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1. Introduction, pasic eguations 

1.1. General ideas 

The follol-ling model is the basis of all electromagneb_c me-thods 

which try to infel' the electric<11 conducti vi ty structure in t-he 

Earth's subsurface from an analysis of the natural or artificial 

electromagnetic surface field: On or above the surface of the Earth 

is situated a time-dependent electromagnetic source. By Faraday's 
• 

laN the time-varying magnetic field H j_ncluces an electrical field 

E 1-7hich drives within the conductor a current 1. By Ampere's la" 

this CUI'l"ent has a magnetic field which again is an inducing ageri-t, 

and so on. Hence, there is the closed chain 
• • induction 
H -> H E 

-s:::::e t s ~ / conduction 

la I·l "'" I 
1 -

The mathematical expression of this closed chain is a second order 

partial differential equation resulting after the elimination of 

two field quantities from the two first order equations ~ + ~ and 
• 
H -, E. 

At the surface the electromagnetic field of the source is dis"cuX'bccl 

by the inteX'nal fields. This disturbance depends on -the conduc-ti vi ty 

'structure and contains information which must be revealed. It is a 

matter of the par-tic1llar objec-tive which surface da-ta have to be 

measur'ed and how the information is extracted from them. 

The induced Cllrrents try -to expel the ex·ternal field from the con due 

tor leading to a decrease of the electromagnetic field amplitUde 

Wi·tJl depth. 

The available period range and average conducti vi ty de-tennine the 

depth range of a par-ticular method. For a unifox'Jl1 half-space I"i t11 

conductivity 0- 01' r-osistivity p " 1/a the penetration depth (dec;:y 

on l/e.) is approximately 

p = 0.5 /pT, Ylhe1'o _1'- in km, p in Dm, and T in sec. (1a) 
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Alternatively 

p == 30. IpT, where T in h. Clb) 

Eqs. (la,b) can also be used as a rule of thumb if p varies I"ith 

depth and an average resistivity is inserted. 

The natural magnetic source fields of the ionospJleric and magneto­

spheric currents offer periods approXimately between 0.1 sec and 20 

permi-tting crustal and upper mantJ_e surveys dovm -to a depth of 

approximately 800 - 1000 km. On the other side periods betwcen 0.01 

and 0.002 sec are most commonly used for sounding of the fir-st 300 n 

with artificial fields. 

Electromagnetic methods are applicable for tlvO objectives: 

1) Investigation of the change of conductivity wi-th depth, in paFti­

cular detection and delineation of horizontal interfaces marking 

a change of stratigraphy 017 temperatupe. 

2) Investigation of lateral conduc-ti vi ty variations, In pal"ticular 

seal"ch for local l"egions with abnormal conductivities (e.g. 

metallic Ol"e deposits, salt domes, sedimenJcary basins, zones of 

elevated temperatul"e) . 

. The results of the first investigation are often used -to construct 

a normal conductivi-ty model from I>lhich local deviations are measure, 

In an intel"pretation of natural fields the change of the electro­

magnetic field quanti ties both with frequency and with posi-tion are 

used. Broadly speaking -the dependence on the position provides the 

lateral resolution and the dependence on frequency gives the reso­

lution with depth. 

1.2. Basic equations 

Let 17 be the position vector and let !i, f, and ~ be the vec-tOl"'S of 

the magne-tic field, electrical field and current density, l'espec-ti­

vely. Using SI uni-ts and a vacuum permeability II throughout:, the o 
pertinent equations are 

c\21'l H - l + l 
- C.-e 

cUJ:,I- E == --j.! H 
0-

t == er E 

div !i == 0 

(1.2) 

(1. 3) 

U.4) 

Cl. 5) 
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All field quanti-ties are functions of position E and time t. Also -the 

(isotropic) conductivity D is a function of position. 1 is the 
-e 

current density of the external current sources being different from . 
o only at source points. The displacement current E E is generally 

0-

neglected in induction studies. This lS justified as fOllows: within 

the conductor the conduc-tion curx'ent DE exceeds the displacemeni: 

curn"nt even in the case of lm.Jes-t periods (0.001 sec) and highest 
. .,. (105 n) . 11 102 , I I h tJ resls1:l Vl tles "m s-tl tJ.mes. ~ "le 2~\~ were - -,e 

conduction current is absent the inclusion of the displacement 

curren-t merely introduces a slight phase shift of the external field 

at different points. For in this case the solution of (1.2) and (1.3 
• 

(including E E at the RHS of (1.2» are electromagnetic waves, e.g. 
0- i(k'r - wt) . the plane Have e - - , where ltJ lS the angular frequency and 

k the wave vector along the direction of propagation. The phase 

difference between Pl and P2 is 

k , , , 
CL 

, 

P 
1 bx P2 

wAx 
ltJ6.t = -­

-2 c 
10 in 

COSCL 

the very pessimistic 

case of bx = 1000 km and T = lse 

H and ~ can be eliminated from (1.2) - (1.4). It results 

(1. 6) 

On us ing U. 2) and (1.4) the elec-trical char.ge dens i ty P (E) is 

given by 

P = E div E = - E E· grad logcr, o - 0 -
(1. 7) 

i. e. 'there is char ge accumulated if an electrical field component 

parallel to the gradient_of the conductivity. Physically this is 

clear, since the normal componen-t of the current density is conti­

nuous \-lhereas the char ges account for the copresponding disconti­

nuity of the normal electrical field. 
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The electrical effect of the changes is very important. They modify 

by attl'action and repulsion ·the ·curren·t flow; in particular surface 

changes deflect the current lines in sucl1 a VJay that the normal 

cUlcrent component vanishes at the surface. In con·tras·t th)3 !1lagnetic 

effect is of the ordel' of that of the displacemen·t current and 

can be neglected. 

2. Electromagnetic induction in 1-dimensional structures 

2.1. The ..f,eneral solution 

The following vecto1' anaiytical iden·ti·ties are used in the sequel 

(~ is a vector, ~ a scalar). 

div curl A = 0 

curl grad q, = 0 

div(~.) = q, div A ~ A • grad q, 

curl (~oq,) = q, curl~ 

cur1 2 A " grad divA 

Ax grad q, 

(2.1) 

(2.2) 

( 2. 3) 

(2.4-) 

(2 • 5) 

(2.G) 

In this cha.pter it is assumed ·tha·t the elec·trical conducti vi ty cr is 

a fun2tion of depth z Cposi·tive dOvlDvJards) only. In this case ·the 

electromagnetic field inside and outside the conductor can be 1'e­

presented in terms of two scalars q,E(:X:) and <!>M(:X:) denoting the elec­

tric and magne·tic. type of soluTion. These fields are defined aB 
" folloVJS Q2. is the uni·t vector 2n z-direc·tion): 

-----.----~-~ 
,\ 

~ 

1 ~ 

!iN = curl(crq,l1~)' ~M .. cur1 2 (cr<!>M z ) 
(J j-

(2.7a: 

" . A 

H = CUl'12 (q,E-~)' EE = -V curlCq,~z) --E o ..t,-
(2.8a 

---------
.... " 

On using the. ident:Lty' cUl'lCq,z) = '-z x gl'adq, (from (2.4», i·t is seCl 

'th.at the l'l-type solution has no magnetic z·-component and the E-type 

solution has no electrical z-component. 



- 5 -

The electric field of the E-type solution is tangential to the planes 

(J = const. Hence, it is called a TE-JII2_de (!angential ~lectpic). Con-

versely the M-type solution is named a TM-mode.As required from (1.5) 

the magnetic field of both modes is solenoidal (i.e. divH = 0). In 

addition the E-field of the TE-mode j_s also solenoidal. In this 

mode there is no accumulation of charge, all curren-t flm" is parallel 

to the (x,y)-plane. 

Now we have to derive the differential equations for the scalars 

<PE and <PH' The TE-field C2.Sa,b) sa-tisfies already (1.3) - (1.5). 

It remains to satisfy 

curl HE " (J EE' 

Using (2.5), (2.2), and (2.4) it results 

A 

~ x grad(6<PE - Uo(J <PE) " 0, 

from which follmlS 

~q'E • ] " ]lo (J <PE ( 2 . 9 ) 

(for if Cl f! ox " 0 and of/ay " 0 and f-;-O for x,y -, "', then £=0). 

The TM-mode has to sa-tisfy 

• 
cUlol~M " -Po!itl 

From -this equation follows vii th the same argumen-ts 

[ di "~[~ gr~"d(IT'") 1 ~ "IT IT;11 I (2.10 

In uniform domains, (2.9) and (2.10) agree. Using (2.9), (2.10), 

(2.5), and (2.4) the TE- and TM-fields in the vacuum ou-ced_de the 

sources are 

(2.11 !lM 0, EF grad 
o<P l1 -- = 

-1 Clz 
d<P E A • 

.BE " grad az' E " \l Z x grad q'E --E 0-

Fields outside the conductor 
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The variables x ,y, and t l.Jhich do not explicitly OCCUl' in (2.9) 

and (2.10) can be separated from <PE and <PM by exponential factors. 

Let for <PE or o/M 

o/(x,y,z,t) (2. 13) 

A A 

where K = and K (2.14a,J 

Then (2.9) and (2.10) read 

(2.9a) 

(2.10a) 

The general solution of (1.2) - (1.5) for a one-dimensional conduc­

tivity structure is the superposition of a TE- arid 'I'M-field. The 

total field then reads in components:· 

H x 

H 
Y 

H z 

E x 

1· v2 (crQ'M) 
-----

cr dYdZ + II o 

• 
d<j> 

E 
ay 

(2.15a) 

(2.15b) 

(2.15c) 

C2.16a) 

(2.16b) 

(2.15c) 

General expression of field components 
'---------'--- .----------.-

At Cl horizontal discontinuity the tanf,ential components of E and H 
and the normal component 

the jump of a partieular 

of H in'c z 
quantity, 

continuollS. Let [ ] denote 

Then fr'om (2.15c) for H 
z 
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[<PE] satisfies the tvJO-dimensional Laplace equa-tion, is bounded 

and vanishes at infini-ty because of the fini-te extent of the 

sources. Hence, fl'om Liouville lS theorem of function theory 

[<PE] = 0, i.e. <PE continuous. Differentiating C2.15a) wi-th respect 

to x and C2.15b) with respect to y and adding we infer along the 

same lines that 3<PE/az is continuous. Conversely differentiating 

(2.15a) with respect to y and (2.15b) with respect to x and sub­

tracting one obtains 0.1'1 continuous. Finally differentiate (2.1Ga) 

with r~spect to x and (2.16b) with respect to y and add. It re­

sults that (i/O') 3(0<PM)/az is continuous or a.
1'1

/3z is continous 

if 0 tends to a constant value at both sides. 

Summarizing: 

:1 (lo<p 1'1 
continuous 

o a z 

Continuity conditions 
----- -----------.----. 

(2.17a 

This result ShOl'18 that the TE- and Tl'l-field satisfy disjoint- ''j,n,.; 
~.,~ 

boundary concli tions. Hence, they are completely independent imd . 

not coupled. 

from (2.17c) follm'ls 

cl> (z " +0) = 0 M 
(2.1S: 

This boundary condition has a serious dralo}back for the TH- field: 

As a result within the conductor no TM-field can be excited by 

external sources: 

From (2.18) fol101"]s Vla (2. :1.3) f1'1(o) = 

.9-IO'f 12 = 2 R8{(O'f )1(O'f )~~} 
dz M 11 M 

O. Now 

(2.19 

Multiplying (2. £la) by (OfM/~ and integrating over z from 0 to z, 

integra-tion by parts yields in virtue of f1'1(o) = 0 

z 
(Of t1 )I(CJf1./'" CJ f { ICCJf)'1)'12/ u+o (K

2 + iWlloO)!f!'1!2}dz 
0' 

From (2.20) and C2.19)_follows for real frequencies 

(2.20 
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d 10f 1 2 > 0 • 
dz· M -

On the other hand fM has to tend t6 a limit for.z + 00. Hence, 

o < z <: "', 

i. e. there is no ex·ternally excited TM-mode. 

Outside the conductor the electrical TM-field does not vanish in 

general. Since ~M vanishes inside the conductor we have 

a~}/az = 0 for z = +0. The boundary condi-tion (2.1.7d) then requires 

that also 

for z = -0. (7..21.) 

Let .=(x,y,z,t) be ~le TM-potential of the source. It is a solu­

tion of 6.: = 0 ((2.1.0)). Then the mirror potential ~=(x,y,-z,t) 
satisfies also (2.10), and the i:otal Tl1-po-ten-tial sat)sfying (2.21) 

is 

( e ( e ~M x,y,z,t) = ~M x,y,z,t) + .M(x,y.-z,t), z <: O. (2.22) 

According to (2.11.b) and (2.21.) the horizontal components of ~H 

vanish a-t z· = -0, vlhereas the vertical componen-t is twice the ver'" 

tical component of the source field. At the surface z = -0 this 

component is the only indication of a TM-part of the source field, 

since according to (2.1.1.a) the magnetic TH-field vanishes identi­

cally in. z 2 o. 

\~e may retain as the most important result of this section that in 

a horizontally stratified conductor all current flow independently 

of the source is in horizontal planes and that one scalar function' 

(tE) is sufficient to represent all fields relevant for the in­

duction process. 
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2.2 Free modes of decay 

I-Jhereas external fields can exci-te only the TE-mode within -the 

conductor, there exist free modes of current decay fOl" both TE­

and TM-fields. Consider the typical potential 

$(x,y,z,t)= CaSK X· COSK Y • f(z)e- St , x y 
(2.23) 

where $ and f stand for $E' $M and fE' f~l' l"especti vely. First it 

will be shown that the decay constants S (eigenvalues) must be 

positive quantities. Inser-ting (2.23) in (2.9) and (2.10) we ob­

tain 

(2.25) 

where K2 = K2 + K2. The eigenfunctions have -to satisfy the boundary 
x y 

condi-tions 

fE = (±oo) = 0, fM(+o) = 0, fM(oo) = 0 

If there is a perfect conductor at finite depth d then 

fl (d) = 0 
M 

(2.26) 

(2.26a) 

x. . x 
Multiplying (2.2 l f) and (2.25) by fE and af

M 
and integrating over z 

f:'"om -00 to +00 and 0 to "', respectively, "e obtain on integrating 

by parts and using (2.26) 

+'" 
f-{[f~12+K2IfEI2}dz -

-co 

'" 
SPo f a(z)lfE (z)12dz, 

o 

00 

= SPo f[afI112dz. 
o 

(2.2'7) 

(2.28) 

Hence, all decay constan-ts S are real and pas i ti ve. The current 

flow for TE-decays is in horizontal planes, whereas the TM-decay 

currents flow predominantly in vertical planes. 

Example: a = 0 
z = 0 

a f 0,00 

z = d 

a = 00 
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a ) nl-1!1£9.£ 

From (2.25), (2.'26), (2.26a) follows 

fMCo) = 0 yields fM(z) = sinyz, whel'eas fMCd) - 0 l'equires cosyd=O. 

Hence, 

(2n-l)n (2n-1)ln2+~Kldl 
= 2d' 13 = ---, 

n I{dlll ° 
o 

Yn n:::1,.2,3 ... ~ (2.29) 

The unnormalized eigenfunctions are 

fM (z) ,n = sin 
(2n-:l.Jnz 

2d ' 
n = 1,2, 

The1'e exists also an electrical (potential) field outside the con­

ductor. Find it! 

b) TE-mode 

From (2.24), (2.26), (2.2Ga) follows 

fE(Z) = K
2 f

E
(z), z < 0 

o < z < d, 

with fE(-oo) = 0, fE' f~ continuous across z = 0, fECd) = O. 

KZ 
= e , z < 0 

fE(z) = cosyz + (K/y)sinyz, 0 < z < d. 

Then fEed) = 0 leads to -the eigenvalue condition 

cosyd + (K/ylsinyd = O. 

