of their trace in the 
figure, e.g .. model I a is shown in trace (a) of Figure J.) For 
comparison, in Figure 2 we have plotted the true model, and 
the locations of the conductances of the best fitting D+ model 
(X' = 3.75). The values of the D + conductances have been 
scaled into conductivities by dividing them by the distance 
between the midpoints to the adjacent spikes. These are the 
conductivities that would result from redistributing the con­
ductances into uniform layers extending between the mid­
points. These scaled conductances have values very close to 
the true model; this is consistent with the fact that inversion 
for conductance is well posed (cr., Weidelt, 1985). The true 
model makes no attempt to fit the errors in the data and has a 
misfit of 25.6. In this case, fitting to the expected X2 (model la) 
recovers essentially all the structure of the true model with the 
exception of the resistive zone between 1 km and 1.6 km. 
Fitting only to the 95 percent confidence limit X2 (model Ie) 

Table I. Synthetic data expressed in terms of c = -t/y, gener­
ated from model (a) of Figure 2, with 1 percent Gaussian noise 
added. 

Frequency Re (c) Imag (c) 1 std error 
(HL) (m) (m) (m) 

0.0031835 39577. -62879. 526. 
0.0159155 10587. -22403. 175. 
0.0954930 2726. -5866. 46. 
0.3183099 1378. -2359. 19. 
0.9549297 722.4 -1132.3 9.5 
3.183099 427.4 -470.8 4.5 
6.366198 350.1 -303.1 3.3 

15.91549 246.2 -203.2 2.3 
63.66198 138.82 -110.77 1.27 

159.1549 93.94 -76.43 0.86 
1591.549 28.34 -28.40 0.28 
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loses resolution but reduces the sensitivity to data errors. Re- 
quiring a mistit close to the minimum possible x2 requires the 
false structures in model lb to fit the noise in the data. Note 
that most of the extraneous peaks in model 1 b correspond to 
spikes in the LI- model 2b. This correspondence increases as 
the misfit of a minimum-structure log CT model approaches the 
minimum possible. 

In comparing misfit statistics, it should be noted that we 
measure normalized misfit in terms of yi = - l/c,/cr. Parker’s 
D+ minimizes the squared misfit in terms of c,,/Zi where Ei is 
the estimated standard error in ci, so D+ does not necessarily 
obtain the smallest squared misfit expressed in terms of yi. 
When the relative misfit at each frequency is small (e.g., 25 
percent), the squared misfit is very nearly identical expressed 
in y or c. When the relative misfit is larger, the squared misfit 
of D+ expressed in terms of y may be somewhat larger than 
the minimum possible and may be different from the squared 
misfit of D+ expressed in terms of c. 

Whiteness of fit 

The choice of what norm is minimized can affect the color 
of the fit significantly. Changing the norm by decreasing n in 
equation (6) penalizes structure at depth and typically in- 
creases the size of the low-frequency residuals relative to the 
high-frequency residuals, making for a bluer fit of the model to 
the data. In Figure 3, we compare the truth (model 3d) to 
flattest models of log o with respect to Z, log (Z + z,), and 
~ l/(z + z,,), (models 3a, 3b, 3c) corresponding to n = 0, - 1, 
-2, respectively. All these flattest models have x2 misfits 
equal to its expected value of 22. We plot the normalized 
residuals associated with the three models and the truth in 
Figure 4. The model flattest with respect to log (Z + z,,), model 
3b, shows the true structure most clearly of the three inver- 
sions. The model flattest with respect to 2, model 3a, shows 
fluctuations at depth which are not present in the true model, 
and the structure is less clearly defined near the surface. 
Model 3a clearly fits the high frequencies systematically better 
than the low frequencies (Figure 4). The model flattest with 
respect to - I/(; + 2,) shows less detail at depth, more fluctu- 
ations near the surface, and systematically overfits the high 
frequencies (Figure 4). Overftting the low frequencies de- 
mands the oscillations at depth, whereas underfitting the high 
frequencies loses resolution near the surface. The model flat- 
test with respect to log (z + +,), model 3b, achieves a fairly 
even fit, resulting in more accurate detail and fewer extraneous 
oscillations. 

To quantify the color of the fit, we use Spearman’s statistic 
D. This robust statistic is used to test the significance of a 
trend (cf., Bickel and Doksum, 1977, p. 365-369) and is based 
on the ranks Ri and Si of two variables. The samples of a 
variable are arranged by size and the ordered samples are 
numbered (e.g., 1, 2, 3, . .). Then the rank of each sample is 
simply the number of its place in the ordered set. In our case, 
we let R, be the ranks of the sums of the squares of the real 
and imaginary parts of the residuals (normalized by their stan- 
dard errors) and let Si be the ranks of the corresponding fre- 
quencies. Spearman’s statistic D is 

D = 2 (S, - RJ2 (16) 
L = : 
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FIG. 1. Models minimizing F[log o, log (Z + zO)] fit to data of 
Table I. with misfits (a) x2 = @x2) = 22.0, (b) x2 = 4.73, and 
(c) x2 = 33.9. 

“0 -la5 
-I 

U -2. 

b 
c3 -2.5 

Y 

I 

-3.0 

-3.5 J 
18 ld 

,___ 

.__. _____ ___ 
1 

102 
DEPTH Cm1 

FIG. 2. (a) Model from which data of Table 1 were generated; 
x2 = 25.6. (b) Conductances of best-fitting D ’ model scaled 
into conductivities by dividing by the midpoint distances be- 
tween the conductance spikes: x2 = 3.75. 
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FIG. 3. Models all with misfit x2 = 22.0 fit to the data of Table 
I. minimizing (a) F(log o, z), (b) F(log o, log (z + z,,)), and (c) 
P(log o, - I!(- + so)). (d) Model from which data were gener- 
ated; xZ = 25.6. 
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loses resolution but reduces the sensitivity to data errors. Re­
quiring a misfit close to the minimum possible X2 requires the 
false structures in model 1 b to fit the noise in the data. Note 
that most of the extraneous peaks in model I b correspond to 
spikes in the D - model 2b. This correspondence increases as 
the misfit of a minimum-structure log cr model approaches the 
minimum possible. 

In comparing misfit statistics, it should be noted that we 
measure normalized misfit in terms of Yi = - l/ed!:i' Parker's 
D+ minimizes the squared misfit in terms of cJE; where E; is 
the estimated standard error in ('i' so D+ does not necessarily 
obtain the smallest squared misfit expressed in terms of Yi' 
When the relative misfit at each frequency is small (e.g., :::; 5 
percent), the squared misfit is very nearly identical expressed 
in y or c. When the relative misfit is larger, the squared misfit 
of D + expressed in terms of Y may be somewhat larger than 
the minimum possible and may be different from the squared 
misfit of D+ expressed in terms of c. 

Whiteness of fit 

The choice of what norm is minimized can affect the color 
of the fit significantly. Changing the norm by decreasing 1] in 
equation (6) penalizes structure at depth and typically in­
creases the size of thc low-frcquency residuals relative to the 
high-frequency residuals, making for a bluer fit of the model to 
the data. In Figure 3, we compare the truth (model 3d) to 
flattest models of log cr with respect to z, log (2 + 20)' and 
-1/(z + zo), (models 3a, 3b, 3c) corresponding to 1] = 0, - I, 
-2, respectively. All these flattest models have Xl misfits 
equal to its expected value of 22. We plot the normalized 
residuals associated with the three models and the truth in 
Figure 4. The model flattest with respect to log (z + zo), model 
3b, shows the true structure most clcarly of the three invcr­
sions. The model flattest with respect to 2, model 3a, shows 
fluctuations at depth which are not present in the true model, 
and the structure is less clearly defined near the surface. 
Model 3a clearly fits the high frequencies systematically better 
than the low frequencies (Figure 4). The model flattest with 
respect to - 1/(:: + zo) shows less dctail at depth, more fluctu­
ations near the surface, and systematically overfits the high 
frequencies (Figure 4). Overfitting the low frequencies de­
mands the oscillations at depth, whereas underfitting the high 
frequencies loses resolution near the surface. The model flat­
test with respect to log (z + 20)' model 3b, achieves a fairly 
even fit, resulting in more accurate detail and fewer extraneous 
oscillations. 

To quantify the color of the fit, we use Spearman's statistic 
D. This robust statistic is used to test the significance of a 
trend (ef., Bickel and Doksum, 1977, p. 365-369) and is based 
on the ranks Ri and Si of two variables. The samples of a 
variable are arranged by size and the ordered samples are 
numbered (e.g., 1, 2, 3, ... J. Then the rank of each sample is 
simply the number of its place in the ordered set. In our case, 
we let Ri be the ranks of the sums of the squares of the real 
and imaginary parts of the residuals (normalized by their stan­
dard errors) and let Si be the ranks of the corresponding fre­
quencies. Spearman's statistic D is 
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and is equivalent to a correlation coefficient between the two 
sets of ranks. Low values of D correspond to positive corre- 
lations and high values to negative correlations. A statistic 
based on the ranks is more robust than one based on the 
actual values, because it does not depend on distributional 
assumptions (such as the errors being Gaussian) and is in- 
variant to transformations of either variable as long as the 
transformations conserve order. (Our use of D does, however, 
require that the errors in the data be independent.) 

Standard tables exist for the distribution of D (Lehman, 
1975, p. 433). For no correlation between R and S, the distri- 
bution of D is symmetric about its expected value E(D), which 
is (N3 - N)/6, and has variance var (D) = N*(N + l)*(N - 1)/36. 
For large N, the distribution of [D - E(D)]/[var (D)]“’ is 
approximately normal for no correlation between R and S. In 
the case of 11 frequencies, P(D I 102 or 338 I D) = 0.094, 
since P(D I 102) = 0.047 and E(D) = 220. Also P(D < 84 or 
356 I D) = 0.048. We may conclude with a 90 percent confi- 
dence level that there is a trend when D I 102 or D 2 338, 
and with a 95 percent confidence level when D I 84 or 
D 2 356. 

After we have normalized the observations to have unit 
variance, the actual squared data errors should be randomly 
distributed and uncorrelated with frequency. The presence of a 
trend in the residuals may indicate a frequency-dependent 
misestimation of the errors in the data, a failure of the 1-D 
assumption, or a failure to model the data adequately due to a 
systematic bias in an inversion routine. (By bias we mean the 
tendency to fit some frequency ranges better than others.) One 
certainly should rule out the last possibility before invoking 
either of the first two as probable causes of an observed trend. 

Since D may vary by approximately (var (D))‘j2 from its 
expected value when no trend exists, as it does for the true 
model (3d), we do not require that D = E(D) exactly for a 
model to be acceptable. Values of D for the residuals of the 
models of Figure 3 are listed in Table 2. Either model 3b or 3c 
is acceptable at a 90 percent confidence level on the basis of D. 

With synthetic data, we can compare the obtained values of D 

ta thcvalnefrom the residuals to the truth, to check for biases 
of an inversion algorithm. The value of D for the truth lies 
about 0.4 of the way between those given by usingf(z) = log (J 
and J(z) = - l/(z + z,,). Thus an IJ of about - 1.4 should give 
the least biased fit to this data set. With real data one should 
check that the values obtained are within a range that has a 
reasonable chance of occurring (e.g., P 2 0.1). If D indicates a 
trend, one then can evaluate the bias of the inversion algo- 
rithm by inverting synthetic data at the same frequencies. with 
the same scale errors as the real data, generated from a model 
that at least roughly fits the data. 

Our experience is that models mimmlzing F[iog cr, 
log (Z + -_J] tend to have values of D close to the value given 

Table 2. Spearman’s D for the residuals left by the models 
shown in Figures 3 and 7, showing the effect of choice of depth 
function f(t). For 11 frequencies, E(D) = 220 + 118 (90 per- 
cent confidence limits), if no trend is present. 

,/I4 z Log (z + z,) - l/(5 + zO) Truth Variable 

Figure 3 86 256 322 284 log (0) 
Figure 7 54 110 300 284 0. 
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FK;. 4. Residuals of models of Figure 3, from top to bottom 
(3a)-(3d), normalized by the standard errors of the data. 
( ~~ , real part; ---, imaginary part.) 

by the truth, so this is a very good choice of F. Our experi- 
ments used logarithmically spaced data and fairly uniform 
error estimates; for less uniformly distributed data, this may 
not be as good a choice. For models minimizing F(m,f), such 
as those shown in Figure 7, there does not appear to be a 
single best choice off(~) independent of the true conductivity. 
For models which are resistive at depth, using Fro, log (t 
+ z,)] tends to overfit the low frequencies, since it does not 

penalize structure in resistive regions as much as using F[log 
C. log (2 + zO)] does. Minimizing F[o, log (Z + so)] fits the 
data more unjformly when the true conductivity is more uni- 
form. 

To avoid unnecessary structure at some depths and insuffi- 
cient structure at other depths, we must reject any models for 
which Spearman’s statistic indicates a red or blue fit, regard- 
less or how the models are obtained. At the very least, we must 
exercise caution in interpreting the deeper portions of models 
for which D takes on small values, since they may contain 
large oscillations due to fitting the errors in the data. One 
must also realize that these models may not have the neces- 

-. 5 1 1 I I I I 

b 

cl 

2 

-1. 

-1. 

-2. 

-2. 