For K = 0 the eigenvalues agree Hi th -those of Tl1. For "cl « 1 

approximately 

2K + ----
" d "'0° 

(2.31) 

for' a current sys-tem in the upper mantle of the Ear-th with d=500 km 

1/(5 = 50 [,)m, th_e greatest decay -time is approximately 1/"1=1j0 lJdn. 
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The TE-decay systems occur as transients to fit the initial con­

di tions, e. g. whcn an external field is s\vi tclled on. 

2.3., Calculation of fE(z ) for a layered structure 

Let the half--space consist of L uniform layers Hi th conductivities 

°2 , ••. , 0
L

, the 

index 0 refer to 
° =0 

upper edge of layer m being at h (h1 = Ol. Let 
m 

the air half-space. 

o 
hl=O----~------- Then given' in z < 0 ·the potential of the source 

field 

h 
I, 

• 
• 

------_._-
er 

L 

e( , 
fE z) = 

-KZ e 

we have to solve (2.9a). i.e . 

Wi th the abbl"eviations 

- K2 - > 

and ·the understandin g that h
l
+ 1 = 00, we have 

-0: z 0: z 
f (z) - 8{B-e 0 + B+ eO}, 0 > z > -h 

E 0 0 s 

f (z) 
E 

-0: (z-h) +0: (z-h ) 
= i>{B-e m IT. +B+e m ID },h <z<h 

.m. m m-' - lnl':\' 

1 < ID < L 

(2.32 ) 

(2.33 ) 

(2.33a) 

In Eq.. C2. 33) h > 0 is ·the hei g)1t of the 10lvest source point. 
S , 

Since there are no upiVard travellin g Haves in the las·t layer, 
+ BL=O. The constant 8 VIill be so adjusted that Vie can choose 1\=1. 

Wi th these startin g values the continuity of fE and fE across 

boundaries yields the backiVard recurrence relations 

- + + + B ={1_.0: ja)g B 'j+ (ha jo:)r B /. m JH-.l m m rrt-. Jl+.l m - TI: Jf+ 1 

1,-1 > rn > 0 

(2.3'12) 
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with the abbreviation 

± 1 ± 1 
go = -2' gm = -2 exP{±a (h '1-h )}, m=< L-1, "'r 1. - m m,· m 

Having.computed Bo' Eqs. (2.32) and (2.33) yield 

Thus the field is specified. 

If \Ve are interested in fE (z) for z :::. 0 only, it is not necessa:cy 
+ -" 

to calculate Band B separately. Instead only the ratio m m 

is required. Because of (2.33) and (2.32) fE(z) is given by 

- -KZ +KZ 
fE(z) = f {e + ye}, 0 <-z < h 

_ 0 0 - - s 

where Yo is obtained recursively from the ratio (2.34a)/(2.34b) I 

1. e. 

L-1 < IQ < 0 

starting \Vith YL = O. 
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2.4. Particuiar source fields 

Notation: In the sequel only fields \.;ith a periodic Lime function 

exp (iwt:) are considered. For any field quantity IdE, t) 

we \'Ir i te A (E-, w) ,'1i th the unders tanding 

that the real or imaginary part of A(E-,t) exp(iwt) is 

meant. Furthermore, since only the TE--mode is of interest 

\'le shall drop the subscript "E". 

In the last section an algorithm for the calculation of the cjl-poten­

tial in a layered half-space has been given. As input occurs 

fe(Z,Kif.o) '" f-(K,w)exp(-Kz) r the representation of the source poten--- 0- . __ 

tial in t.he wave-number space. From (2.12a), Le. H=gX'ad(acjl/3z) 

follovlS that - dcjl/:lZ is the magneti.c scalar potential. Betvleen 

f~ (K, w) and the source potential ~e (£,w) exist t:he following reci.·-. 

procal relations 

-e q, (£rw= J J 
_00 

- -KZ 
f (K ,w) e = 
0-

General field 

dK dK 
X Y 

dx dy 

(2.35) 

(2.36) 

If q, is symmetrical with respect to a vertical axis, i.e. q, is a 

function of r = (X2+y2)1/2 only, eqs', (2.35) and (2.36) simplify to 

00 

-e --KZ q, (r, z, w) = 21f f f 0 (K ,w) e 'J 0 (Kr) K dK 
o 

(2.35a) 

(2.36a) 
o 

Cylindrical synup,e'cry 

In the de):ivation of (2. 35a) and (2. 36a) the cartesian coordinates 

were replaced by circular· polar coordinates 

x = rcosO, y = rsinS, KX = KCOS~, 

and use was made of the identity 

K = Ksimj! y 
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-~l"'r ! e ' 

o 
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211 , 11 
cos(0-~) -lKrc~sB d0=! e . v d8=2!cos (KrcosO)clG=21fJ' (u:). 

o o o 

From (2. 35a) I (2. 36a) follo\'ls that if q, is function of r= (X 2 +y2,) 1/2, 

then f is a function of K = (K2 + K2)1/2, In certain cases (e.g. 
o x y 

example b) belo~l) fit is only possible to obtain the potential on 

the cylindrical axis er = 0) in closed form. Then (2.35a) reads 

(2.35b) 

Eg. (2.35b) can be. considered as a Laplace.-'l'ransform for which '(che 

inversion is 

2/TK 
e KZ 

<jJ (o,z)e dz (2.36b) 

where E: 

ties of 

is. an appropriate real constant (thus that all singula:d.­
e q) (0 F z) are at the left of z = E:). Simpler would be the use 

of a table of Laplace transforms. 

The spectral representation of the source is now calculated for 

simple sources: 

a'L Vertical magnetic dipole 

I,ocate the dipole at r = (o,o,-h) f h >- 0 and let its moment be , -0 
A 

M = Mz. When it is produced by means of a small curren'c loop 'chen 

M - current x area of the loop. (M i,s posi t:i ve if the di.rection of 

the curren't forms with z a right-handed syst.em, and neCfative else.) 

From the scalar potential 

follQWS 

-

M (z+h) 
41fR 3 , 

R = r - Eo' R = L~I 

whence 

Since <jJ shows cylindr:Lcal syrrunetry, ue obtain from (2. 36a) on using 

the result 
00 

! Rr J' (Icr) dr = 1 e -K (z+h) . 
o· 0 K 

immediately 

(2.37) M -Kh = -,-- e 
8'Ir 2 K 

__ ~~.~ical l\\~gne~ci~_~~~~lC_J 
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b) Circu~ar current. loop 

Let a and I be the radius and the current of the loop. The potential 

has cylindrical syrnmetrY,but can be expressed by means of simple 

functions only on the axis r =, O. For the moment we assume that 

the current: loop is in the plane z = o. For synunetry reasons there 

is only a H component on the axis. z 

llR '1l8_--
- -

R 

)' (o,z) 

llH ' - - - lll{ z 

I 

Biot-Savart's law yields 

= -

I"hence 

"" I a M a liE = 41f 
• ---

~ z2+a 2 
-

Iz2+a 2 

Ta 2 ll0 = , 
41fo(Z2+a 2) 3/2 

"" I a 2 
II = Z 

2(Z2+a 2)3/2 

= -aV!'iJz = + 
-e o = <p Coo) \'le 

'iJ2~e/8z2. Hence integrating twice on using 

obtain 

Now we have too solve (2.35b) f Le. 

- ° -KZ 
= f K f (K)e dK o . 

o 

Looking up in a table of Laplace transforms: 

If the plane of the loop is z = -h, h :> 0, then a simple change 

of origin yields _________ 0, 
IOa = ---
41T1C 2 

(2.38) 

Circular current loop 
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In the limit a + 0, I + rot 11 '" 1Ta 2 I fixed)this leads to the result. 

(2.37) IQ): the vertical magnetic dipole (J
1

(x)=x/2 + O(x 3 ». 

c} Uod:zontal magneU_c d:Lpo}e 

Here 11 = }1 x and 

, 
4'frR(R+z+h) 

Hit.h this re suI t f suppressing all further details the evaluation of 

(2.36) yields 
r-------------~----.------------_, MiK 

X 

Horizontal magnet.ic dipole 

d) Line current 

Current. I at y == Or Z = -h. It results the scalar potential 

e 
V (y f z) = 

I arctan _.L_ 
21T z+11 

The corresponding source func"cion is 

f- (K) 2r o (K ) e -Kh I ~~ I - iK!( f K = 
0 X Y 

Y 

Line current 

(2.39) 

(2.40) 

The delta function O(K } occurs since there is no dependence on x. x 

Assume a wavenumber K = vi and let the scalar magnetic source po­
y 

tential be 

ve = -H sin wy o-Iwlz 
o \'/ 

leading to a magnetic field 

e -Iwlz e U = H cos(wy)e f U 
Y 0 z 

- -U sin(wy)e- 1w1z • sgn(w). 
o 



Hence, 

and 

- - H o 

iw I I,' I 
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8 (K )' {o (K +Vl) - 8 (K -w)} x y . y 

Elementary undulated field 
'---------------------

(2.41 ) 

When the source can be considered as elementary harmonic.field r as 

in this case, the Fourier integral representation (2.35) complicates 

things only. 

In the limi·t w ..,. 0 we obtain a uniform source field in y-direction. 

For the induction process a strictly uniform source field is useless 

since only a vertical magnetic field component induces. Hence Iv 

must be non-zero, no matter hOl'1 small. If we confine 01..11:" attent'Lon 

to a finite part of the infinite horizont.al planer thE= dimensions. 

of that part being smaller than 1/ I vII, then for~<:-ll Y Vie may put 

Iv = 0 and can profit from the particularly simple resulting equa­

tions. Such a source field is called a quasi-uniform field. To the 

unrealistic uniform field belongs the source poten·tial 

~e 

cp = Ho yz 

which can no longer be represented in terms of (2.35). 
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2.5. Definition of the transfer function C(W,K) 

The TE-potentiB.l is 
+00 iK'r 

.(£,00) ~ II f(z,K,oo)e 
-00 

dK dl( . 
X y. (2.42) 

Hith this potential we define as the basic transfer function for a 

half-space with one'-dirnensional conducti vi ty structure 

[

-- f(O/~,oo) 
. C(W,K) '" -

f' (O,K,lO) 

Note that f 

function as 

depends on K and K x y 
an amplitude factor. 

drops out and it remains only the 

f is a solution of (2.9a), i.e. 

(2.43) 

separately via the source 

In the ratio f/f' this factor 

dependence on K =/K 2 +K·, since 
x y 

(2.44) 

How can C be determined from 8. knowledge of 'che surface electro­

magnetic field, at least theoretically? 

From (2.8a,b) results 

.... A +00 A iK·r 
H=curl 2 (q)~) =1 f {i~f' +K2 f~} e 

-<0 

E=i(JJ).10'~ x grad<jl ~ ilO).10 I I zx iK f e' 
-00 

Let 
A 1 

+00 - ···if~f.r 

!!(K,oo) _. ---- If H(x,y,O,lO)e 
(21T) 2 _00 

A 

1 
+00 - -il("r 

E (K W) '" ----- If E(x,y,O,w)e - -' (21T) 2 
- . 

-cc 

dxdy 

dxdy 

dK dK 
X Y 

denote the surface fields i.n the wavenumber-frequency 

from (2. 45a,b) I (2.46a,b) 
A A 

H '" i K f' + K2 f z -
A A 

E '" 1lO]10 z x iK f -

(2.45a 

(2.45b 

(2.46a 

(2.4Gb 

space. Then 

(2.47 a 

(2.o17b 
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There are several ways to determine c: 
a} From the ratio behleen t\'lO orthogonal c~ponents of the 

horizontal electric and magnetic field 

Vectorial multiplication of (2.47a) 'l'/ith z and use of (2.43) yields 

E = -iwp C Z x H 
~ 0 - -

or with any horizontal uni-t vector e 

A A 

e • E 
C = x " " iWll (zxe) 0' H 

0--

In particular e = x and e = y yields 

A A 

1 
E 

1 E x - -, .Y-e = 
iWll 

= -'-.--A , -~Wll A 

0 Hy -, 0 Hx ~ 

b) From the ratio of vertical and horizontal ~TIa_qnetic field 

components 

(2.47a) yields immediately 

c) From t:he ratio of internal to external part of a magnetic , 

In 

horizontal component , 
z < 0 f reads 

f f~ 
-KZ 

= e 

"- "-

-I- f+ e KZ 

0 

(2.48) 

(2.49a 

(2.50) 

(2.51 

Let H and H xi 
be the source part:. xe and' internal part of H Then 

x 
from (2.47a) and (2.51) 

A "-
f+) H -I-H = iKI<:(-f- -I- '" il<: ft 

xe XJ. x 0 0 X 

A ,-
f+) H -I{ = ..: it<' I<:(f- + = -it~ K f xe xi x 0 0 x 

Defining 
A A 

S (I<:, w) = H . (Krl~)/H (K,W) {2.52 
Xl .- xe -
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we arrive at 

II-_C_=_'~_' ~:~ J 
The same applies to fly' 

d) From the ratio of vertical gradients 'at' z = +0 to the 

corresponding fi~ld components at z=o 

(2.53 ) 

Let ~I (K,W) be tl~e 
x - vertical grad.ient of Il x at z ::= +0 in the v;ave-

number - frequency domain. Then 

(2.54) 

On applying (2.44) Eq. (2.47a) yields 

,...------ H:-~. -, "-""J 
C = - -.--"=------:--

'{K 2 HW11 C;(O)}H 
'-_______ 0 x 

(2.55) 

The same applies to H • For applications of (2.55) t.he surface 
y 

value of C; must. be known. C can also be obtained from other field 

ra'tios involving vert.ical gradients. 

The methods a) and d) are also applicable for a quasi-uniform 

source fie,ld, b) and c) break dO'im in this case. 

The apparent resistivity of magnet,otellm~:Lcs :Ls defined aB 

~ 

1 
E 

1 
Pa = l",xl2 = 

00110 H W110 
Y 

E 
1-;;-Y1 2 (2.56) 
Hx 

According to (2.49a,b) its relation to C is 

[_p a_=_W __ ll_o I_C 1_2 _] 
(2.57) 
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2.6. Properties of C(W,K) 

a) Signs, limiting values 
-

According to (2.43) the response function C is defined as 

/ 
= -

,<,here f satisfies 

f" (z) =" {Kz + iWjl 0 (z) H (z) • o " 

C has the dimension of a length. I,et 

C - g - ih or C - !c!e-i~ 

Then g > 0, h .:. 0 or o :5. ~J :5. IT /2 

(2.58) 

- (2.43) 

(2.59 ) 

= (2.44) 

(2.60) 

(2.61a,b) 

Proof: Take the complex conjugate of (2.59), multiply by f and in­

tegrate over z. Integration by parts yields 

co 

-f(o)f'!)::(o) = J{[f,!2+(K 2 --iw]l o)!f!2}dz. 
o 0 

Division by If' (0) I Z leads to t.he resul-t. 

The limiting values of C for W -> 0 and W .,. '" are 

C 
{ 

1 tanh(KH) 
K 

1 

h.WjloO (0) 

for w·rO 

for w->co 

(2.62a) 

(2.62b) 

In (2. 62a) H is the depth of a possible perfect conduc"to:c. If 

absent, thenH+""', C= 1/ic. 

Proof: For w=O the solution of (2.59) vanishing at z=H is 

f - sinhl( (H-z), - whence (2.6 2a). - For high frequenctes f tends tc 

"the solution for a uniform half-space, i.e. f _ exp{!IijpoG}, yield: 

(2.62b). This limit is attained, if the pene.tration depth for a 

uniform halfspac:e \"i th 0 = 0 (0) , 
r:::;-r 

p = I~o (2.63) 
o 

is small compared Vii th the scale leng"l.:11 1/1( of 'ehe external field 

and the scale length loCa)/o' (0) [ of conductivity variation. 
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b) Computation of C for a la'y'eJ~ed half-space 

When interested in the electric field within a layered structure, 
+ 

we have to compute a set of coefficients B- according to the rules 
m 

of Sec. 2.3. These coefficients can be used also to express C: 

C -- (2.64) 

The latter form is also applicable for K~"O, whereas a limiting pro­

cess is involved in the former one in this case. If we are only 

interested in C then we may proceed as follows: C can be con­

sidered as a continuous function of depth. Then 

f(h ) B + 
1 + B 

C = - m = m m : 
m f' (h ) ex B B+ m m m m 

From (2.34a,b) follows: 

- + +- - + B ±B = (g ±g)(B +B·) + 
. m m m m m+1 m+1 

where 

Hence, 

± 1 
C' = -"m 

2 

(2.65) 

C = 
m 

exp{±ex d },d h +1-h , = mm m m m 

and (2.66) yield 

1 ex C 1 + tanh(a d ) 
m m+ m m 

ex 1+ex C '1tanh(a d ) m m m-, m m 

(2.65) 

(2.66 ) 

ex 2 2, • = K -"~W)J (J 
m o m 

(2.67) 

Starting with CL = 1/ex
L 

backward recursion using (2.67) leads to 

Cl = C. 

cl ~l)prox:Lmate interpretation of a one·-dimensional· conductivity 

structure 

If we can assume K = 0, i.e. scale length of external field large 

compared with penetration depth (as generally done in magneto­

tellurics) then there exists a simple met:hod to obtain from 

C a first approximation of the underlying conductivity structur.e 

(Schmucker-Kuckes relation): 
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x !{ 
Let C = g - ih. 'rhen a first approximation 0 (z ) of 0 (z) is ob-

tained by setting 

l
r-z-X~=---g-'---O-X--_----~2'-----' 

W]l h 2 

o 

(2.68) 

This cannot be proved rigorously but the following arguments are 

in favour of it: 

1) ZX = g can be considered as t.he depth of the "centre of gravity" 

of t.he in-phase induced current system. 

2) It will be shown below that zl{ continuously increases when the 

frequency decreases. According to a) its maximum value is H. 

3) For a uniform half-space and K=O we have h = 12/W]loO. Hence, 

OX is correct in this case. For perfect conductions ol{+oo since 

h+O. 

This approximate method performs particularly well \'1hen there is a 

monotone increase in conductivi.ty. The following hlo figures(p·24) 

illustrate capabilities and limitations of the method. 

d) !,roperties of C in the complex freguency plane 

For the follOl!ling considerations it is usefull to consider the fre­

quency W as a complex quan·ti ty. Then in the complex frequency 

plane outside th",_posi ti ve imaqinary axis C j.s an ana}yt:ical func-
x tion of frequency. For 2 proof multiply (2.59) by f and integrate 

over z. Then the integration by par·ts yields 

ro 

-fx(Ofw)f' (O,w)=J {If' (z,w) 1 2 -HK 2
+i(')]l a(z)}lf(z,O) 1 2 }dz. 

o 0 
(2.69) 

Hence, for w not on the positive imaginary axis f' (O,W) cannot 

vanish. There are neither isolated poles nor a dense spectrum of 

poles (branch cut:) . 

Division of (2.69) by If' (0,(0) 12 yields 

00 

x 
C (w)=! {[f' (z)/f' (0) 12.i-{K 2+i0)]loO'(z)}lf(z)if' (0) 12 }dz 

o 
(2.70J 

We can easily deduce from (2.70) tholt 

Re C (w) > Of rmcw)' < ° 
(2.71, -

( 
< Of Re(w) > ° Du C Cw) (2.71J 

> Of He (0) < ° 
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The approximate interpreta'cion of C using (2.68). In 
the left figure (monotone increase of conductivity) 
the. zero order approximation interpretes ,the data 
already completely. \~hen there is a resistive layer 
(left hand) the zero order int:erpretation needs re­
finement .• In the dotl:ed line at the left hand f an 
approximate phase of C was used. 'i'his approximate 
phase has been obtained by differen'tiation of the 
double-logarithmic plot of p (T) (cf. Eq. 2.77). 

a 
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As a consequence of (2.71a,b)Cis also free of zeros outside the 

positive imaginal:y axis. 

e) Dis:eersion relations' 

Because of the analytical properties of C, its real and imaginary 

part are not independen'c functions of frequency. J"et w be a pOint 
o 

in the upper w-plane and L be a closed contour consisting of the 

real axis and a lar~le semi-circle 1n the lower w half-plane. 

Then 

1 
111 

f C(D)' )dw' = 0 

L w'-w 
o 

since the 1ntegrand·is analytical 

in L. Due to (2.62b) the large 

semicircle does not contribute 

and the contour can be '~onfined 

w'-plane 

to the real axis. Here rut w'=x and let lJJ
O

=W+i8 (w real, 8 > 0) 

tend to the real axis. '1'.len 

O=lim 
8-H'0 

+00 
~f C(x)dx = 

x w-is 
lirn 
8-;'+0 

~J.~+ 
11:1. -00 

where 

Urn .l 
11 

8++0 

= C(W) + ~ 
1T:1. 

8 

82+(X-W)2. 

+00 
-f C(x)dx 

X-(>}' 
-00 

.... 8 '(x - w) 

. +00 
1 '-, f 
1T :1. _00 

(x-W)C (x)d~} 

E:2-1-(X-W) 2 

(2.72) 

has been used. f denotes the Cauchy principal value of the integra] 

I,e·t for real frequencies 

C(w) = g(w) - ih(w). 

Here g is an even and h an odd function of frequency, i.e. 

g(-w) = g(w), h(-w) = -h(w). 

This is a consequence of (2.70). Hence a separation of (2.72) in 

its real and imaginary part yields 
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+'" = 1 .J. h(x)dx = 
x-w 

'" .?. {. xh (x) dx 
11 0 X 2 _ W 2 11 

+'" <X> 

= 1 f 9(x)dx = - 2 
11 

wg(x)dx f. -~--
11 x-w -co o X'-t0 2 

Dispersion relations 

(2.73a) 

(2.73b) 

Dispersion relations of this kind occur in many branches of physics. 

They are a direct consequence of the causality requirement, 

Relatj.ons corresponding to (2. 73a,b) exist also for modulus and 

phase of C. Due to (2.71a) C is also free of zeros in the lower 

frequency halfplane. Hence the function 

log{!iwvocr(o) C(w)} 

is analytical there and vanishes for Iwl ->- co due to (2.62b). Let 

C(w) = Ic(w)le-i~(w) (2.74 ) 

and assume w > O. Then the relation corresponding to (2.73b) is 

11 
~ (u)- "4 = -

o 
I C (x) I dx 

or introducing the apparent resistivi.ty from (2.57) 

11 
= "4 ~ (w) 

---------•.. 

W 

11 

'" 
.;. 10g{Pa(x)/po } 
o 

dx 

'--------------_._--_. 
(2.75) 

\1here Po = 1/cr(0). 'rhere exist.s a simple approxi.mate version of 

(2.75). Integration by parts yields 

. 11 1 '" dlog Pa (x)w .. x 
~(w)·- - = - f· logl-=---Idx 

4 211 dx w + x o 

1 00 dlog Pa(x) w - xjdx 
.- 211 J • 10glWTx-x 

o dlog x 

or since x-1 logl~ : ~I is an integrable function peaked at w=x, 

in an approximate evaluation one may draw out of ·t;he integral the 

term dlogpa!dlogx!x=w' Hence 

11 11 dlog Pa(w) 
~) (w) - 4 - - 4- --~--r 

dlogt0 

where the result 

(2.76) 
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co 
1 

10,lw-xl dx 1-·t dt 
J = 2 J log (Ht) g W+X x t 
0 0 

used. lVith T 211 dlogw=-dlogT. = (;i' 

dlog 
1jJ(w) :: 1[ {1 + 

4 

p (T) 
a. } 

dlogT 

1[2 
= - 2 

The final result is 

(2; 77) 

Since in general double-logarithmic plo·ts of p (T) are used, a first a 
approximation of the phase can immediately be obtained from ·the 

slope of a sounding curve. The degree of accuracy can be asserted' 

:~, ==~"==~"C,=~.~oo==::;;"$'"'~'3:"=-:::;~ o. 
I 

from two examples given at the 

left. True phase in broken 

lines, approximate phase in 

full lines. 

... 
"'r---~---""",,,, 

" . •. 
~r-----r-----'-----~-----r-----, 

,JooL----

The simple a.pproximate method 

of inversion described in cl 

(Schmucker-Kuckes relation) 

combined ,-lith the approximat.ion 

(2.77) provides an ext.remely 

simple tool to derive a zero 

order app}~oximati.on Of the true 

conductivity from apparent re­

sistivity. 

Om 
lOOO 

"'" . 
SOl . 

100 

"" 
SO 

. '[7" ""'''-, 
'" "" . . 

~I 

--- ---------- -IS· 

. lOO 
___ wati'"PhaSl' ('sO 

--11~hNl·"'9 t 
w,~ _____ ~ __ · __ -L ____ -k ____ ~ ____ ~. 

!<' z 

--------------_._---
Jp -(w)( 

a l'i l'i 2 '" I cos1jJ, C5 (z ) = -------
w].lo p (CL') sin2 1jJ ____ .. ____ . ___ a __ 

f) Inequalities for the frequency dependence of C 

Cauchys formula is 

1 C(w) = -211i 
f C (w I ) 

w'-w L 
dw I, 

(2.78) 

(2.79) 

"--
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where L is a positively oriented closed contour enclosing only a 

domain where C is analytical and the point oo. We choose the par­

ticular contour shown at the left. When the radius of the circle 

C(oo) = 

00 

1 
- lim 211i 

£~+o 

= - lim 1 

£"'+0 11 

ro 

f 
o 

tends to infinity the circle does 

not contribute since C(oo) '" 0(1jlW) 

for Iool~oo. Hence the contour can be 

confined to both sides of the posi­

tive-imaginary axis. On the righ'c 

hand side put to '=iA+£, £ >' O. Then 

(2.79) yields 

lm C (iA+£) dA 
A+ioo 

1 where q(A) '" - lim lm C(iA+£) > 0 
1T £->-+0 

in virtue of (2.71b). Summarizing: 

C (00) 
ro 

= f q(A)dA 
A + ioo' o 

g(l,) > 0 

~-------------------------------~ 

(2.80 ) 

The non-negativity of gP) has the consequence that C must be a 

smooth function of frequency. Again let 00 be a positive frequency 

and let 

Defining 

C = 9 - ih. 

nf: = w df = 
doo 

df 
dlogoo = -

df 
dlogT 

then the. following constraints apply 

9 :: 0 h > 0 

[CtDC[ < 9 IDcl ::... -
[C+2DC+D2CI ::...g [D

2
C[ 

.. ---.... 

(2.81) 

(2.82a,b) 

h (2.83a,b) 

< h (2. 84Cl .. ,n) 
__ I 
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(2.82a,b) simply resul'cs when (2.80) is split into real and imagi­

nary; it has already been given above (Eq. (2.61a,b». (2.83) is 

proved as follows 

'" I I 1 1 1 Aq (A) 
C+DC = C-I-wC I (w) = J (A+iwY 

o 
dAI 

00 

< JIA+iwI2Aq(A)dA 
o 

The other constraints are proved in a similar way. There are oth81: 

constraints involving second and higher derivatives. In terms of 

apparent resistivity and phase 1jJ P.qs. (2.83b,a) read: 

2.(1 + 
4 

(2.85a) 

(2.85b) 

The slope of a double-logarithmically plotted sounding curve is 

- DPa/P
a

" As a consequence of (2.85a,b) we have all<lays 

. Dp 
1-2.1 <1 

P -a 

The monotone decrease of the real part of C with frequency is a 

consequence of 
00 

= J AqdA 
o A2+W 2 

g (w) 

The follm<ling figure shows data (full lines) I"hich are inconsistent 

or the basis oll'one-dimensional model, since the constraints (2.83a,b) 

are partly. violated. Then the least corrections to the data are 

determined that the inequalities are satisfied. Since this is only 

a necessa.ry condition, interpretability is not yet granted. 
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g) Dependence of i.nterpretatjon on wave-m12.ITJ.)e_:t;. 

The fundamental equation is 

f" (z,w) ",. {K 2 -1-iw]1oa (z)}f (z.w). 

By the transformations 

z '" 1 tanh(Kz) 
K 

f '" f • sech(Kz) 

a '" a • cosh- (KZ) . 

it is transformed into 

.f" (z,w) '" 

in such a way that 

C(U) '" 
f (o,w2_ 
~ 

f' (OrIl) 

I; epo 

(2.86a) 

(2. BGb) 

(2.86c) 

remains unchanged. Hence any C can first be interpreted by a uni-
- -form external field (K"'O) and the result cr{z) is then transformed 

to the true conductivity by 

- 1 
a(z) '" sech'(Kz)'a(- tanh(Kz» 

K 
(2.87) 
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For this interpretation the condition 

C (0) < 1 
- K 

has to be satisfied on C(w). 

An application of (2.87) is given in the following figure. 

'" 

'" 

'" 

-----r 

... 

, 
.... m-;-

:. . ' 1 
~--------------,-----""'~~~LJ 

• m m' ~H'('C""'" -, 
When K increases attenuation is interpreted 
by geometrical damping at the expr.:mse of 
electromagnetic damping due to a perfect 
conductor • 

. 3... N.odel. .c.a1.c.ul.a t.ions. .f or. .tw.o.-.climens iona 1. s·tr.ucture s 

"3.1,' General 'equations 

We are considering now induction pr"oblems, 'v/here both the conducti­

vity structure and the inducing field are :iLndependent of one hori­

zontal coordinate, say x. Compared with ch .. 2, the c.lass of in­

ducing fields has become more restricted, but the class of ad­

mitted conductivity structures has been en].arged. 

For x-independence, Max\.,rell r s equations 

are split into hlo disjoint sets 



ClH z 
dy 

aE 
x az 

ClE x 
ay 

= 

= 

= 

dH 
--Y er = 

dZ 

- iW)l H o y 

+ iW)1 H o Z 

E x 

TE-mode or E-polarization 
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I 

dH x a-z- .. 

dH x 
ay ~ 

~ 
dZ 

er E 

- er 

Y 

E 
Z 

= it~)l H o x 

.TM-mode or :l"pola:r'ization 

(3.1a,b) 

(3.2a,b) 

(3.3a,b) 

The TB-mode has no vertical electric field, the TM-mode has no ver­

tical magnetic field. In the treatment of the.'.'e modes the use of 

electromagnetic potentials is not necessary since B x 
as pertinent potentials. For conciseness let 

H: = H x E= = E x 

Then E and H satisfy the equations 

and H x 

--------------_._. 

. 1 
div(- gradH) = 1I 

k 2 

k Z = iW)l er 
. 0 

can serve 

(3. 4b, a) 

(3. Sa) 

(3. 5b) 

In uniform domains both equations agree. Eq. (3.5b) resembles the 

equation of heat conduction in a non-uniform heat conductor. 

The continuity of the tangential electric and magnetic field compo­

nents at conductivity discontinuities leads to the conditions 

dE 
Et an continuous: TE 

1 dH 
lIt er 3n continuous 'EM • 

----.--
(3. Ga) 

(3.Gb) 

d 
dn is the derivative in direction to the normal of the discontinuity. 

The E- and H-polariz~tion shows very different patterns. From (3 .1b), 

(3.2b) follows that H is constant in the air half-space (er=o). HenCE . x 
the 'l'H-mode admits only a quasi-uniform inducing magnetic field. In 

contrast in the TE-mode any two-dimensional inducing magnetic field 

is allowed. 

Hence, the source terms to be added on the RHS of (3.1a,h) are 

and H 0 (z+h) t o 
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assuming that the TM magnetic source field is due to a uniform 

sheet current at height z = -h, h > O. 'l'his assumption, hovlever, 

is immaterial for the following. 

In the sequel all field quantities are split into a normal and 

anomalous part, denoted by the subscripts "n" and "a", respectively. 

The normal part refers to a one-dimensional conductivity structure. 