-3. 

o- 

y -3r*Id 18 ld 102 

DEPTH Cm3 
FIG. 5. Models minimizing F[log (r, log (Z + z,,)] for data sets 
generated from model 2a (Figure 2), each with x2 = E(x2) = 
22.0, for three different levels of error: (a) 20 percent error, (b) 
5 percent error, and (c) 1 percent error. (d) Model from which 
data were generated; x2 = 25.6. 
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and is equivalent to a correlation coefficient between the two 
sets of ranks. Low values of D correspond to positive corre­
lations and high values to negative correlations. A statistic 
based on the ranks is more robust than one based on the 
actual values, because it does not depend on distributional 
assumptions (such as the errors being Gaussian) and is in­
variant to transformations of either variable as long as the 
transformations conserve order. (Our use of D does, however, 
require that the errors in the data be independent.) 

Standard tables exist for the distribution of D (Lehman, 
1975, p. 433). For no correlation between Rand S, the distri­
bution of D is symmetric about its expected value E(D), which 
is (N 3 - N)j6, and has variance var (D) = N 2(N + I )2(N - 1)/36. 

For large N, the distribution of [D - E(D)]/[var (D)]IJ2 is 
approximately normal for no correlation between Rand S. In 
the case of I I frequencies, P(D s 102 or 338 s Dj = 0.094, 
since P(D s 102) = 0.047 and E(D) = 220. Also P(D s 84 or 
356 s D) = 0.048. We may conclude with a 90 percent confi­
dence level that there is a trend when D S 102 or D 2': 338, 
and with a 95 percent confidence level when D s 84 or 
D 2': 356. 

After we have normalized the observations to have unit 
variance, the actual squared data errors should be randomly 
distributed and un correlated with frequency. The presence of a 
trend in the residuals may indicate a frequency-dependent 
misestimation of the errors in the data, a fail ure of the 1-D 
assumption, or a failure to model the data adequately due to a 
systematic bias in an inversion routine. (By bias we mean the 
tendency to fit some frequency ranges better than others.) One 
certainly should rule out the last possibility before invoking 
either of the first two as probable causes of an observed trend. 

Since D may vary by approximately (var (D»1/2 from its 
expected value when no trend exists, as it does for the true 
model (3d), we do not require that D = E(D) exactly for a 
model to be acceptable. Values of D for the residuals of the 
models of Figure 3 are listed in Table 2. Either model 3b or 3c 
is acceptable at a 90 percent confidence level on the basis of D. 
With synthetic data, we can compare the obtained values of D 
to the- value from the residuals to the truth, to check for biases 
of an inversion algorithm. The value of D for the truth lies 
about 0.4 of the way between those given by usingf(z) = log cr 
and f(z) = -l/(z + zo). Thus an 11 of about - 1.4 should give 
the least biased fit to this data set. With real data one should 
check that the values obtained are within a range that has a 
reasonable chance of occurring (e.g., P 2': 0.1). If D indicates a 
trend, one then can evaluate the bias of the inversion algo­
rithm by inverting synthetic data at the same frequencies, with 
the same scale errors as the real data, generated from a model 
that at least roughly fits the data. 

Our experience is that models minimizing F[iog cr, 
log (z + 2 0 )J tend to have values of D close to the value given 

Table 2. Spearman's D for the residuals left by the models 
shown in Figures 3 and 7, showing the effect of choice or depth 
function fez). For 11 frequencies, E(D) = 220 ± 118 (90 per­
cent confidence limits), if no trend is present. 
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by the truth, so this is a very good choice of F. Our experi­
ments used logarithmically spaced data and fairly uniform 
error estimates; for less uniformly distributed data, this may 
not be as good a choice. For models minimizing F(cr,!), such 
as those shown in Figure 7, there does not appear to be a 
single best choice of I(z) independent of the true conductivity. 
For models which are resistive at depth, using F[o, log (z 
+ =o)J tends to overfit the low frequencies, since it does not 

penalize structure in resistive regions as much as using F[1og 
cr. log (= + 2 0)] does. Minimizing F[cr, log (2 + zo)] fits the 
data more uniformly when the true conductivity is more uni­
form. 

To avoid unnecessary structure at some depths and insuffi­
cient structure at other depths, we must reject any models for 
which Spearman's statistic indicates a red or blue fit, regard­
less of how the models are obtained. At the very least, we must 
exercise caution in interpreting the deeper portions of models 
for which D takes on small values, since they may contain 
large oscillations due to fitting the errors in the data. One 
must also realiz~ that these models may not have the neces-
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FIG. 5. Models minimizing F[log cr, log (z + zo)] for data sets 
generated from model 2a (Figure 2), each with X2 = E(X2) = 
22.0, for three different levels of error: (a) 20 percent error, (b) 
5 percent error, and (c) 1 percent error. (d) Model from which 
data were generated; X2 = 25.6. 
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FIG. 6. Nonlinear error versus depth for model 3b (Figure 3) 
for which the model variable is log B, plotted with an envelope 
of & 2 linear standard errors. 

sary shallow structure to fit the high-frequency data ad- 
equately. Similarly. for models with large values of I>, the 
shallow portions may contain large oscillations. due to over- 
fitting the errors in the high-frequency data, and deep struc- 
ture. which may not adequately fit the lower frequency data. 

Effect of error level on resultant models 

As the errors in MT data decrease. flattest inversions repro- 
duce the true structure with increasing fidelity. We have gener- 
ated three sets of synthetic data with 20 percent, 5 percent, 
and I percent errors added. The frequencies and the true 
model are the same as for our first set of data. In Figure 5, we 
plot models minimizing F[log o. log (-_ + =“)I for the three 
data sets, fitting each model to the expected x2. As expected, 
we resolve more details of the true conductivity as the level of 
errors in the data decreases. 

In inverting data, it is essential that the estimates of the 
errors in the data be accurate. If the estimates of the errors are 
too large. then the estimated x2 misfit [equation (I)] will be 
too small; litting to the cxpccted x2 may underfit the data, 
losing resolution. Worse yet, if the estimated variances are 
unrealistically small, even fitting only to the 95 percent confi- 
dence limit x2 may be overfitting the data, and may require 
false structures to fit the noise in the data. Egbert and Booker 
(1986) have shown that GDS transfer function estimates found 
by conventional nonrobust methods often have unrealistically 
small error estimates due to violations of the assumptions of 
uncorrelated Gaussian errors implicit in the standard meth- 
ods. Similar results are likely to hold for MT impedance error 
estimates, so robust transfer function estunation methods such 
as those used by Egbert and Booker (1986) or Chave et al. 
(1987) should be used. 

Nonlinear error in flattest models considered as 

averages of the truth 

The flattest model m(j) can be shown to be the truth M(z) 
smoothed through a resolution function, plus a nonlinear 
error and a stochastic error. The term neglected in writing 
equation (7) for the change between the flattest model and the 
truth is 

where yu, and y,,, , are the normalized data predicted by the 
truth and the Rattcst model. We call eL, the linearization error. 