Let 

(3.7) 

k 2 (y,z) = k~(z) + k~(YfZ) (3. 8) 

E (y , z) - E (y,z) + Ea(Y,z) n . 
(3.9 a) 

H(y,z) = H (z) + H (y,z) 
n a 

(3. 9b) 

E and H are defined as solutions of the equations 
n n 

~(_1_ ~ H ) = H , z > 0, 
dz k 2 dz n n 

H (0) = H , 
n 0 

n 

vanishing for z + "'. 

In virtue of 

·1 
div(-

k 2 

(3.5a,b), (3 . 9 a , b), and (3. 1 Oa , b ) 

~(L 
dz k 2 

n 

z > 0 

(3.10a) 

(3.10b) 

and H satisfy a 

(3.11a) 

(3.11b) 

If the anomalous domain is of finite extent, 

formly 

formly 

If the 

at infinity. Under the same conditi.on 

has to vanish uni­

has to vanish uni-

in the lower half-space. At z=o 

anomalous domain is of infinite 

H is zero. a 
extent in horizontal 

tion, we can demand only that E , H +0 for z + "'. a a 

direc-

For a numerical solution of (3.11 a) the following three choices of· 

a basic domain are possible (boundaries hatched}. 

In approach A, (3.11a) is solved by finite differences subject to 

the boundary condition E =0 or better subject to an inpedance a 
boundary condition (below). In approach B (3.11a) is solved by 

finite differences only in the anomalous slab. At the horizontal 

boundaries boundary conditions involicity the normal structure 

above and belOl-7 the slab are applied. I approach C (3.11 a) is re­

duced to an integral equation over the anomalous domain. These 

approaches will now be discussed in details. 
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3.2. Air half-space and conductor. ,as basic domain 

(Finite difference method) 

For the TE- and TM-mode we have to solve the differential equa­

tions (3.5a,b), i.e. 

di~(1-.gradH) = H, H = Ho at z=o 
k 2 

with the boundary condition that the differences E =E-E and 
a n 

(3.12a) 

(3.12b) 

H =H-H vanish' at infinity. E 
ann 

has to be computed for any given 

two-dimensional external source field along the lines of Sec.2.3. 

The H -field belongs to a uniform external magnetic field. 
n 

In the finite difference method, the differential operators in 

(3.12a,b) are reduced to finite differences. For simplicity a 

square grid' with grid vlfth h is assumed. Consider the follol-ling 

configuration of a nodal point 0 and its four neighbours: 
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co 1 

~3 

Then the evaluation of (3.12a) in uniform subdomains yields 

E
1

+E
2

+E
3

+E4 - 4Eo = h2k2Eo 

or 

(3.13) 

Within uniform subdomains the same formula cpplies to H. Differences 

occur if the nodal point 0 is at an interface. Consi.der as example 

a vertical disconti.nuity: 

1 
Region 1 Hegion 2 

/0 
---l--··~/'-"--""<;·4--

I 
I 

3 / 

In the absence of region 2 one can ",rite a central difference equa­

tion for E at nodal pOint 0 as 

E (1) +E' (1) +E (1 ) +E (1) = 
1 '2 "3 4 

(3.14) 

where the bracketed s.uperscript indicates the region. In the ab·: 

sence of region 1 the central difference equation at 0 is 

(3.15 ) 

At the vertical discontinuity we have because of the continuity of 

E: 
E(1)=E(2)=E E(1)=E(2)=E E(1)=E(2)=E 

1 1 - l' 0 0 - '0' 3 3 - 3' (3. 16) 

Since also the normal gradient of E is continuous, 

E(1)_E(1) = E(2)_E(2) (3.17) 
4 2 4 2 

The field values Ei2) and E~1) are fictitious and have to be elimi­

nated with the a;i.d of (3.16) and (3.17) from (3.14) and (3.15). The 

result is 

(3.18) 
, 

wh E = E
2
(1) and E4 - R

4
(2) ere '2 -
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Hence, the conducti vi ty is to be averaged in the 'l'E-case. Now con­

sider the TM-case: 

(3.19 ) 

H(2)+H(2)+H(2)+H(2)= (4 + h 2 k Z )H(2) 
1 2 3 4 2 0 

(3.20) 

The continuity of H and ~ dH/dn yields 

Hi 1 )=H_~2) :::H.
1

, H~1 )=H~2) :::Ho ' H~1 )=H~2) :::H3 (3.21) 

(HJ 1 ) -H~ 1) )/cr 1 = (H~2) -Hj2) 102, (3.22) 

from vlhere we obtain on eliminating Hi 2 ) and H~1) 

(3.23) 

v/here (k Z ) -1 = .:1. (_1_ -I- _1_) 
2 kZ k2 

1 2 

= H (1 ) fI =H(2) . 
and H2 2' 4' 11 • 

Similar formulae hold for a horizontal discontinuity. 

The normal values of E and H are used as starting as initial 
n n 

values. At the boundaries we have two choices 

a) The boundary values are kept fixed, i.e. E = En' 

b) Or free boundary values are used as 3.mpedance boundary condj.tion, 

i.e. 

(3.24) 

where n is the direction of the outward normal. 

(3.24) is obtained under the assumption that the anomalous fields 

diffuses in form of plane waves oublards, a valid approximation only 

if the local penetration depth is small compared with the scale 

length of coaductivity changes. It performs poorly at edges and in 

isolators. However, better then E =0. a 

Eg. (3.24) yields as condition at the upper edge of the air layer: 

oEalaz = 0 (i.e. constant horizontal magnetic field). 
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'rhe iteration is carried out either along rows or coluITms. Generally 

the Gau13-Seidel iteration procedure is ug,2d \-li th a successive over­

relaxation factor to speed up convergence .. 

,3.3. ll.nomalous, slab as basic domain 

In practice it is not necessary to solve the diffusion equation by 

finite differences in t.he total conductor and the air half-space. 

Instead it is sufficient to treat the equation only in that slab 

which contains the anomalous domain. 

Let the anomalous slab be confined to the depth range z1 :5.. Z .2. z2' 

l1ithin this domain we have to solve the inhomogeneous equation 

(considering for the moment only the TE-case) 

subject to two homogeneous boundary condition." at z = z 
1 

(3.25) 

=(3. Sa) 

. l1lhich involve ern for z < z1 and z > z2 respectively and account for 

the vanishing anomalous field for z ->- ± "'. VIhen (3.25) is solved 

by finite differences, the discretiz'ation involves also the field 

values one grid point width above and below the anomalous slab. 

The idea is to express these values in terms of a line integral 

over Ea at z = z1 and z2 respectively. 

Let V
1 

and V2 be the half-planes z .2. z1 and z ~ z2' respectively. 

Let G (m) (r [r), r, r £ V be Green's functions which satisfy 
--0- - --0 m 

subject to the 

G(m) (r [~) 
--0 -

boundary condition 

= 0 at z = z , m 

In V1 and V2 , Ea is a solution of 

m = 1,2 

Now Green's formula for tl\'o-dimensions states that 

(3.26) 

(3.27) 

(3.28) 
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" "av au !{UlIV-VlIU}dA = nU - .- v - }ds an an 
(3.29) 

The RHS is a closed line integral bordering the area over vlhich the 

LHS integral is performed. In the HHS differe"ntiation in direction 

to the outward normal is involved. 

From (3.28) and (3.26) follows 

GnE - E lIG = oCr - r )E • a a - -oa 

Identifying U vIi th G, V with Ea' Eg. (3.29) yields in virtue of 

(3.27) 

E (r ) = 
a --0 f 

around Vm 

E (r) a G(m) (r Ir)ds. 
a - an --0 -

Now G(m) and its normal derivative vanish at infinity. Hence, only 

the part of the line integral along 
a 
az' 

the axis z = z contribu"t-.es. 

For m=1 
a a a 

: an = az' m=2 : an = 
Hence, 

+ro 
E (r )=(_1)m ! 

a -0 -co 

a (m) I " E (y, z ) -a- G (r y, z ) dy , 
a m z --0 m 

m 

m 

r sV 
-0 m 

(3.30 ) 

Because of (3.26), Eg. (3.30) depends only on the difference y-y . o 
Defining 

~) m K (y-y ,z ) = (-1) o 0 

Eg. (3.30) reads shorter 

a G(m) (r Iy z ) 
aZ

m 
--0"' m 

E (y, z ) dy a m 

(3.30a] 

(3.31 ) 

For a layered structure in V , the kernels K (m) are easily deter'­
m 

mined: 
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Let us first consider the case m = 2. Assume that there are L uni-

z=o form layers below z. = z2 ~lith con-
---------------------- ductivities D

l
, D

2
, ••. , D

L
, and 

----T7T7TTT/rrr.---------- z=z1 

~~-
upper edges at z = h" h 2 , ..• , hL 

'(h
1 

= z2)' In applications the 

vertical grid width Zo - z2 will bE 

so small that z is in the first 
z=z =h 

2 1 

------ D - -----
1 

z=z o 
o 

uniform layer. Then a solution of 

(3.26) having the con:ect singu-
___________________ z=h

2 
CJ 2 ____________ z=h3 larity is 
" 
t. 

• z=h 
L 

-0: 1 ' z-zo' d)' 
e cos).(y-y )~-

. 0 0'1 
(3.32) 

However, the boundary condition (3.27) is not yet satisfied and the 

normal conducti vi ty structure has not ye'c been i:aken into account. 

To achieve this let in 
(2) '" . °'1 (z- z 2) -((1 (z- z 2) 

z22z2zo:G (£01£)= !oo{e -e }cos).(y-yo)d). (3.33a 
o 

00 

z <Z<h
2

:G(2) (r ir)= !CL' {B+
1 0- - -0 o 

-a (z-z ) 
·12 e }cos).(y-y )d;\ 

. 0 
(3. 

m=z, ..• , L; hI ,=«> Eg. + Jt-l _ 

with B = 0,' B = 
L L 

continuity conditions 

Sec. (2.3):' 

(3.33a) satisfies already (3.27). Starting 
+ 

1 the coefficients B~ are determined from the 

for G(2) across interfaces as indicated in 
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+ 
Having determined B~. the coefficients oD and 0L are determined 

from the fact that the difference between upvlard (downY/ard) 

travelling waves of (3.33a) and (3.33b) at z = Zo must be due to 

the primary excitation given by (3.32). Hence, 

whence 

° o 

-

°L 

° 0 

From (3.30a) 

K (2) (y-y , z ) 
o 0 

B+ 
0: 1 (z -z2) 

e 0 + 1 

° 
eO: 1 (zo-z2) 

1 

-0: (z -z ) 
e 1 0 2 

00 f+B+ 
1 

J 1 1 = 
11 + 

0 B1 

= 2110: 1 0 

1 + = °L B1 2110:
1 

f+ - f 
_~1,--_-,-1 __ 1 

2110:1 (B~ + B~) 

+ 

-Cl (z -z ) 
e 1 0 2 

+ r-
1 

±o: (z --z ) 
= e 1 0 2 

f1B1 
cos).(y-y Id),. - 0 + B1 

(3.35) 

+ -' Since (3.35) involves only the ratio B1/B11 it can be expressed 

in terms of the transfer function Coat z = z2 (cf. (2.64)): 

B+ 
1 0: C -1 1 

= -
B1 0:1 C + 1 

For a uniform half space (3.35) is simply 

00 -0: (z-z ) (z -z )k 
= 1 f e 1 0 2 cos>,(y-yo)d>.= .0 2 1K1 (k 1

1£-EoI) 
11 0 ,,11Ir-r I ___ -_-o~ ______________ __ 

(3.36) 

For k1 + 0 (isolator) this yields 

(3.36a) 
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The case m = 1 can be treated in a quite analogue way. If the 

anomalous slab exteffs till the surface, i.e. z1 = 0, the pertinent 

kernel is easily derived from (3.36a): 

z o 

(Because of (3. 30a) there has been a change of sign.) 

(3.37) 

If there are more normal layers (in addition to the air half-space), 

the problem is treated as for m = 2, '11i th the air half-space as 
+ 

last (L-th) layer, we have to calculate 0L and hence B, separately. 

We can't use C. 

The ke~nels K(m) are nicely peaked functions. The halfwidth is 

approximately Z[ zm -zo [, i.-e. tvlice the vertical grid width. For an 

insulator the tails are comparatively long (_1/y2), for a conductor, 

an exponential decrease is inferred from (3.36). In general two 

points to the left and the right of the central point will give a 

satisfactory approximation: 

where 

+2 
E (y,z ): l: 

a 0 i=-2 

h /2 
(m) y. (m) 

n =2 f K (u Z )du J:'"o I 0 r 
o 

p~m)E (y + ih , zm)' 
J. a y 

I 
P . = p., l: p. = 1, hy = horizontal grid/width. 

-J. J. J. 

(3.38 ) 

(3.38) expresses in any application of the finite difference formul 

the anomalous part of the electric field outside the anomalous slab 

in terms of anomalous _field values at the boundary. At the vertical 

boundaries the impedance boundary condition (3.24) is applied. 

So far only the TE-case has been considered. The TH-mode can be 

handled similarly, taking only the different boundary condition 

into account. The approp~ate formulas can be worked out as an 

exercise. 
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3.4. Anomalous region as basic domain 

Integral equa·tion method 

In the integral equation approach Maxwell's equation, are transformed 

into an integral equation for the electric field over the anomalous 

domain. With the usual splitting 

U ~ Un + ua ' E = En + Ear k 2 
= k~ + k~r 

we have 

bE ~ k 2 E + iw]..lo j e , (3.39) 

l>E '" k 2 E + iw]..l j e 
n n n 0 

, (3.40) 

or subtracting 

bE '" k 2 E + k 2 E a n a a 
(3.41) 

Let Gn be Green's function for the normal conductivity structure, i.e. 

(3.42 ) 

G (r !r) can be conceived as the electric'field of a unit line n -0 -

,current placed at r and observed at r. 
" -0 -
Multiply (3.41) by G I (3.42) by E , subtract and intessrate with n . a 
respect to r over the I'/hole space: It results 

E (r )=!k 2 (r)E(r)G (r Ir}dA + J{G bE -E bG }dA. 
a-o a- - n-o- n a a n 

Green's theorem (3.29) yields 
dE 

i{G bE -E bG }dA = J'{G ~­
'n a ann d~ 

E a }ds '" 0, 

since E and 
a 

E instead of 

G vanish at 
n 

E we obtain 
a' 

infinity. Hence, introducing 

the integral equation 

E(r) = E (r ) - J k 2 (r)E(r)G (r ir)dA 
-0 n -0 a - - n -0'-

(3.43) 

into (3.43) 

(3.44) 

In (3.44), the inhomogeneous term En can be computed for a given 

normal structure and given external field in a well··known way. 

It remains to determine the kernel Gn(Eolrl. It satisfies the reci­

prdcdty relation 

G (rl r) 
n -0 -

(3.45) 
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i.e. source and receiver are interchangeable. For a proof write 

(3.42) for G (r \r') and a corresponding equation for G (r\Y:'). 
n-o- n--

Multiply these equations crosswise by G (r\r') and G (r \r'), sub-
n-- n-o-· 

tract and integrate over the full space. Then the result is ob-

tained on using Green's theorem. 

For a solution of (3.44) we have to put a line current at each point 

r of the anomalous domain and ha,ve to compute the resulting elec­
-0 

tric field at each point of this domain replacing its anomalous 

structure by the normal conductivity. Assume a rectangular anomalous 

domain \-lith NY cells in y-direction and NZ cells in z-direction. 

Because of horizontal isotropy the field depends in horizontal direc­

tion only on the distance between source and receiver. Hence, we 

need field values only for.NX horizontal distances. Due to the 

layering there is no isotropy in vertical direction. Here \"e have 

to put the line current into th8 center of each cell. Because of 

reciprocity the sorresponding field v,alues have to be calculated 

in and below the depth of the source. Hence, fqr the kernel G a 
n 

total of NY • iNZ' (NZ+1) field values has t:o be calculated. 

A second set of kernels is required which transform on using (3.44) 

the electrical field in the anomalous domain into 'che electromagne­

tic surface field for all three components E , H , H . The number of x y z 
required kernel data depends on the range >,here the field is to be 

evc:.luated. 

It remains to calculate G (r Ir) for a layered structure. Assume L 
n-o-

layers with conductivities 0"0 = 0, 0"1' ••• , Q'L and upper edges 

h1 ,= 0, h2' ••. , h L , hL+1 = 00. 

Let the source and observation point be placed in the m-th and ].1-

layer, respectively, and let in the m-th layer 

v1here 

z > z 
o 

f± (z)' = exp{±a (z-h )} r C(2 = A 2+iw].! 0" • 
'm m m m om 

(3.46) 

(3.47) 
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00 and 0L can be so adjusted that A~ = 

sources in z < 0 and in z > z if z is _ + 0 0 

BL = 1. Since there are no 

in the L-th layer, 

A = B = O. With these starting values the 
o L 

BG /Bz across interfaces yields the forward 
n 

relations 

continuity of G and . n 
and backlvard recurrence 

± + + - --
A=(Ha +1/a )g 1A 1+(1+a 1/a )g 1A l' m= 1, ..• , jl m m m m- m- m- m m- m-

+ + 
g-=1/2, g-'-=(1/2)exp{±a (h +1-h )}, m = 1, ... , L-1. o m m m m 

In the case jl = L no recurrence is required for the B-terms. 'rhe 

coefficients 00 and 0L are determined from the fact that in (3.46) 

the difference in the upward (downward) travelling waves for z > zo 

and z < z must be due to the primary excitation given by 
o 

Hence, 

-2
1 

K (k I r-r I) '" .1T 0 jl - -0 

1 
211 J 

o 

-a \z-z I 
e jl O,COSA(Y-Y )dA 

o a].l 

- + ' 
- A B jl jl 

o = 1 
L 21Tajl 

A f 
J1 jl 
+ -

1, B 
jl ]l 

where f:!: = f± (z ). The nominator (including ajl) is a v,ronskian of 
jl jl 0 

the differential equation 

W"(z) .·{A 2 + k 2 (z)}W(z) 
n 

which is a constant thus ensuring reciprocity. (Proof?) 

In applications the anomalous domain is split into rectangular cells, 

tl~e electric field is assumed to be constant wj. thin each cell. Then 

(3.44) reduces to a system of linear equations, which is easily 

solved because of its dominant dj.agonal due to the logarithmic 

singularity of the kernels. Either direct elimination or GauB-Seidel 

iteration can be applied, the latter being in general quickly 

convergent. When E is assumed to be constant ~vithin each cell, the 

integration over the kernel is easily effected by adding in (3.46) 

the factor 
4sin(Ahy /2)sinh(a].lhz /2)/(Aa]l)' 
•• ... "'_' _ . _. r ___ ~_1 ___ ~ __ ._, _. ____ 1' 



- 45 -

The integral equation method for the H-polarization case looks 

sligh,tly more complicated. This is related to the fact that even 

for three-dimensional structures Max,,,ell's equations look simple 

when formulated for E, whereas in the ..!I-formulation additional gra­

dients of the conductivity arise: 

1 -
cur12E + iW)J er E = 0, curl(- curlH) + iW)J H = O. o - er - ,0-

The pertinent equa'tion for H-polarization is (3.5), i. e. 

div(~ gradH) = iW)JoH (3.48) 

with the usual split'ting 

er = er -I' er , 
n a 

H = H + H n a 

and the additional definitions 

p = 1/er, p = 1/er , 
n , n 

p = p - p a a 

the equations for the normal and anomalous part are 

and 

d (1 d H) 
dz Cl dz n ,n 

= iW)J H , o n H (0) = H 
n 0 

.---d-i-V-(-p--g-r-a-d-H'-)---i-W-"-H----d-l-' V-(-p--q-r-a-d-H-) ] 

n a "'0 a a -

(3.49a-

(3.50) 

(3,51) 

This equation corresponds to (3.41) for the E-polarization case, 

Green's function appropriat:e to (3.51) is defined as 

(3.52) 

Physically G
n 

can be interpreted as the magnetic field due to an 

infinite straight,line of oscillating magnetic dipoles along the 

x-axis. 

Multiply (3.51) by G
n 

the whole space. Then 

and (3.52) by H , subtract and integrate over 
a 

j{G div(p gradH ) - H div(p gradG )}dA = , n n a ann 

= - fG div(p gradH)dA + H 
n a a 

(3.53) 
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From the generalized Green's theorem 

f{Udiv(~gradV) - Vdiv(~gradU)dA = 
= f ~{u av _ V au }ds an an 

follo'llS that the LHS of (3.53) vanishes. 

the RHS of (3.53) we obtain, introducing 

Applying (3.54) 

H = H - H : 

(3.54) 

also to 

]'3.551 
L-~ _________________________________________ ~ 

a n 

H(~) = H (r )+fH(r)div(p (r)gradG (r Ir»dA 
-~ 11.-0 - a- n-o-

This is an integral equation forH . It can be cast in a slightly . a 
different form, which is particularly suitable for applications 

since the high degree of singularity due to a two-fold differentia­

tion of Gat· r = r is removed. Because of 
n -0 

p 
div(p gradG )= a{iwp G -o(r-r )}+p gradG 'grad(p~/p ) a n P on --0 n n . P. n 

n 

Eq. (3.55) reads alternatively 

H(r ) 
-0 

Pn(Eo)[ . Pa(r) 
( ) H (r )+fH(r){iwp G (r Ir) ()~p (r)gradG (r Ir) pr n-o - on-o-p r n- n-o-
-0 n 

P (r) -
d a - } 'A • gra --- Q 

P (r) 
n -

(3. 5 E 

The kernel of the integral equation consists of two parts. The first 

part takes account of .the changing concentration of current lines 

in anomalous domains. It is a volume effect. The second effect 

results from the bending of current lines where conductivity change, 

It is essentially a surface effect. 

In the case of discontinuous changes in conductivity, which is the 

most common assumption, (3.56) needs a slight modification. AssUlre 

that the anomalous domain consists of rectangular cells, where the 

conductivity is allowed to differ from cell to cell. H is assumed 
to be constant in each cell. 
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(i,j) -t 

-+ 
(H1,j) 

y 

(i,j+1) 

Then the discontinuity between cell (i,j) and (i+1,j) contribu·tes 

to the integral 

1 dG (r !i,j) 
-{Uti J')+H(H1 J')}p ii J')' n -0 , 2 ( I ne, dZ 

It has been used that H and o~~ are continuous across interfaces. , an 
The contribution from the (i,j) ->- (i,j+1) interface is 

> 

p (i,j+1) " a 
"p (i;j+1) -

n 

The integral equation is decomposed into a set of linear equations 

for the Ha-values at each cell. The electric field is then obtained 

by differentiating (3.56) vlith respect to the coordinates of r . -
-0 

It remains to calculate G . At z = 0 G has to satj.sfy the boundary n n . 
condition of H ( i.e. H = O. : G = O. The boundary conditions at a a· n 
interfaces are G and (1/o)8G /3z continuous. Assume again L uniform n n 
layers vIi th conducti vi ties () 1 ( () 2' ... , ()L and upper edges at 

h1 = 0, h 2 , '" I h L , ~"L+1 = 00 

Let the field in the m-th layer be 

",here z < z 
o 

z > 
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Y
o 

and YL can again be so adjusted that C~ '" DL 

z = 0 requires then C1 = - 1, and G
n 

+ 0 for z + 

Starting with these initial values. the boundary 

the fan-lard and backward recurrence relations 

= 1. G '" 0 for 
n + 

00 demands DL = O. 

conditions yield 

+ 
C=(1± 

m 
+ -(3m-1-

C +(1+---)g 
m-1 B m-·l 2 < m < V 

where 

± = Cl /0 and gnl m m 

m 

Dm+ 1 , L -. 1 > m > V 

= 21 exp{±Cl (h -h)} 
- m m+1 ID 

]l is the source layer. There is no recurrence required for the C­

term if ]l = 1 and for the D·-terms if ).I = L. 

The free factors follow again from the source. representation 

a: 
~ K (k Ir-r I) = 
211 0 ]l - -0 

o 
'V 

211 

00 -Cl Iz-z 1 
J e V 0 cos~(Y-Yo) 
o 

dz 

'"hich must account for the difference for up,,Iard and dovm",ard 

travelling i"aves at z = zoo Hence, 

0' D+{~ + D f 
Y = 

__ V_ -L.l! V V Y = 0 211D!V -I- - _. -I- ( L CD' CVDll V \l 

With the present determination of 

the reciproci ty relation G . (r I r) 
n -0 

0 C+f+ + C f 
_V_ I! V V V_ 
211D! + + - -I-

V CVDv - C D 
V V 

the field G
n 

satisfies again 

= G (r I r ). (proof?) n --0 
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4. Model calculations. for three·-dimensional. structures 

4.1. Introduction 

In the three-dimensional case the TE- and TM-mode become mixed and 

cannot longer be treated separately. Now the differenU.al equation 

for a vector field ins'cead of a scalar field is to be solved. In 

numerical solutions questions of storage and computer time become 

important. Assume as exarnple that in approach A a basic domain with 

20 cells in each direction is chosen. In this case, only the storage 

of the electric field vector would require 48000 locations. For an 

iterative improvement of one field component at least 0.0005 sec 

are needed for each cell. This yields 12 sec for a complet.e i tera­

tion, and 20 mill. for 100 iterations. This appears to be the least 

time required for this model. Hence methods for a reduction of com­

puter time and ·storage are particularly appreciated in this case. 

The equation to be solved is 

Ivhere iWll cr(r). o -

-iW]1 1 (r) 
o-e -

1 (r) is the source curren·t density. -e -
After the splitting 

er = er +er, k 2 = k 2 + k 2 E = E + E , 
n a n a' -n-a 

,vhere E is that solut:ion of -n 

cur12E (r) + k 2 (r)E (r) = -iWllo-e1 
-n- n--n-

(4.1) 

(4.2a-c) 

(4 .3) 

which vanishes at infinity, Ive obtain for 'che anomalous field the 

two alternative equations 

cur12E + k 2E = - k 2 E 
-a n-a a 

(4. 4a) 

cur12E + k 2E = - k 2E 
-a -a a n (4. 4b) 

Eq. (4.4a) is the starting point for the volume integral or integral 

equation approach, Eq. (4.4b) is the paint of starting for the sUr­

face integral approach. 



Let G. (r Id, i ~ 1,2,3 -1. -0 _. 
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be a solution of 

A 

cuJ:'l 2 G, (r I r) +k 2 (r) G, (r I r) = x. o (r-r ), -1. -0 - n - ._l, -0 - -1. --0 
(4. 5) 

vanishing at infinity. Here, the 

cartesian 

E!a (:::) and 

A A 

coordinate axes: x1=~' 

(4.4a) by G. (r Ir) and -1. -0 -

x. are unit vectors along the -1. 
A A A A • 

~2 = y, ~3 = ~. Mulbply (4.5) 

integrate the difference with 

spect to rover t.he \'lhole space. Green's vect.or theorem 

by 

re-

/{U'cur1 2 V-Vcur1 2 U}dT= !{(nxV)'curlU-(;;xU)'curlV}dA, - -- - --. - --- - (4.6) 

A 

where ch is a volume element, dA a surface element and, n the out, .. 

\'lard normal vector, yields 

E . (r ) = - !k2 (r)G. (r Ir) 'E(r)dT, i = 1,2,3 
a1. -0 a - --1. -0 - --

since 

nents 

E and G. vanish at infinity. After combining all three cornpo·· -a -1. 
and introducing E instead of E., the vector in'tegral equation - -a . 

is obtained. Here 9JiS Green's tensor being defined as 

DJ 
3A 3 AA 

'er !r)= L x.G. (r !r)= L G .. (rlr)x. x. 
--0 - . -1.-1. -0 - .. 1.J -0 -- -1. -J 

1.=1 1.,J=1 

(4.7) 

(4.8) 

(using dyadic nota'cion). '1'he tensor elements G.. admit a simple 
1.J 

physical interpre·tation: G .. (r Ir) is the j-th electric field com-
1.J -0 -

ponent of an oscillating electric dipole of unit moment pointing 

in xi-direction, placed in the normal conduct.i vi ty structure at ~; 

the point of observation, is E,' Note that the first subscript and 

argument refer to the source, the second subscript and argument to 

the receiver. Because of the fundamental reci.PJ~ocity in electro·· 

magnetism, source and observer parameters are intercbangeable, i.e. 

L G .. (r !r) = G .. (rlr) 1 1.J -0 - J J. - -0 
~ __ ---l 

(4.9) 

For a proof replace in (4.5) E. by E,', writ.e an analogous equation 

for G. (r!r'), multiply cross-wise 
-J --

by G. and G., integrate the 
-J -1. 

difference \'lith rGspect to E,' over the whole space, and obtain (4.9) 

on using (4.6). Due to (4.9), the equation (4.7) is alternatively 

writtGn 
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15(r) "'15 (r)- !k2 (r) 15(r).(}f(rir )d, 
- -0 -n '-0 a - - - d - -0 

(4.10) 

Eq. (4.7) involves integration over the coordinates of the receiver, 

(4.10) requires integration over the coordinates of the source. 

The kernel G and the inhomogeneous term E of the integral equation --n 
(4.7) or (4.10) depend only on the normal conductivity structure. 

To determine the kernel 7J replace first the conductivity within 

the anomalous domain by its normal values. Then place at each point 

of-the domain successively two mutually perpendicular horizontal 

and one vertical dipole and calculate the resulting vector fields 

at each point of this domain. At a first glance the \'lOrk involved 

appears to be prohibitive, but it is sharply reduced by the reci­

procity (4.9) and the isotropy of the normal conductor in horizon­

tal direction. Because of (4.9), from the elements of Green's 

tensor 
G G G 

xx xy xz 

G G Gyz yx yy 

G zx Gzy Gzz 

the three elements G G G need not. to be calculated when xz' xy' yz 
Gzy ' Gyx ' Gzy is computed. From the remaining six ~lemen'c.s Gyy has 

the same structure as G ,only rotated through 90 . The same re-_ xx 
lation holds betvleen G and G • Hence, 'chere are only the four zy zx 
independent elements G ,G , G , G (say). The particular xx yx zx zz 
symmetry of the G , G (G -component in connec'cion with the re-

xx yx zz . 
ciprocity (4.9) then shows that these components need to be evalua-

ted only for points of observation above source points. Consider 

for example a vertical dipole at x "'y =0 1 Z • Then (4.9) yields o 0 0 

(4.11) 

Because of the isotropy of the conductor in horizontal direction 

(4.11) is alternatively written 

Gzz(O/o,zoix,y,z) = Gzz(O,O,zl-x,-y,zo)' 

Nm'i', Gzz has circular syntrnetry around the z-axis. Hence, 

G (0 1 0, Z I XI Y I z) = Gz z (0 1 0 I Z I x I Y I zo) • zz 0 _ 
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The element G is needed for all z and z . Assume a rectangular zx 0 
anoznalous domain, which is decomposed in"to cells with quadratic 

horizontal cross-section. It is sufficient to pose the dipoles in 

one corner of the anom"aly in the (x,y)-plane. Then assuming NX, NY, 

NZ cells in x,y, z-diJ~ection the total number of required kernels" is 

NX • NY • NZ(~ NZ + ~). 

There is still a reduction up to a factor 2 possible, if instead 

of the corresponding components only some auxiliary functions de­

pending only on the horizontal distance from the sourced are cal­

culated. 

The corresponding kernels are most easily computed using a separa­

tion into TE- and Tt1-fields as done .in Section 1, 

Let the normal structure consist of L uniform layers with conduc­

tivities (J , m = 1, .•. , L with upper edges at z = h , m = 1, .•. ,L m lU" 
(h

1 
= 0) • 

The Green vector G. satisfies in the m-th layer the equation 
-~ 

o (r - r ), 
- --Cl 

We try a solu'cion in the form 

~ 2 A m L-==- = curl (~ <l>i) + A~ curl (z 1jJ . ) 
- l 

(4.12) 

where <I> i corresponds to the TM--potential and 1jJ i to the TE-potential. 