In vectc>r form. if M is the true earth, then our measured 
data y arc the sum of the true data Y,$~ and the data errors ed, 

Y =YU + ed. (18) 

Letting By he the residual from fitting the model m, we also 
have that 

Y =YM + 4’. (19) 

Assume that our iterative inversion process has converged so 
that A,?1 is negligibly small. Then the starting model for a step 
,n,, and the resulting model m are identical. Using equations 
(IX) and (19) with equations (7). (9). and (A-12). we get 

!>I(_) = 
1’ 

B(Z)’ g(=,, . m) .M(=,) d;, + B’e, + Bfed, (20) 
0 

where 

B’ = A’ + a’ - A%(O) CL’. (21) 

(A’ and a’ are defined in the Appendix.) Equation (20) 
characterizes the Hattest models as the true earth M smoothed 
through the resolution function B(z)‘~(z,) plus the nonlinear 
error B’e, and the stochastic error B’e,. The nonlinear error 
made in interpreting the model as a filtered version of the 
truth is given by propagating e,_ in our model estimates in 
exactly the same way that random errors ed propagate; i.e., 
B’e,. This procedure was used effectively in the seismic travel- 
time problem by Pavlis and Booker (1983). The nonlinear 
error is just the difference between the flattest model and the 
truth smoothed through the resolution kernels of the flattest 
model. with a correction for the differences that the linear 
theory predicts should be due to the differing responses of the 
two models [cf., equation (17)]. We emphasize that nonlinear 
error and linearization error are only relevant to interpreting 
flattest models as averages, and that minimization of W does 
not depend on having small linearization errors. 

The resolution kernels may be used to display the inherent 
resolution limitations of a data set. In addition to this, given a 
Hattcst model and a set of resolution kernels, one might be 
tempted LO try to deconvolve the flattest model to obtain the 
truth. This is not possible even assuming that both error terms 
are negligible (e, = e,. = 0). In this case, both the truth and the 
Rattest model averaged through the resolution kernels yield 
the same flattest model, so a unique deconvolution is impossi- 
ble. Since resolution kernels have been presented for MT in- 
versions previously (see for example Parker, 1970, or Olden- 
burg. 1979). mse will consider only the nonlinear errors in- 
herent in their USC. 

When the truth contains large variations not resolved by 
the data, such as the resistive zone between 1 .O km and 1.6 km 
included in our test case, the magnitude of the linearization 
error inherent in interpreting models of log G to be averages of 
the true log o is large. The nonlinear errors B’e,, for log u 
models 3a, 3h, and 3c are extremely similar, so we plot only 
one (3b) in Figure 6. For comparison we have plotted an 
envelope of t 2 standard errors (linear stochastic error) of the 
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FIG. 6. Nonlinear error versu:; depth for model 3b (Figure 3) 
for which the model variable is log cr, plotted with an envelope 
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sary shallow structure to fit the high-frequency data ad­
equately. Similarly. for models with large values of D, the 
shallow portions may contain large oscillations, due to over­
fitting the errors in the high-frequency data, and deep struc­
ture, which may not adequately fit the lower frequency data. 

Effect of error level on resultant models 

As the errors in MT data decrease, flattest inversions repro­
duce the true structure with increasing fidelity. We have gener­
ated three sets of synthetic data with 20 percent, S percent, 
and I percent errors added. The frequencies and the true 
model are the same as for our first set of data. In Figure 5, we 
plot models minimizing F[log cr, log (z + ':::0}1 for the three 
data sets, fitting each model to the expected X2

. As expected, 
we resolve more details of the true conductivity as the level of 
errors in the data decreases. 

In inverting data, it is essential that the estimates of the 
errors in the data be accurate. If the estimates of the errors are 
too large, then the estimated X2 misfit [equation (I)] will be 
too small; fitting to the expected X 2 may underfit the data, 
losing resolution. Worse yet, if the estimated variances arc 
unrealistically small, even fitting only to the 9S percent confi­
dence limit X2 may be overfitting the data, and may require 
false structures to fit the noise in the data. Egbert and Booker 
(1986) have shown that G OS transfer function estimates found 
by conventional nonrobust methods often have unrealistically 
small error estimates due to violations of the assumptions of 
uncorrelated Gaussian errors implicit in the standard meth­
ods. Similar results are likely to hold for MT impedance error 
estimates, so robust transfer function estimation methods such 
as those used by Egbert and Booker (1986) or Chave et al. 
(1987) should be used. 

Nonlinear error in flattest models considered as 
averages of the truth 

The flattest model me:) can be shown to be the truth M(z) 

smoothed through a resolution function, plus a nonlinear 
error and a stochastic error. The term neglected in writing 
equation (7) for the change between the flattest model and the 
truth is 

el., = YM, - '(m, - i x iI;(Z, m)[M - mJ d.:::, (17) 

where Y~t, and ,("" are the normalized data predicted by the 
truth and the flattest model. We call eL , the linearization error. 

In vect,lr form, if ,~1 is the true earth, then our measured 
data yare the sum of the true data YM and the data errors ed' 

(18) 

Letting /',.Y be the residual from fitting the model m, we also 
have that 

(19) 

Assume that our iterative inversion process has converged so 
that /',./11 is negligibly smalL Then the starting model for a step 
Ill" and the resulting model m are identicaL Using equations 
(18) and (19) with equations (7), (9), and (A-12), we get 

Jll(:) = r' B(~)' g(=o' Ill) M(.:::o) dz o + B'eL + B'ed' (20) Jo 
where 

B' = A' + rt.' - A'G(O) rt.'. (21) 

(A' and c/,' are defined in the Appendix.) Equation (20) 
characterizes the flattest models as the true earth M smoothed 
through the re~olution function B(z)'g(zo) plus the nonlinear 
error B'eL and the stochastic error B'ed . The nonlinear error 
made in interpreting the model as a filtered version of the 
truth is given by propagating eL in our model estimates in 
exactly the same way that random errors ed propagate; i.e., 
B'eL . This procedure was used effectively in the seismic travel­
time problem by Pavlis and Booker (1983). The nonlinear 
error is just the ditTerence between the flattest model and the 
truth smoothed through the resolution kernels of the flattest 
modeL with a correction for the differences that the linear 
theory predicts should be due to the differing responses of the 
two models [cf., equation (17)], We emphasize that nonlinear 
error and linearization error are only relevant to interpreting 
flattest models as averages, and that minimization of W does 
not depend on having small linearization errors. 

The resolution kernels may be used to display the inherent 
resolution limitations of a data set. In addition to this, given a 
flattest model and a set of resolution kernels, one might be 
tempted to try to deconvolve the flattest model to obtain the 
truth. This is not possible even assuming that both error terms 
are negligible (Cd = c/. = 0). In this case, both the truth and the 
tlattest model averaged through the resolution kernels yield 
the same flattest model, so a unique deconvolution is impossi­
ble. Since resolution kernels have been presented for MT in­
versions previously (see for example Parker, 1970, or Olden­
burg. 1979), we will consider only the nonlinear errors in­
herent in their use. 