According to Sec.2.1, at horizontal interfaces <I> and 1jJ satisfy the 

continuity conditions 

31jJ I 3z continuous --_. 1jJ , (4.13) 

There is no coupling between <I> and 1jJ across boundaries. within 

uniform layers, but outside sources <I> and 1jJ satisfy identical 

differential equations 

. L.1_b._X_m_i_=_k_!_X_"~_. _' __ X_~_=_<I>_~_, __ ~_/m_i_'~ (4.14) 

'1'he behaviour of <I> and 1jJ near source pOint.s can be obtained from 

the particular forms, vlhich these functions shOl>/" in a uniform whole­

space: 

(4.15) 



For a dipole 
'A 

G = (k 2 _z -z 

since 
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this is equal to 
-kR 

in z-direction 
3 e-kR 

grad-;;-;-}---
02 47fRk2 

A e = - cur12 (z -----), 
- 47fRk2 

(4.16) 

Comparison of (4.16) and (4.12) shows that for a whole space 

-kR e 4' =, - , 
Z, 47fRk2 

Ij> = 0 
z (4.17) 

The absence of a TE-potential is clear from physical reasons, since 

the magnetic field of a vertical dipole must be confined to hori-
" 

zontal planes (i.e. no vertical magnetic field, which can only 

be produced by aTE-field). 

Using Sommerfeld's integral, (4.17) is ,vritten 

00 

f A 
o et 

-etlz-z I o e . J (Ar)dA, 
o (4.18) 

The field of a horizontal electric dipole (in x-direction, say) has 

both an electric and magnetic component in z-direction. Hence, a 

TM- and TE-potential are needed. 

Since 

2 "kr( 00 3 e 1 -- --=---f 
3x3z R 47fk 2o 

and 

we have 

-etlz"z I 
e " 0 J

1 
(h)dAcOS<P 

and from 

32 3rx 1 d2 -kR 
G <Px 

e = -- - ax = -----xy 3y3z 41lk2 3x3y R 

then follmls 

xsign(z-z ) 
o 

(4.19) 



1 <0 

*x == 41f J 
o 
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-a I z--z I 
e 0 J

1 
(Ar)d~ sinq, (4.20) 

With this knowledge of the behaviour of ~Zf q,xf ~x in the uniform 
whole-space, these functions for a layered medium can be easily· 

obtained. 

I,et in the m-th layer hm < Z < hm+1 

where 

where 

where 

and 

"" 

z < Z o 

z > z o 

Z < z o 

I 

I 

~ J {R~ + R~}J1 (Ar)dA cosq, 
o 

z > Z o 

(4.21 ) 

(4.22) 

(L 23) 

The boundary conditions (4.13) lead to the recurrence relations 



+ C- = (1 
m 
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m 
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m:::: 1, ... I ~ 

BD111_+1} m=L-l,···,11 
a -

m+1) + 
± -a-- gm 

m 

ex -
+ m+1} + -a-- gm 

111 m+1 

+ .' ± 
where g- = exp{±a (h +1-h )}/A, go = 1/2 and 11 is the layer of the m m m m· 
source. In the case 11 = L there is no recurrence 'required for the 

Band D terms. The free factors are determined j.n the usual way 

simply by comparing upvlards and downwards travelling waves at 

z = Zo taking the source terms (4.18)+- (!.20l in!O a~count . 
. Dropping the subscript 11 on a , k 2

, A-, B-, C-, D-, f- for 
11 11 11 11 11 11 11 

conciseness, we obtain from (4.21) and (4.18) 

","hence 

= - (4.24) 

v/here f± means f~ CZo )' From (4.22) and (4.20) follows 

whence 

+ C f (4.25 

Because of (4.19) ~x is discontinuous across z = Zo Hence 



or £ = o 

+ + 
=: £ A f I 

o 

___ 1 __ B+f+ - B f 

47fk2 A+B B+A 
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, 

EO A f 
o 

(4.26) 

After having determined ~ f ~ ; ~ f Green's tensor G is obtained z x x 
from (4.12). Also required is the magnetic field in z < O. Only 

the TE-part of a horizontal dipole contributes. 

Let F. (r Ir), i = 1,2 be the magnetic field at r due to a dipole 
-1. --{)-

in x. -'direction at r . 'rhen in z < 0 
1. -0 

o . A 0 
-iw]1 F. = c1.lrl 2 (z~.) = grad 

O-J. -1. 
(4.27) 

Now t.he kernels for the integral equation (4.7) are determined and 

it remains to discuss how this equa·tion is solved in practice. The 

simplest 'tlay certainly is to decompose the anomalous domai.n i.nto 

a set of N rectangular cells and to assume that the electric field 

is constant within each cell. Then there resul~s from (4.7) a set 

of 3N linear equations for 3N unknowni.The system has the form 

x=A~+g, (4.28) 

where x is the vector of unknown field components f .~ the matrix of 

coefficients and S. the given vector of the normal electric field 

values. A direct inversion of this matrix is only feasible for 

N ~ 50 (say), because of the large amoupt of storage required. Hence 

iterative methods must be used in general. 

The simplest 
o h' x = S,' T J.S 

way I"ould be to start an iterative procedure with 

sequence of approximations, however, converges only 

if the eigenvalue of A with the largest modulus has a modulus less 
= 

than 1, a condition which is certainly not satisfied if a is large. a . 

Better conver.gence properties shows the GauB-Seidel iterative scheme, 

using during iteration already the updated approximation and a 

successive overrelaxation factor: 

Let the.components of ~ be a ik • Then (4.28) reads 

3N 

xi =k:' aikxk + gi' i = 1, ... , 3N. 
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Then a new approximation to xi is obtained by 

n i-1 
--{ l: 
1-aii k=1 

3N 
+ l: 

k=i 
(4.29) 

The successive overrelaxation factor n ~ 1 has to be chosen suitably. 

In many cases n = 1 (i.e. no overrelaxation) is already a good 

choice. If the: GauB-Seidel method does not converge then one can 

apply a spectrum displacement technique: As already mentioned, 

simple iteration vlithout updating is only convergent, if the largest 

modulus of the eigenvalues is smaller than 1. Eq. (4.28) is equi­

valent to 

x = (l'); a I) 2!. + ax + .'J. 

or 
(4.30) 

~'he iterative procedure (4.30) will be convergent, if a can be 

chosen in such way that the eigenvalues of ~ are of modulus less 

than 1. If A is an eigenvalue of A then (A-a)/(l-a) is an eigen­

value of ~. Consider'for example the following situation that 12 
has negative 'real eigenvalues from 0 to A , I A I > 1. Then a max max 
choice of a = - lA 1/2 is appropriate. The condition max 

is then satisfied for all eigenvalues A. The requirements which 

a has satisfied can be put in that form that a circle around a 

has to include all eigenvalues of A but has to exclude the point 

1. The following figure illustrates the case stated above. 

)( 

. ~max 

A-plane This case applies approximately 

1 

to the three-dimensional modelli 

problem, where at least the 

largest eigenvalues are for a 

higher conducting insertion to 

a good approximation negative 

real. E'or a poor conducting in­

serti.on the largest eigenvalues 

are essentially positive, but 

smaller than 1. 
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4.3. The surface integral approach to' the modelling probleTl! 
I 

In the surface integral approach, within the anomalous slab the 

equation (4.4b), i.e. 

(4.31) 

is solved by finite differences or an equivalent method. The re­

quired field values one grid point width above the upper horizontal 

boundary at z = z1 and belovl the lower boundary at z = zL are 

expressed as surface integrals in terms of the tangential component 

of ~a at Z = z1 and z2' respectively_ 

Le't V
1 

and V
2 

be the half-spaces z < z1 and z 

and let S , m = 1,2 be the planes z = z Let 

> Zz respectively, 
(m) ! 

m In 
G. (r r), r £ V , 
-~ -0 - -0 m 

r £ V U S be a solution of 
m m 

(4.32) 

(i=1,2,3; m=1,2) satisfying for r £ S the boundary condition 
m 

In V1 and V2 , Ea is a solution of 

curl2E + k 2 E = 0 -a n -a 

Multiply (4.34) by G~m) (4.32) by E integrate 
-~ , -a' 

respect to r over V , and obtain on using (4.6), - m 
for r ->- ro: 

E .(r )=(_1)m J curlG~m) (r !r) ;{; xE (r)}dA, 
a~ -0 S -~ -0 - - -a-

m 

r £ V , or in tensor notation 
-0' m 

E (r ) 
-a -0 

= (_1)m ~ curl~(m) (Eo!~);{; 
m 

3 
where curlq(m) ='E 

() i=1 
x. 
-~ 

curlG~m) . 
-~ 

x E (r) }dA 
-a 

(4.33) 

(4.34) 

the difference with 

(4.33) and E -> 0 -a 

(4.35a) 

(4.35b) 
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Egs. (4.35a,b) admit a representation of the field values outside 

the anomalous layer in terms of the boundary values of the con-

tinuous tangential component 

A physical interpretation of 

of E • -a 
Green's vector G~m) subject to (4.33) 

-1. 

is as follows: Reflect the normal conductivity structure for 

z < z, and z > z2 at the planes z = z1 and z = z2 and place a unit 

dipole in xi -directi~n at Eo E: Vm and an image dipole at: 

~ = Eo + 2(zm - ZO)~1 the moment being' the same for the vertical 

dipole and the opposite for the two horizontal dipoles. Then the 

tangential component of G,(m) vanishes at z = Z111' and G,(m) is a 
-1. -1. 

solution of (4.32) for r E: V • 

Hence, if V is a unifo;m ha~f-spacer G ,(m) is constructed from the m -1. 

whole-space formula (4.' 5).' Eg. (4.3'5) then reads: 

Eax(Eo) = Iz - z I J F (R) E (r) dA, 
0 m 

Srn 
ax -

(4.36a) 

Eay(Eo) = Izo - z 1 J F (R) E (r) dA, 
m 

Srn 
. ay-

(4.36b) 

E (r J = (_1)m f l!'(Ri{x-x)E (r)+(y-y)E (r)}dA, az ~ 
S 

o ax - 0 ay-
(4.36c) 

m 

where R = 1£ - r I, k 2 = iwV u 
~ 0 

, d -kR -kR 
F(R) = - 211R dR (e /R) = (1 + kR)e /(21lfR 3

) 

Egs. (4.36a-c) contain as important 

.air-earth interface (m = " z, = 0, 

subcase ~he condition at the 

k = 0). o 

( Because of the limited range of the kernels~:ti,n applications of the 

surface integral only-a small portion of S UllUst be considered. 
m 

For E and E the contribution of the regi.<0n nearest to r is ax ay -0 

most important. Assuming E and E to be C10nstant ,'li thin' a small 
ax ay 

disc of radius p centered perpendicula.rly ov(cr Eo the weight from 

(4.36a,b) is 

where A = ! z - z I. There is a m 0 
E have a gradient along x and 

ay 

contribution to E only if az 
y direction respectively. 
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At the vertical boundaries the condition E --a '" 0 is relaxed to the 

impedance boundary condition 
~ ~ 

kE 't'" n x curl E n • E -, 0, 
-a - -a' -a 

A 

where Eat is the tangential component and n the outward normal. 

5. Conversion formulae for a tvm-din1ensional' TE-field 

5'.1. Separation formulae 

In this subsection 5.1. it is assumed that the conductivity does 

not change in x-direction ?nd that the inducing magnetic field is 

in the (y,zl-plane, i.e. the conditions for the E-polarization 

case of Sec. 3.1. Then from a knmvledge of the Hand H component 
y z 

along a profile from -00 to +00 at z '" 0 it is possible to separate 

the magnetic field into its parts of internal and external origin 

without having an additional knowledge of the underlying conducti­

vity structure. 

The pertinent differential equation is (3. Sa), i. e. 

- -bE '" iw].lo() E , (5.1) 

which reducing in z ~ 0 to 

-liE = 0 r (S • 2) 

which has the general solution 

,E (y t z) dK (5.3) 

where A describes the external and A+ the internal part of the fiel 
o 0 

The magnetic field components at z '" 0 are (cf. (3. 2a) and (3. 3aJ): 

aE - +00 
A+}e iKy 

'" -iw].l H = J I K i {-A~ + dK az o y 0 
_00 

(S.4a) 

dE +00 
A+}eiKY 

dy '" +iw].l H '" J iK{A~ + dK. o Z -00 0 
(5.4b) 

Let 

H = H +H yi' H -- H HI . 
Y ye z ze Zl.' 
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where the subscripts "e" and "in denote the parts of external and 

internal origin at z = o. 

Further, let the Fourier transform of anyone of the above six 

quantities be 

Then (S.4a,b) yields 

A A 

H /H ='-i sgn(K), 
ye ze 

+00 
f - ) -iKy H (y,o e, dy. 

-00 

A A 

H ./H . = +isgn(K) 
YL ZL 

(5.6) 

A product betw'een Fourier transforms in the x-domain transforms to 

a convolution integral in the y-domain: 

A A A 

F = G' H. 

Hence we 

H ye 

H ze 

Here, 

+00 
F(y)= iTI fG(y')H(y-y')dy' 

-00 

obtain from (S.7a,b) 

= 

= 

+ K x H ze' H. = 
yi 

- Kx H , H = 
ye zi 

+00 
f -isgn(K)eiKY dK = 

1 
= -

TI 

-00 

00 
f sin(Ky)dK 
o 

00 
1 · 1 f () -e:Kd = Lm sin Ky e K = 

e:-"'-O TI 0 

1 = G ~ H 
2TI 

-K x H. 
zi 

+K x H. yi 

1 lim' y 

• 

= 1 

!!Y 

(5. Ba,b) 

(S.Bc,d) 

-e:K Convergence was forced by a factor e . The resulting convolution 

integral exists only in the sense of a Cauchy principal value, i.e. 

(S.Bal for example reads explicitly 

Hye(yl =_~ K(y-nl l1ze (n)dn 

+00 _ 

=~ 1 dn .f H (n)-- = 
IT -00 ze y-n 

y-e: 
Um 1'{ f 

TI e:->+o -00 

00 
f}H (n) dn 

ze y-n y+e: 
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The four equations 
A A A A 

Hye ;: i sgn (K) Hze 
, Hyi 

;: + isign(K} H zi 
A A A' A A A 

Hy .. Hye + H , H ;: H + H y.i z ze zi 

A A A A 

can easily be solvec1 for Hye' Hze ' Hyi' H zi' 

When transformed into the y-domain it results 

H '" 
1 (H + k H ) H ;: .l6i - K:.< H ) "2 x , ye y z ze '2 z y 

H 1 (H - K x H ) H .l(~ + K By) '" "2 , ;: x yi Y z zi 2 z 

Two-dimensional separation formulae 

For practical purpuses these separation formulae are not very con­

,venient, since the kernel decays rather slowly requiring a long 

profile to determine the internal and external part at a given 

surface point. 

5.2. Conversion formulae for the field components of a two­

dimensional TE-field at the surface of a one-dimensional structure 

For the separation of the magnetic field components no knmlledge 

of the two-dimensional conductivity structure is required. Hovlever I 

the conductivity enters if it is attempted to deduce for instance 

the etotal ver'l::ical component of the magnetic field at the surface 

from the corresponding tangential component. If the conductivity 

structure is one-dimensional, the conversion between two component" 

can be effected using a convolution integral, .,here the kernel is 

derived from the one-dimensional structure via the transfer func·· 

t:Lon C Cw I LK [ ) • Sec. (2.5) yields 
A A 

, ' Ex,(O,K,~J) H (O,K,W) 
1 1 stlx:~ CL[K[,W) z (5.9, ;: .. , 

TKT • A A 

iWlloHy (0, K, w) iKH (O,K,W) 1 + SC[K[,W) 
y , 

'where S ([ f~ [,W) is the ratio between internal and external part of 
A A A 

H , i. e. H ./H , in the frequency wavenurnber domain. 
y , y~ ye 

From (5. 9a-c) the various conversion formulas for the durface comp' 
r 

nents can be derived. The follOl"ing table gives the definition of 



- 63 -

the pertinent kernels and their form for tvlO particularly simple 

structures. Note that in the case of a vanishing conductor (i.e. 

in the examples h -> "', or k ... 0) the kernels K and M have to 

agree with the kernels of (S.8a) and (S.8c), respectively. The 

function L
2

, occurring in the P-kernel of the uniform half-space 

model is the modified Struve function of the second order (cf. 

Abramowitz and Stegun r p. 498). 



.... 
\0 

I. 

I 

I 

Conversion Convolution kernels 

Perfect conductor at deptQ h Uniform half-space with c=c 
0 

C = tanh(Kh)/K C = (K 2 + k Z )-1/2 

(K,W) domain (y , w) domain Abbr.: u = y/(2h) Abbr.: k = (iw~oCo) 1/2, v=klyl 

Limiting values Limiting values 

lul«1 I iul»1 .... ··lvl«1 ····1··1'11»1 

'{2h tanh1Tu}-1 
00 

k 1T -1 
~ 1 ~ - - 'iT{2 + ! K1 (vl)W dw}sgn (y) 

I H = -- H H = K ~ Hz 
V 

Y iKC Z Y . 
I (k/2l .sgn (.y) ....... 1 . .. , .. .1 ! (1TY) . .. 1/ (2h) sgn (y) .1/ (1TY) , 

-1 - lS. K (V) • sgn(y) I 
~ ~ - - -(2h sinh1Tu) I 
H = iKC H Hz 

=MxH 
1T 1 I z y y 

/. -.e -1T.1 u I /h .sgn (y) -1/(1Ty) .. -.1/ (1TY) -V I -ke /121TV .sgn(y) 

~ ~ - - 1 log coth(1Tlul/2) I 1 K (V) I TT 
E = iW]l CH E =iw]l NxH 

1T 0 

x. 0 y x 0 y I ; e~1Tlul I V 
I 

1 - 1 loglyl 
I 

- iT logl y I I e- //21TV I 
1T I ! 

.{21Th (Hu2) }-1 
1 . -c"IV I 

A A - - TYl'{L
2 

(V) - I2 (V) + 31T } , 
H . = S H H . =P x H 

I 2/ (1Tky2) I. y~ ye y~ ye 
2h/ (1Ty2) 1/ (21Th) .2k/ (31T) I 

1 -2 I 2 l' 

I 2 log (Hu ) -- ,- - K (V)} 
A A - - 1T 1TV 'V 1 
E =iw]l (HS) CH E =iw]l QxH 

x 0 ye x 0 ye 
1 I 2 2 I 

j 

- ~ loglyl 2/ (1Tk 2y2) I - 'iT log I y I 2h / (1Ty ) I 
-{1TV (Hu2)}-1 2 { 2 

I -- K2 (V) - -- } 
1 1Ty V2 

A A -
H =iK(1-tS)c H H =RxH z ye z ve 

.. .... ~ .-~ ~-~(1TY)d-4h2/(1Ty3). ... -. .1/ (1Ty) . 1 - 4/(1Tk2y 3) 
I - . - --- . . - --- -'-- I 
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6. ApJ2roaches to the inverse problem of electromaqnetic inductlon 

by linearization 

6.1. The Backus-Gilbert method 

6.1.1. Introduction 

The method of Backus and Gilbert is in the first line a method to 

estimate the information contents of a given data set; only in the 

second line it is a method to solve a linear inverse problem. The 

procedure takes into account that observational errors and incom­

plete data reduce the reliability of a solution of an inverse 

problem. It j.s strictly applicable only to linear inverse problems. 

Assume that we are going to investigate an "e"arth model" m (r) , 

where m is a scalar quant~ty which for simplicity depends only on 

one coordinate. For the follmling examples it will be chosen as 

the distance from the centre of the earth (to be as close as 

possible to the original approach of Backus and Gilbert). Then in 

a linear inverse problem there exist N linear.functional~ ("rules"), 

whj.ch ascribe to m (r) via data kernels G. (r) numbers g. (m) in the 
~ ~ 

a 
gi(m) = f m(r)Gi(r)dr, i'" 1, ... , N. 

o 
(6. 1 ) 

The measured values of g. (m) are the N data Y., i = 1, ... , N. The 
~ ~ 

"gross earth functionals" g. (m) are linear in m t since it is 
~ 

assumed that the data kernels G. (r) are independent of m. The in­
~ 

verse problem consists in choosing m (r) in such a "laY that the 

calculated functionals g. agree with the data y .• The Backus-Gilber1 
~ ~ 

method shows hO'l1 mer) is constraint by the given data set. Before 

going into details let us give an example. Assume that we are 

interested in the density distribu1:ion of spherically symmetrj.cal 

earth, i.e. mer) = p (r), and that our data consist in the ;>\ass 11 

and moment of inertia 0. Then 

Y1 = M, Y = 0 
2 

a 
g1 (p)=41T f p(r)r 2 dr, 

o 

G (r)=41Tr 2
t 1 

() 81T r4 G2 r = 3' 

a 
= !31T J p (r)r"dr 

3 0 
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6.1.2. The linear inverse problem 

The data may have two defects: 

a) insufficient 

b) inaccurate 

Certainly in the above problem the two data M and e are insufficient 

to determine the continuous function per). Generally, the properties 

a) and b) are inherent to all real data sets when a continuous func­

tion is sought. The lack of data smoothes out details and only 

some average quantities are available, the observational error in­

troduces statistical uncertainties in the model. (If we were looking 

for a descrete model with fewer parameters than data, then incon­

sistency can arise as a third defect.) Because of the lack of data, 

instead of m at ro we can.obtain oniy an averaged quantity <m(ro»' 
which is still subject to statistical incertainties due to errors 

in the data. Let 

< m (r ) > o 

where a is subject to 

a 

a 
- J A(r [r)m(r)dr, 

o 0 

J A(r lr)dr = 1 
o 0 

(6.2) 

(6.3) 

The latter condition ensures that <m> agrees with m, if m is a con­

stant. A(r lr) is the window, through which the real but unknown o 
function mer) can be seen. It is the averaging or ~esolution functio 

The more A at ro resembles a o-function the better is the reso­

lution at r . Resolvable are only the projections of mer) into the o 
space of the data kernels Gi.·The part of m, which is orthogonal 

to the data kernels cannot be resolved. Hence, it is reasonable 

to write A as a linear combination of the data kernels 

N 
A (r I r) = 1: a. (r ) G. (r) , 

.0 i=1 1 0 1 
(6. 4) 

where the coefficients 

that A is as peaked as 

~lOuld be to minimize 
a 

a. (r ) have 
1 0 

possible at 

to be determined in such a "laY 

r • The most obvious choice 
o 

J·{A(r [r) - oCr - r
o

)}2dr, 
o 0 

(6.5) 

subject to (6.3). For 'computational ease Backus and Gilbert prefer 
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s = 12 ! A2 (r Ir) (r-r )2 dr • 
o 0 0 

(6.6) 

Since (r-r )2 
o 

is small near r , A can be large there. The factor 12 o 
is chosen for the fact that if A is a box-car function of width L 

A ={ 
I 

0, else 

then s = L, i.e. if A is a peaked, function then s in the definition 

of (6.6) gives approximately the width of the peak. s(r ) is called o 
the spread at r . o 

We have also taken into account that our measurements y. have ob­
~ 

servational errors ~Yi' i.e. 

y. - ~y. < g. (m) < y. + ~y. 
~ ~- ~ - ~ ~ 

Insertion of (6.4) into (6.2) using (6.1) yields 

<mer ) > = o 

N a 
l: a. (r )!m(r)G. (r)dr 

i=1 ~ 0 0 ~ 

From (6.7) and (6.8) 

ll.<m (r ) > = o 

and the mean variance is 

vlhere 
E' k = by. bYk 
~. '~ 

N 
= l: a. (r }g. (m) 

i=1 ~ 0 ~ 

(6.7) 

(6.8) 

(6.9) 

.(6.10) 

is the covariance matrix of the data errors, which in general is 

assumed to be diagonal. 

Of course, we would appreciate if the error of m(r
o
)' i.e. £2 would 

be very small. But also the spread (6.6) 

(6.11) 

with a 
= 12 ! G. (r}G(r) (r-r )2dr 

o ~ k 0 
(6.12) 
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should be small. Hence it required to minimize simultaneously the 

quadratic forms 

(6.13) 

subject to the condition (6.3), i.e. 

N a 
L a< f G.(r)dr = 1 

i.=1 ~ 0 J_ 
(6.14) 

There does not ex·ist a set of a. which minimizes sand E: 2 separately. 
l-

As a compromise only a combination 

Q = Ws + (1 - W) • CE:
2 (6.15) 

can be minimized. In (6.15), c is an arbitrary positive scaling 

factor which accounts for the different dimensions of sand E:
2 and 

W is a parameter 

o < IV < 1 

which weighs the particular importance of sand E:
2

• For W = 1 the 

spread is minimized without regarding the error of the spatially 

averaged quantity <mer ». Conversely ·for W = 0 the spread s is 
. 0 

large and the error E:
2 is a minimum. Hence, in general there is a 

trade-off between resolution and accuracy-, which for a particular 

ro is shown in the following figure. 

E:
2 

I 
I 
I 

W=1 

. .~ 

E: 2 min - - - - ~ - - - ::---------1' W=O 

·---------os~-------+) s 
max 

Near s = s. the trade-off .curve is rather steep. Hence, a small 
m~n 

sacrifice of resolving povler will largely reduce the error of the 

·average <mCro»' This uncertainty relation between resolution and 

accuracy is the central point of the Backus-Gilbert procedure. 
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It remains to show a way to minimize Q, subject to (6.15). The way, 

however, is vTell-known. One simply introduces as (N+1) -st unknown 

a Lagrangian parameter A and minimizes the quantity 

Q' = Q + A(La.u. - 1), 
~ ~ 

a 
u i = f Gi(r)dr 

o 
(6.16) 

The differentiation of (6.16) with respect to the (N+1) unknOl.;ns 

yields the (N+1) linear equations 

N 
2 L a. Qik + AUk = 0, k = 1 , • • • r N 

i=1 ~ 
(6.17a) 

N 
L a. k. = 1 

i=1 ~ ~ 
(6.17b) 

where Qik = W Sik + (1-W)c Eik · 

This system of equations is easily solved. The meaning of A is 

revealed by multiplying (6.17a) by a
k

, adding and using (6.17b) 

and (6.15). It results 

In the case liT = 1, we have A = -2s. With 

<m(ro » is obtained from (6.8) with gi = 
When <mer»~ is inserted in (6.1) instead 

general not exactly reproduce the data. 

The minimization (6.15) 

·N 

a knowledge of a. (r ) I 
~ 0 

y. and £2 from (6.9). 
J. 

of m(r), it will in 

c>o, s = L a.akS. k , 
k . -1 ~ - ~ .... ,~-

N 
subject to the constraint La. u. = 1 admits for two data (N,=2) 

i=1 ~ ~ 
a simple geometrical interpretation: For constant sand £2 these 

positive definite quantities are represented by ellipses, t.he con­

straint is a line in the (a
1

,a
2
)-plane. For uncorrelated errors, 

the principal axes of £2 are the a
1 

and a
2 

axis. 

Mlen VI varies from 0 to 1 the combinations of (a
1
,a

2
) on the fat 

line are obtained. s and.£2 are determined from the ellipses 

through these points, Since all s- (£ 2) -ellipses are similar, sands 2 
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-

s max 
are proportional to the long axes of these ellipses. 

, .-6. '1.3. The' n'onlinear invers~ problem 

--

The Backus-Gilbert procedure applies only to linear inverse 

problems, where according to 

a 
= J m (r) G. (r) dr 

o 1. 

the gross earth functionals g. have the property that 
1.. ' 

gJ..' (m+m') = gJ..' (m) + g. (m' ), g. (Am) = Ag. (m) . 
1.. 1." 1. 

(6.18) 
= (6.1 ) 

This means for instance that the data are built up in an additive 

way from different parts of the model, i.e., that there is no 

coupling between these parts. This certainly does not hold for 

electromagnetic inverse problem, where each part of the conductor 

,is coupled vlith all other parts. 

In nonlinear problems the data kernel Gi (r) 'dill depend on m. Here 

it is in general possible to replace (6.18) by 

a 
g.,(m')-g. Cm)=J(m'(r)-m(r~G. (r,m)dr + O(m'-m)2, 

1.. 1.. 0 1. 
(6.18a) 

where m and m' are two earth models. The data kernel Gi(r,m) is 

called the' Frechet deri:vative or functional derivative a'c 

model m. 
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Again, from a finite erroneous data set we can extract only averaged 

estimates with statistical uncertainties, i.e. 

a 
<m(ro » = ! A(ro[r)m(r)dr. 

o 
(6.19) 

= (6.2 ) 

As in the linear case A(ro[r) is built up from a linear combination 

of the data kernels 

A(r lr) '" o 

N 
1: 

i=1 
a. (r ,m) G. (r ,m). 
~ 0 ~ 0 

Introducing (6.19) into (6.20) we'obtain 

N 
<mer » = 1: 

o i=1 
a. (r , m) q. (m) , 

1. 0 J. 

a 
q. (m) = ! 

1. 0 
m(r}G. (r,m)dr 

~ 

(6.20) 

(6.21) 

which for nonlinear kernels is different from (6.8), since in this 

nonlinear case g. (m) t- q. (m) • 
1- J. 

In the linear case, two models m and m' which both satisfy the' 

data lead to the same average model <mer ». In the nonlinear case, 
o 

the average models are different; the difference, however, is of 

the second order in (m'-m), (Exercise!) 

The Backus-Gilbert procedure in the rionlinear case requires a model 

which already nearly fits the data. Then it can give an appraisal 

of the information contents of a given data set. 

B.2. Generalized matrix inversion 

The generalized matrix inversion is an alternative procedure to 

the Backus-Gilbert method. It is strictly applicable only to linear 

problems, where the model under consideration consists of a set of 

discrete unknown parameters. Nonlinear problems are generally 

linearized to get in the range of this method!. Assume that we ' . ."ant 

to determine the 11 component parameter vector £ with pT = (P1"" ,PH: 

and that we have N functionals (rules) gi' i = 1, ... , N which 

assign to any model E a number, which when measured has the average 

value Yi and variance var(Yi): 

y. = g. (E), i = 1,2, ••• , N. 
J. ~ 
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Suppose that an approximation Eo to E. is known. Then neglecting 

terms of order O(E - Ea)2, we have 

or 

i=1,2, ••. ,N (6.22) 

Eq. (6.22) constitutes a system of N equations for the iY1 parameter 

changes Pk - Pk . The generalized matrix inversion provides a so-
,0 . 

lution to this system, irrespective of N = M, N < M, or N > M. If 

the rank of the system matrix Clgi!ClPk is equal to Min (M, N), the 

generalized matrix inversion provides in the case M = N (regular 

system): the ordinary solution,M < N (overconstrained system): the 

least squares solution_M> N (underdetermined system): the 

smallest correction vector E - Ea' 
The generalized inverse exists also in the case when the rank of 

Clgi!ClPk is smaller than Min (M, N). 

After solving the system, the correction is applied to p~ and this 

vector in the next step serves as a new approximation to E, thus 

starting an iterative scheme. 