When the truth contains large variations not resolved by 
the data, such as the resistive zone between 1.0 km and 1.6 km 
included in our test case, the magnitude of the linearization 
error inherent in interpreting models of log cr to be averages of 
the true log ('j' is large. The nonlinear errors B'eL for log cr 
models 3a, 3b, and 3c are extremely similar, so we plot only 
one (3b) in Figure 6. For comparison we have plotted an 
envelope of ± 2 standard errors (linear stochastic error) of the 



1572 Smith and Booker 

Table 3. Squared linearization error for various models, comparing the effects of the choice of model variable. (Paten- 
thetic values omit the lowest frequency.) 

Model 3a 

Variable log cr 
Ie,.I’ 3746. 

3b 3c 

log 0 log 0 
2488. 1724. 

7a 7b 7C 10a 

> 10bG(3.02) > lOs”( I .52) O&7 1p72 

model interpreted as averages through resolution functions. 
The nonlinear error is greatest near the depth of the unre- 
solved layer, where it is much larger than the uncertainties in 
the averages due to random noise in the data. The squared 
magnitude of the linearization errors 1 eL I’, listed in Table 3, is 
large for all the log cs models. Each has large squared errors 
(> 40) at each of the seven lowest frequencies. These errors are 
due principally to the unresolved resistive layer. 

The nonlinear error made in interpreting models of o as 
averages of the true conductivity need not be so large. Figure 
7 shows models minimizing F(o,f) for comparison with the 
log cs models in Figure 3. In Figure 8 we plot the nonlinear 
error as a function of depth with envelopes of _+2 standard 
(stochastic) errors for o models 7a and 7b. For model 7c, the 
nonlinear errors (not shown) are less than 0.5 standard errors 
at all depths. For the models 7a and 7b the nonlinear errors 
are smaller than 1 standard error at all depths above 500 km. 
The magnitude of the nonlinear error increases below 500 km 
for models 7a and 7b, reflecting the fact that the data no 
longer constrain the model enough for the Frechet kernels yi 
to be similar for different models fitting the data. The increase 
in nonlinear error at depth reflects huge linearization errors at 
the lowest frequency (> lo6 for models 7a and 7b). The sums 
of the squared linearization errors of all frequencies except the 
lowest are only 3.02 and 1.52 for models 7a and 7b, respec- 
tively. Even with very large linearization errors at the lowest 
frequency in these two examples, the nonlinear errors in inter- 
preting the (J models as averages are insignificant at all depths 
of interest. 

We suspect that nonlinear errors should be largest when the 
integrated conductivity of a flattest model (as a function of 

b 

OF4 
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FIG. 7. (a. b, c) Models all with misfit x2 z 22.0 fit to data of 
Table 1: (a) minimizing F(o, z), (b) F[o, log (Z + +)I, and (c) 
F[o. - l/[z + so)]. (d) Model from which data were generated; 
x2 = 25.6. 

depth) is furthest jn some sense (or norm) from that of the 
truth. The integrated conductivities of two admissible profiles 
may easily differ at great depth, where the data no longer 
constrain the conductivity in any way. Parker (1981) has 
shown that one can often find models terminating in an infi- 
nite conductance which still fit the data within an acceptable 
x2 misfit. For these models, the conductivity below the infinite 
conductance has no effect on the data. Parker calls the shal- 
lowest level where one can place the infinite conductance, 
while still having x2 less than or equal to the 95 percent 
confidence limit of x2 the “maximum depth of inference.” 
Models with an infinite conductance can never be linearly 
close to any model lacking the infinite conductance, since the 
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FIG. 8. (a, b) Nonlinear error versus depth for models 7a, and 
7b (Figure 7), for which the model variable is cr, plotted within 
an envelope of + 2 linear standard errors. 
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Table 3. Squared linearization error for various models, comparing the effects of the choice of model variable. (Paren­
thetic values omit the lowest frequency.) 

Model 3a 

log (J 

3746. 

3b 

log (J 

2488. 

3c 

log (J 

1724. 

model interpreted as averages through resolution functions. 
The nonlinear error is greatest near the depth of the unre­
solved layer, where it is much larger than the uncertainties in 
the averages due to random noise in the data. The squared 
magnitude of the linearization errors I eL 12

, listed in Table 3, is 
large for all the log (J models. Each has large squared errors 
(> 40) at each of the seven lowest frequencies. These errors are 
due principally to the unresolved resistive layer. 

The nonlinear error made in interpreting models of (J as 
averages of the true conductivity need not be so large. Figure 
7 shows models minimizing F(a, f) for comparison with the 
log a models in Figure 3. In Figure 8 we plot the nonlinear 
error as a function of depth with envelopes of ± 2 standard 
(stochastic) errors for (J models 7a and 7b. For model 7c, the 
nonlinear errors (not shown) are less than 0.5 standard errors 
at all depths. For the models 7a and 7b the nonlinear errors 
are smaller than I standard error at alJ depths above 500 km. 
The magnitude of the nonlinear error increases below 500 km 
for models 7a and 7b, reflecting the fact that the data no 
longer constrain the model enough for the Frechet kernels Yi 
to be similar for different models fitting the data. The increase 
in nonlinear error at depth reflects huge linearization errors at 
the lowest frequency (> 106 for models 7a and 7b). The sums 
of the squared linearization errors of all frequencies except the 
lowest are only 3.02 and 1.52 for models 7a and 7b, respec­
tively. Even with very large linearization errors at the lowest 
frequency in these two examples, the nonlinear errors in inter­
preting the a models as averages are insignificant at all depths 
of interest. 

We suspect that nonlinear errors should be largest when the 
integrated conductivity of a flattest model (as a function of 
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Table I: (a) minimizing F(a, z), (b) F[cr, log (2 + zo)J, and (c) 
F[a, -1/(z + 2 0 )]. (d) Model from which data were generated; 
Xl = 25.6. 
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a 
0.467 
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depth) is furthest in some sense (or norm) from that of the 
truth. The integrated conductivities of two admissible profiles 
may easily differ at great depth, where the data no longer 
constrain the conductivity in any way. Parker (1981) has 
shown that one can often find models terminating in an infi­
nite conductance which still fit the data within an acceptable 
Xl misfit. For these models, the conductivity below the infinite 
conductance has no effect on the data. Parker calls the shal­
lowest level where one can place the infinite conductance, 
while still having X2 less than or equal to the 95 percent 
confidence limit of X2 the "maximum depth of inference." 
Models with an infinite conductance can never be linearly 
close to any model lacking the infinite conductance, since the 

r-I .01 
E 

"'-
(f) 

p::: 
0 
p::: 
p::: 
W 0 
p:: 
« 
w 
z 
-.J 
Z 
0 
Z 

" .Olr------r----~r-----,-----_.------~----, 

E 
"'­(f) 
LJ 

p:: 
o 
p::: 
p::: 
W 

p::: 
« 
w 
z 
-1 
Z 
~ F=F(cr,loglzHo)) 

_.OlL-~~~~~~~~~W-~~~~~~~~~~ 

IOJ 10' n:? 103 lrft 1(}'i l-rP-
DEl'TH em) 

FIG. 8. (a, b) Nonlinear error versus depth for models 7a, and 
7b (Figure 7), for which the model variable is a, plotted within 
an envelope of ± 2 linear standard errors. 



MT Inversion for Minimum Structure 1573 

latter have Frechet kernels gi that are nonzero at all finite 
depths. As finite_ conductivities at the bottom of a model are 
increased, the electric fields (from which the Frechet kernels 
are calculated) are excluded from the high-conductivity region 
and the data are less affected by the change in conductivity 
than the linearized theory would predict. An example of in- 
creased nonlinear errors due to this effect follows at the end of 
the next section, The practical meaning is that the kernels 
obtained by linearization may tend to overestimate the effects 
of a large increase in conductivity at great depth. In light of 
this, we cannot use the averages through the resolution ker- 
nels to exclude the possibility of large increases in conduc- 
tivity near or below the maximum depth of inference. 

A more fundamental concern remains: Within the depth 
range for which a data set contains information, how large an 
effect can variations of integrated conductivity have on non- 
linear errors? This concern would be best addressed by con- 
sidering the nonlinear errors that would be indicated if the 
true conductivity were one of the D+ models minimizing or 
maximizing conductance for a given level of x2 (Weidelt, 
1987). Since the code to compute these models is not widely 
distributed, we consider instead the nonlinear errors that 
would be indicated if the best-fitting D+ model were actually 
the true conductivity. The results of this exercise for model 7b 
are shown in Figure 9. The nonlinear error is substantially 
larger than two standard errors in many parts of the model. 
Despite this, Df smoothed through the resolution kernels of 
the model still bears a strong resemblance to the model, indi- 
cating that in this case the data may constrain the integrated 
conductivity well enough for resolution kernels to remain a 
worthwhile means of expressing the resolution properties of 
the data. Although in each case, this exercise considers the 
nonlinear errors indicated for only one of the infinite number 
of possible candidates for the true conductivity, it provides an 
indication of how poor the linearization may be if the conduc- 
tance of the truth is distributed in as uneven a manner as that 
of D ’ We have not experimented much with this exercise, but 
it seems probable that more reasonable candidates for the 
truth may be expected to yield smaller linearization errors. 

Models minimizing a derivative of log o are formulated as 
averages of log o, not as averages of o, so interpreting them as 
averages is subject to large nonlinear errors. By reformulating 
the problem slightly, it is possible to find averages of o that 
share the desirable characteristics of nonnegativity and re- 
duced variability in resistive zones that averages of log o have, 
but which avoid the nonlinearity of log cr. Instead of mini- 
mizing F[log O,,/‘(Z)], we minimize 

where, at any iteration, oO(z) is the conductivity profile of the 
previous iteration or alternatively the conductivity profile 
found by directly minimizing the derivative of log o. These 
minimizations would be equivalent to minimizing the deriva- 
tive of log o, except that the weight function is held constant 
with respect to variations 60 in any single iteration of the 
inversion. Treating t/o,(z) as a weight function in equation 
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FIG. 9. (a) model 7b. (b) D+ model 2b smoothed through 
resolution kernels of model 7b. (c) Nonlinear error for model 
7b with D+ model 2b considered as true model. (d) +2 linear 
standard errors of model 7b. 
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latter have Frechet kernels gj that are nonzero at all finite 
depths. As finite_ conductivities at the bottom of a model are­
increased, the electric fields (from which the Frechet kernels 
are calculated) are excluded from the high-conductivity region 
and the data are less affected by the change in conductivity 
than the linearized theory would predict. An example of in­
creased nonlinear errors due to this effect follows at the end of 
the next section. The practical meaning is that the kernels 
obtained by linearization may tend to overestimate the effects 
of a large increase in conductivity at great depth. Tn light of 
this, we cannot use the averages through the resolution ker­
nels to exclude the possibility of large increases in conduc­
tivity near or below the maximum depth of inference. 

A more fundamental concern remains: Within the depth 
range for which a data set contains information, how large an 
effect can variations of integrated conductivity have on non­
linear errors? This concern would be best addressed by con­
sidering the nonlinear errors that would be indicated if the 
true conductivity were one of the D+ models minimizing or 
maximizing conductance for a given level of X2 (WeideJt, 
1987). Since the code to compute these models is not widely 
distributed, we consider instead the nonlinear errors that 
would be indicated if the best-fitting D+ model were actually 
the true conductivity. The results of this exercise for model 7b 
are shown in Figure 9. The nonlinear error is substantially 
larger than two standard errors in many parts of the model. 
Despite this, D+ smoothed through the resolution kernels of 
the model still bears a strong resemblance to the model, indi­
cating that in this case the data may constrain the integrated 
conductivity well enough for resolution kernels to remain a 
worthwhile means of expressing the resolution properties of 
the data. Although in each case, this exercise considers the 
nonlinear errors indicated for only one of the infinite number 
of possible candidates for the true conductivity, it provides an 
indication of how poor the linearization may be if the conduc­
tance of the truth is distributed in as uneven a manner as that 
of D I . We have not experimented much with this exercise, but 
it seems probable that more reasonable candidates for the 
truth may be expected to yield smaller linearization errors. 

Log (J mode!s- r~east- ~ cr- models 

Models minimizing a derivative of log cr are formulated as 
averages of log cr, not as averages of cr, so interpreting them as 
averages is subject to large nonlinear errors. By reformulating 
the problem slightly, it is possible to find averages of cr that 
share the desirable characteristics of nonnegativity and re­
duced variability in resistive zones that averages of log a have, 
but which avoid the nonlinearity of log a. Instead of mini­
mizing F[log a,/(;;)J, we minimize 

[ J f' [1 do J2 
F 2 cr, I/ao , f(;;) = Jo 0'0 (z) dj(z) d[(z), (22) 

where, at any iteration, a o (z) is the conductivity profile of the 
previous iteration or alternatively the conductivity profile 
found by directly minimizing the derivative of log a. These 
minimizations would be equivalent to minimizing the deriva­
tive of log a, except that the weight function is held constant 
with respect to variations &cr in any single iteration of the 
inversion. Treating 1/°0 (z) as a weight function in equation 
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(5), equation (20) lets us interpret models minimizing this 
weighted norm as averages of the true conductivity through 
resolution functions. In Figure IO we plot the logarithm of the 
conductivity model minimizing this norm with ,f‘= log (z + 

z,,) and CT<, as the model of the previous iteration. The log of 
this model is almost identical to model 3b, so we may be 
certain that differences in (e,, /I are due to our choice of model 
variable (o or log m), not due to differences in the models 
themselves. For the o model IOa, 1 eJZ is only 1.72, negligible 
compared to the data errors and three orders of magnitude 
smaller than (eJ2 for the comparable log o model 3b. In 
Figure 11 we plot the nonlinear error inside an envelope of 
i2 standard (linear) errors of the averages. As expected, the 
nonlinear error is negligible compared to the stochastic uncer- 
tainties. 

A final example (Figures I2 and 13) demonstrates the in- 
crease in IineariTation error for the case when the true conduc- 
tivity increases greatly below the maximum depth of inference. 
We have generated I5 frequencies of artificial data from model 
12b. a slightly smoothed version of a uniform slab model pro- 
vided by Parker (I 983). The frequencies are the same as for the 
COPROD data set (cf., Parker. 1983). ranging between 5.099 
x IO ~4 Liz to 3.509 x 10 z Hz. We have added 15 percent 

Gaussian errors to the data at the lowest three frequencies and 
the highest frequency and 5 percent Gaussian errors to the 
other data, approximating the error levels estimated in the 
COPROD data. The maximum depth of inference for this 
data set is 336 km, which is shallower than the rise in conduc- 
tivity centered at 396 km. In Figure 12, we also plot the loga- 
rithm of the o model that minimizes P, [o. l/o,. log (z + +)I, 
fit to the 95 percent confidence limit of x2 = 43.8. (The mini- 

mum possible misfit for this data is 30.2, which is greater than 
E(x2) = 30, so we only fit to the 95 percent confidence level.) 
The linearization error is 2010, which is much larger than the 
random errors in the data. The nonlinear errors (Figure 13) 
are largest at the depths of the final good conductor and still 
exceed the stochastic errors at shallower depths. When the 
same test is made by inverting synthetic data from a model 
(not shown) similar to model 11 b but with a less conducting 
final layer of 0.01 S/m, the linearization errors of the resultant 
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FIG. 13. Nonlinear error of model 12a (Figure 12), plotted with 
an cnvclope of + 2 standard errors. 

model (not shown) are reduced to 14.6, and the nonlinear 
error attains a value of just twice the stochastic standard error 
in the final layer and is less than the stochastic error else- 
where. The much larger nonlinear errors in the first of these 
examples are evidently due to the large discrepancies in con- 
ductance at great depth. An explanation is clear: side bands of 
the resolution kernels for the flattest model extend into the 
conducting region, and the large conductivities there have a 
large effect on the averages through the resolution kernels, 
even when the amplitudes of the kernels are very small at 
depth. Despite large nonlinear errors. both of these models 
appear to give reasonable averages of the conductivity at 
depths above the maximum depth of inference, the caveat 
being that the averages are less affected by conductance near 
or below the maximum depth of inference than the averaging 
kernels indicate. 

CONCLUSIONS 

Tests with synthetic data show that norm minimization may 
be highly successful in recovering the large-scale features of 
the true conductivity, even in cases where nonlinear effects 
may be very large, such as in modeling log cr. Features which 
are not resolved by the flattest models fitting a data set are 
not necessary, and their existence cannot be determined from 
the data. Flattest models of conductivity have the further ad- 
vantage that nonlinear effects are often so small that model 
values may be interpreted reasonably as the true conductivity 
averaged through known resolution functions. 

No matter how a model is obtained, it is essential that the 
model fit high-frequency and low-frequency data equally well 
(a white fit). Failure to assure whiteness results in models with 
unnecessary structure in some depth ranges and possibly inad- 
equate structure in other depth ranges. We have proposed use 
of Spearman’s statistic D to test against selective overfitting or 
underfitting of data from either end of the spectrum, while 
making minimum assumptions about the functional form of 
any relationship between frequency and residual size. We find 
that minimizing some norms results in systematic overfitting 
of low-frequency data, whereas minimizing others does not. 
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(5), equation (20) lets us interpret models mmlmlZlng this 
weighted norm as averages of the true conductivity through 
resolution functions. In Figure 10 we plot the logarithm of the 
conductivity model minimizing this norm with f = log (z + 
=0) and Cl"o as the model of the previous iteration. The log of 
this model is almost identical to model 3b, so we may be 
certain that differences in 1 eL 12 are due to our choice of model 
variable (a or log Cl"), not due to differences in the models 
themselves. For the cr model lOa, 1 eL I

2 is only 1.72, negligible 
compared to the data errors and three orders of magnitude 
smaller than 1 eL 12 for the comparable log a model 3b. In 
Figure 11 we plot the nonlinear error inside an envelope of 
± 2 standard (linear) errors of the averages. As expected, the 
nonlinear error is negligible compared to the stochastic uncer­
tainties. 

A final example (Figures 12 and 13) demonstrates the in­
crease in linearization error for the case when the true conduc­
tivity increases greatly below the maximum depth of inference. 
We have generated 15 frequencies of artificial data from model 
12b, a slightly smoothed version of a uniform slab model pro­
vided by Parker (1983). The frequencies are the same as for the 
cOPROD data set (cf., Parker, 1983), ranging between 5.099 
x 10 4 Hz to 3.509 x 10 2 Hz. We have added 15 percent 

Gaussian errors to the data at the lowest three frequencies and 
the highest frequency and 5 percent Gaussian errors to the 
other data, approximating the error levels estimated in the 
COP ROD data. The maximum depth of inference for this 
data set is 336 km, which is shallower than the rise in conduc­
tivity centered at 396 km. In Figure 12, we also plot the loga­
rithm of the a model that minimizes F 2 [a, l/ao , log (z + zo)]' 
fit to the 95 percent confidence limit of X2 = 43.8. (The mini­
mum possible misfit for this data is 30.2, which is greater than 
E(X2) = 30, so we only fit to the 95 percent confidence level.) 
The linearization error is 2010, which is much larger than the 
random errors in the data. The nonlinear errors (Figure 13) 
are largest at the depths of the final good conductor and still 
exceed the stochastic errors at shallower depths. When the 
same test is made by inverting synthetic data from a model 
(not shown) similar to model II b but with a less conducting 
final layer of 0.01 S/m, the linearization errors of the resultant 
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FIG. 13. Nonlinear error of model 12a (Figure 12), plotted with 
an cnvelope of ± 2 standard errors. 

model (not shown) are reduced to 14.6, and the nonlinear 
error attains a value of just twice the stochastic standard error 
in the final layer and is less than the stochastic error else­
where. The much larger nonlinear errors in the first of these 
examples are evidently due to the large discrepancies in con­
ductance at great depth. An explanation is clear: side bands of 
the resolution kernels for the flattest model extend into the 
conducting region, and the large conductivities there have a 
large effect on the averages through the resolution kernels, 
even when the amplitudes of the kernels are very small at 
depth. Despite large nonlinear errors, both of these models 
appear to give reasonable averages of the conductivity at 
depths above the maximum depth of inference, the caveat 
being that the averages are less affected by conductance near 
or below the maximum depth of inference than the averaging 
kernels indicate. 

CONCLUSIONS 

Tests with synthetic data show that norm minimization may 
be highly successful in recovering the large-scale features of 
the true conductivity, even in cases where nonlinear effects 
may be very large, such as in modeling log cr. Features which 
are not resolved by the flattest models fitting a data set are 
not necessary, and their existence cannot be determined from 
the data. Flattest models of conductivity have the further ad­
vantage that nonlinear effects are often so small that model 
values may be interpreted reasonably as the true conductivity 
averaged through known resolution functions. 

No matter how a model is obtained, it is essential that the 
model fit high-frequency and low·frequency data equally well 
(a white fit), Failure to assure whiteness results in models with 
unnecessary structure in some depth ranges and possibly inad­
equate structure in other depth ranges. We have proposed use 
of Spearman's statistic D to test against selective overfitting or 
underfitting of data from either end of the spectrum, while 
making minimum assumptions about the functional form of 
any relationship between frequency and residual size. We find 
that minimizing some norms results in systematic overfitting 
of low-frequency data, whereas minimizing others does not. 
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Which norms result in white fits may be somewhat data- 
dependent (particularly for o models), so the test of Spear- 
man’s D should be made for every inversion to protect against 
off-white fits. 
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APPENDIX 

SOLUTION OF THE LINEARIZED EQUATJONS 

The side conditions (14) are most easily applied to the mini- 
mization of W when rewritten (in vector form) as 

s I 

I-+A+ K & Cwlb + Am’1 dx + e, (A-1) 
0 

where we have dropped the subscript from e,, and where 

Ar’ = Ay - [m, (0) + Am(O)]G(O), (A-2) 

Ay=y - ~0, (A-3) 

and 

K = (,f’)“*G. (A-4) 

For now we treat the surface value m,(O) + Am(O) as a fixed 
parameter. Define 

(A-5) 

where the superscript ’ denotes transpose. E;I is symmetric (and 
positive semidefinite) and may be diagonalized by an orthog- 
onal transformation Q. Let 

@= Q&P. (A-6) 

Then, by minimizing W(m, (e 12, p) with respect to pertur- 
bations 6e and G[m’/(,f’)‘i2], one finds that 

m’ 
----K’Q[&‘]-LQ’[t- +Ay’], 
(./“)“2 

(A-7) 

where 

E?.+, (A-8) 

which may be integrated for m. “Squaring” the misfit vector 
(which is not displayed here), one gets the squared misfit 1 e (*, 

e’e = $ [r + Ar’]‘Q[&]-20’[r + A?‘], (A-9) 

where &’ depends on @ through equation (A-8) and Ay’ de- 
pends on Am(O). Since lelZ is a monotonic function of p for 
p > 0, this may be solved for p numerically using Newton’s 
method. 

The above holds for any choice of Am(O). We use equation 
(A-7) to form an expression for W and minimize W with 
respect to changes in Am(O), yielding 

where 

m,(O) + Am(O) = a’[r + A?], (A-10) 

a* s 
G(O)‘Q[&‘l- ‘0’ 

G(OyQ[h'] - 'Q'G(0) ’ 
(A-l 1) 
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Which norms result in white fits may be somewhat data­

dependent (particularly for (j models), so the test of Spear­

man's D should be made for every inversion (0 protect against 

otT-white fits. 
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APPENDIX 

SOLUTION OF THE LINEARIZED EQUAT10NS 

The side conditions (14) are most easily applied to the mini­

mization of W when rewritten (in vector form) as 

f' 1 r + l1i Jo K (/')112 [m~ + 11m'] dx + e, 
where we have dropped the subscript from e p and where 

and 

ll.y "" 11'Y- [mo(O) + ll.m(O)]G(O), 

ll.'Y""'Y - Yo, 

(A-I) 

(A-2) 

(A-3) 

(A-4) 

For now we treat the surface value mo(O) + I1m(O) as a fixed 
parameter. Define 

tJ == i~ K K' dz, (A-5) 

where the superscript' denotes transpose. H is symmetric (and 

positive semidefinite) and may be diagonalized by an orthog­
onal transformation Q. Let 

{f= Q~Q'. (A-6) 

Then, by mlmmlzmg W(m, 1 e 1
2

, ~) with respect to pertur­
bations 8e and 8[m'/(f')t i2], one finds that 

where 

m' 
--. "" K' O[ A'] - t Q' [r + l1y'J (f')1!2 - - , (A-7) 

(A-8) 

which may be integrated for m. "Squaring" the misfit vector 

(which is not displayed here), one gets the squared misfit 1 e 1
2

, 

(A-9) 

where ~:' depends on t3 through equation (A-8) and !o.y' de­

pends on !o.m(O). Since 1 e 12 is a monotonic function of ~ for 

~ > 0, this may be solved for j3 numerically using Newton's 

method. 

The above holds for any choice of !o.m(O). We use equation 

(A-7J to form an expression for Wand minimize W with 

respect to changes in I1m(O), yielding 

(A-lO) 

where 

,_ G(O),Q[~J - IQ' 
ex = , 

G(O),Q[~] - I Q'G(O) 
(A-II) 
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Then combining equations (A-2), (A-7), and (A-IO), we have 
the model which minimizes W for a given choice of 0: 

M(Z) = [A’ + a’ - A’G(O)u’][l- + Ay], (A-12) 

where 

A = Q[&‘] - ‘Q’ =f’K(z) dz. 
s 

(A-13) 
0 

Equation (A-9) gives the value of p necessary to obtain a 
specific squared misfit, given a choice of Am(O). To obtain the 

pair p and Am(O) that give the flattest model with a specific 
squared misfit, we solve for p with Am(O) = 0 initially, obtain a 
new Am(O) from equation (A-lo), and reiterate, solving for j3 
with the improved Anz(0) each time In practice Am(O) and p 
converge rapidly, generally in less than five iterations. In the 
few cases where more than five iterations are needed, we con- 
tinue iterating using weighted averages of the last two esti- 
mates to avoid cyclic repetition. Iterative solution of equations 
(A-9) and (A-IO) is rapid, since it is not necessary to recompute 
lj, A, or Q. 
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Then combining equations (A-2), (A-7), and (A-to), we have 
the model which minimizes W for a given choice of~: 

111(;;) = [A' + (1.' - A'G(O)(1.tJ[r + l'1yJ, (A-12) 

where 

A = Q[~']-lQfrK(Z) dz. (A-13) 

Equation (A-9) gives the value of ~ necessary to obtain a 
specific squared misfit, given a choice of I'1m(O). To obtain the 

pair ~ and Llm(O) that give the flattest model with a specific 
squared misfit, we solve for ~ with I'1m(O) = 0 initially, obtain a 
new LlI11(O) from equation (A-I0), and reiterate, solving for ~ 
with the improved Llm(O) each time. In practice 1'1111(0) and ~ 
converge rapidly, generally in less than five iterations. In the 
few cases where more than five iterations are needed, we con­
tinue iterating using weighted averages of the last two esti­
mates to avoid cyclic repetition. Iterative solution of equations 
(A-9) and (A-\ 0) is rapid, since it is not necessary to recompute 
Ij.~, or Q. 