It is convenient to q_ive all data the same variance 0-
2 thus 
0' 

defining as new data and matrix elements 

Yi - gi(Po) 

!var (y.) 
~ 

(6.23a,b 

thus weighing in a least squares solution the residuals according 

to their accuracy which makes sense. Let 

.K. .. =E-Eo (6.24) 

.. be the parameter correction vector. Then (6.22) reads 

(6.25) 

(g corresponds to the data kernels G. (r) in the Badms-Gilbert 
1-

theory). In the generalized matrix inversion first § is decomposed 

into data eigenvectors u. and parameter eigenvectors v.: 
-] -] 

'1' G = U A V = = = = 

Dimensions: g(N,M), ~(N,P), It.(P,p), ~(M,P) 

(6.26) 
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Here Q is a N x P matrix containing the P eigenvectors belonging 

to non-zero eigenvalues of the problem 

GGT.u.=A~u.,j=1, •.• ,N (6.27) 
= = -J ) -) 

and y is a M x P matrix with the P eigenvectors of the problem 

GTG v. = A~ v. , j = 1, . . . , M (6.28) 
= = -J J -J 

associated with non-zero eigenvalues. P is the rank of G. Finally 
= 

A is a P x P diagonal matrix containing just the P nonzero eigen-
= 
values A

j
. Then the generalized 'inverse of §. is 

T H=VAu. 
= = = 

(6.29) 

.H always exists. In the cases mentioned above, H specializes as 

follows 

H N P: !! 
-1 = = = G 

P = H < N: H '" (GTG)-1 GT 
= = = 

P <= N < H: H = G
T

(§. GT)-1 - = 

For the proof one has to take into account that because of the 

orthogonality and normalization of the eigenvectors one always has 

I 
=p 

("'P-component unit matrix) 

uTu -- ~ 

and in addition for 

P = H: VTv = IH 

P = N: uTu = I 
= = N 

T = V V 

= U QT 

},'or P < Hin CM, N) H cannot be expressed in terms of G. 

The generalized inverse provides a solution vector 

Its relation to the true solution x is given by 

.<x>=£),x, 

"'There A is the (H x 10 resolution matrix 

A = H G = V A -1 i? U A vT = V vT • = == == = === == 

(6.30a) 

(6.30b) 

(6.31a) 

(6.31b) 

(6.32) 

(6_33) 
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Only for P ~ M, ~ is the M component unit matrix, admitting an 

exact determination of~. (A corresponds approximately to the re­

solution function A(r ir) in the Backus-Gilbert theory. But there 
. 0 

are differences: ~ is symmetrical, A(Eoir) not, the norm of A is 

small if the resolution is poor, the norm of A(roir) is always 1.) 

In generalized matrix inversion exists the same trade-off as in the 

Backus-Gilbert method. Cbnsider the covariance matrix of the change" 

of.< x > due to random changes of y: 

T 
(l::. <x» (l::. <x» = (6.34) 

In particular the variance of <xk> is 

var(xk ) = ()"~ k=1,2, .... ,M (6.35) 

showing that the variance of xk is largely due to the small eigen­

values A •• By discarding small eigenvalues and the corresponding 
J 

eigenvectors( the accuracy of x
k 

can be increased at the expense 

of the resolution, since ~ will deviate more from a (M x M) unit 

matrix if instead of the required M eigenvectors a smaller number 

is used. -

The model <x> will in general not. reproduce the data. The repro­

duced data are 

with the information density matrix 

T B = G H = U U • 
= == = = 

(6.36) 

Only in the case N = P, B is a unit matrix. In particular, ~ 

describes the linear dependence of the data in the overconstrained 

case. High diagonal values will show that this date contains 

specific information on the model which is not contained in other 

data. On the other hand a large off-diagonal value shows that this 

information is also contained in another data. 

Valuable insight in {he particular inverse problem can be o~tained 

by considering the parameter eigenvectors corresponding to high and 



- 75 -

small eigenvalues. The parameter vector of a high eigenvalue shm~s 

the parameter combination which can be resolved well, the parameter 

eigenvector of a small eigenvalue gives the combination of para­

meters for which only a poor resolution can be obtained. 

The generalized inverse is used both to invert a given data set and 

to estimate the information contents of this data set \.,hen the 

final solution is reached. 

During the inversion procedure one has two tools to stabilize the 

notable unstable process of linearization: 

a) application of only a fraction of the computed parameter correc-­

tion, leading to a trade-off between convergence rate and sta­

bility; 

b) decrease of nunilier of eigenvalues taken into account. 

In the final estimation of the data contents one might prescribe 

for each parameter a maximum variance. Then one has to determine 

from (6.35) the number of eigenvalues leading to a value nearest 

to the prescribed one. Finally the row of the. resolution matrix 

for this particular parameter is calculated. 

6.3. 'Derivation of the kernels for the linearized inverse problem 

of electromagnetic induction 

6.3.1. The one-dimensional case 

Both for the Backus-Gilbert procedure and for the generalized linear 

inversion a knovlledge of the change of the data due to a small 

change in the conductivity structure is required. 

In the one-dimensional case the pertinent dj.fferential equation and 

datum are 

f"(z/w) = {K
2 + iW)loer(z)}f(z,w), 

C (w) = -f (o,w) If' (o,w) • 

Consider tvlO conductivity profiles er 1 and er 2 with corresponding 

fields f1 and f 2." Multiplying the equation for f1 with f2 and the 

equation for f2 with f1' subtracting the resulting equations and 

integrating the difference over z from zero to infinity, we obtain 

00 00 

r (f"f - f"f )dz = iW)l r (er
1

-er
2
)f

1
f

2 
dz 

o 1 22 1 0 0 
(6.37) 
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Now 
00 00 

! {fnf -fnf )dz=!{ (flf ) '-(f'f ) '}dz= -f1' (0)£2(0)+f2 (0)f
1 

(0). 
o 1221 0 12 21 

Division by f1 (0):£2(0) yields 

00 

C2 (w)-C1 (w)= -iw~o J 
o 

f 2 (z,w) 
---- dz • 
f 2(o,w) 

If the difference ocr = cr2 - cr1 is small, f2 in the integral may 

be replaced by f 1, since the difference f2 - f1 is of the order 

of ocr ':' cr2 - cr1 , leading to a second order term in oC = C2 - C1 . 

Hence to a first order in ocr 

00 

oC (w) = - iw~ J 
o 0 

ocr(zj{f(z,w) F dz (6.38) 
f' (o,w) 

Therefore in the Backus-Gilbert procedure the Frechet derivative 

of C is -iwV' {f (z) /f' (0) } 2. In the generali.zed inversion the deri-
o 

vatives of C with respect to layer conductivities and layer thick-

nesses is required, if a structure with uniform layers is assumed. 

Let there be L layers with conductivity cr and thickness d in m m 
the m-th layer, hm '::' z .::. hm+1 (hL+1 = 00). Then (6.38) yields 

'a C(w) = 
a cr -iwV o dz, m=1, ... ,L (6.39a) 

m 

. L-1 . f(hk +1 ,w) 2 

= -~WVo I: (crk+
1

-crk ) { } , m = 1, •• • ,Ir1 
k=m fl (o,w) 

since in the last case all layers below the m-th layer are dis­

placed too .. 

. "6".3."2.' Partial derivatives in two-' and ·three-dimensions 

(6.3 

For two-dimensions only the E-polarization case is considered. The 

pertinent equation is {cf. (3. Sa) ) 

LIE = iwV cr E o 

Consider again two conductivity structures 01 and cr 2 . 
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Then (6.40) 

Let G1 (£' [£) be Green's function for 01' i.e. 

fiG1 (£' [r) = iWllo01 (£)G 1 (£'/r) - HE - r'). (6.41) 

Multiply (6.41) by E2 (£') - E1 (E') and (6.40) by G1 (r' lE), integrate 

the difference with respect to r" over the v/hole (y,z)-plane. Then 

Green's theorem (3.29) yields 

(6.42) 

With the same arguments as in the one-dimensional case we obtain 

for small conductivity changes, neglecting second order terms, 

oE(r) = -iWll 
- 0 

! oo(r')E(r')G(r' [r)dA' - - -- (6.43) 

The kernel G(E'[E) must be determined from the solution of the 

integral equation 

G (r' [r) -iWll 
n - - 0 

! ° (rn)G (r'[rn)G(r n [r)dAn 
a- n-- --

(6.44) 

Eq. (6.44) results from (6.42) by replacing 

This substitution becomes possible, since the a-function in the 

Green's, function equations drops out when the difference II (E 2 -E 1 
) 

is formed. 

The changes of the magnetic field components are obtained from (6.43 

and (6.44) by differentiation with respect to £. - Methods for the 

computation of G (r'Ir) are given in Sec. 3.4. 
n - -

In the three-dimensional case one obtains in analogy to (6.43) and 

(6.44) 

(6.45) 

where ~iS competed by solving the tensor integral equation 

CJ(£' [£)=~ (E' [£) - iWllo ! 0a (En)~ (E' [rn) /fjeE" [r)dAn • (6.46) 

Again the 

of (6.45) 

are given 

magnetic field kernels are obtained by taking the curl 

and (6.46) \-lith respect to r. ~1ethods for calculating {'t 
in Scc. 4.2. At the moment, -three-dimensional inversijn n 

appears to be prohibitivel 
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6.4. Quasi-lineariza"tion of the one-dimensional "inverse problem 

of electromagnetic induction (Schmucker's PSI-alqorithm) 

In the one-dimensional problem it is possible to a certaj_n extent 

to linearize the inverse problem by introducing new suitable para­

meters and data instead of the old ones. 

Assume a horizontally layered half-space with L layers having con­

ductivities 0"1' 0"2' •.. O"L and thicknesses d
1

, d 2 , ••. , dL-
1 

(dM >= 00). Let the upper edge of layer m be at z = h
m 

and assume 

that layer conductivities and thicknesses satisfy the condition 

;u- d = const., m = 1,2, .•• , L-1. m m (6.47) 

Let k = 
m 

liwll 0" • 
o m Then the pertinent equation for a quasi-uniform 

external field is 

The transfer function is, as usual, 

C(w) = - f 1 (0)/f,(o) 

Introduce instead of f the new function m 

1)Im(z) = 2log{'-k f (z) If' (z)}, hm < z < h 1 m m m - m+ 

In the TE-case f and f' are continuous across boundaries, 

f (h ) f (h ) f' (h ) -f' (h ) m m+1 = m+1 m+1 ' m m+1 - m+1 m+1 

As a consequence of (6.48) and 

(6.49) 1)1 is discontinuous across 

boundaries: ___________ z=hm 

1)Im+1 (hm+1 ) - 1)1 m (hm+ 1 ) = log «()m+1 100m) 

The variation of" f in the m-th layer is m 

- -k m (z-hm) 
A+ 

+k (z-h ) 
fm (z) = A e + e m m 

m m 
, 

(6.48) 

i.e. 

(6.49) 

~_" (6. 50) 



whence 

where a = 

- 79 -

y = e 

= 

-2k d 
mm 

, 

Because of the condition (6.47), y is independent of m. 

(6.51) 

The quantity lal is the ratio between the reflected and incident 

wave at z = h
m

+
1

• Due to the conservation of energy th8 amplitude 

of the reflected wave is never larger than the amplitude of the 

incident wave. Hence, 

I al < 1 

'Equality applies to a perfect conductor or insulator. For lal « 1 

(6.S1) yields 

2a(1+ ~ a 2 + ••• ) 

or approximately 

(6. 52) 

Since the neglected term is of order a 2
, this is a good approxima­

tion for I a I '« 1. Eqs. (6.50) and (6.52) combined yield 

(6.53) 

The datum C(w) is connected with ~1 (h
1

,w) through 
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Introducing the new transfer function 

(6.54) 

where ITo is an arbitrary reference conductivity, we obtain by con­

tinued application of (6.53) 

y (w) 
. IT 0 

+ 1/.1 1 (h1 ) '" log -
IT1 

'" log 

= log 

L-1 
= l: 

m"'o 

ITo 
+ Y log 

IT1 

IT 
0 + y log v 1 

m y log 

'" 

IT1 
Y 1/.12 (h2 ) -+ 

Cl2 

IT1 IT 
+ y2 log ~ + y2 1/.1 3 (h3 ) 

IT2 IT3 

~ L-1 IT L-1 .ITL 
L~_' _(_y_-_1_)--,,·mcc.~-,1_· _y_m_-_1_l_0_g_IT..;:.:_-_y ___ l_O_g_IT.:;..O--, 

(6.55) 

In the derivation of (6.55) it has been used that 1/.IL(hL) '" O. Eg. 

(6.55) is the desired result: it expresses the new data y(u) 

linearly in terms of the new model parameter log(ITfero)' 

When (6.55) is used for the solution of an inverse problem, one 

chooses first an arbitrary IT , and prescribes the constants o . 
~~ d and L. If the occuuing conductivity contrasts are not too m 0 m . 
sharp, the inversion of (6.55) will already give good estimates 

for the layer conductivities. For these estimates the correct 

response values are calculated, and with the difference between 

the data and these values the inversion of (6.55) is repeated, 

giving corrections ~log(IT fer ) to the previous outcome. At the . . m 0 
end of the iteration procedure, the true thicknesses of the layers 

are calculated using (6.47). The errors of IT are finally trans-
m 

formed into the errors of d . 
m 

.. 



7. Basic concepts of geomagnetic and magnetotelluric depth sounding 

7.1. General characterist,ics of the method 

Two types of geophysical surface data can be distinguished to in­

vestigate the distribution of some physical property mCE) of matter 

beneath the Earth's surface. The first type lS connected with 

l? X' 

/ /"f-l- - - ___ :::- ;:-.p-I 
./ <' :::::... ,-' +-> 

.. z\~ 
r = '(x,y,z) 

R = '(x,y,z = '0) 

static or quasi-static phenomena (gravity and magnetic fields), the 

second type with time-dependent phenomena (seismic wave propagation) 

or with controlled experiments under variable experimental con­

di,tions CDC-geoelectric soundings). Geomagnetic and magnetotelluric 

soundings utilize the skin-effect of transient electromagnetic 

fields. Their penetration into the Earth represents a time-depen­

dent diffusion process, thus the observation of these fields at 

the surface produces data of the second type. 

The interpretation of static data y = yC~) is non-unique and an 

arbitrary choice 

distributions 

can be made among an unlimited number of possible 

mCE), explaining yCR) equally well. The interpre-

tation of transient data is with certain constraints unique in the 

sense that only ~ distribution m(E) can explain the surface data 

y = yCR,t), basically because o~€additional variable t (time, 

variable parameter of controlled experiment) is involved, 

If the observation of the transient process or the performance of 

the experiment is made at ,a single site, the data y= 'yCt) permit 

a ver't ical sounding of the property m = 'm (z), as surned to be a sole 

function of depth z beneath that site, If the observations or ex-
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periments are done with profiles or arrays, the data y ~ y(R,t) 

permit a structural sounding of the property m = m(z) + bm(£) 

with particular emphasis on lateral variations bm(£). 

Here m(z) represents either a global or regional mean distribution. 

It may also be the result of vertical soundings at "normal sites" 

whe"l-1C the surface data show no indications for lateral variations 

of m. Since the dependence of y(R,t) on m(£.) vlill be non-linear, 

anomalies lIy(R,t) = y(R,t) - y (t) \~ill be dependen'c on lIm and 
-' n -m( z). i. e. the interpretation of. second-type -data must proceed on 

the basis of a known mean or normal distribution m(z) consistent 

\-lith data Yn(t) at a normal site. It should be noted that in the 

case of static data of the first typ~ usually no in-tepdependence 

betl-leen by and m will exist, i. e. the interpretation of their 

anomalies is independent of global op regional mean distributions 

of the relevant property m. 

Suppose that for data of the second type the lateral variations 

lIm(£) are small in relation to iii(z). Then the results of vertical 

soundings at many different single sites may be combined to 

approximate a structural distribution m = m + lIm. For geomagnetic 

induction data the relevant proper·ty. namely the electrical re­

sistivity has usually substantial lateral vapiations and a one­

dimensional interpretation as in the case of vertical soundings 

will not be adequate. Instead a truly multi-dimensional inter­

pr'etation of the data is required \o.'hich is to be based on "normal 

data" at selected sites (cf. 8.2). Such normal sites are here. rather 

the exception than the rule. 

7.2 The data and physical pl'opel'ties of internal matter which 
are involved 

The Earth's magnetic field is subject to small fluctuations H(r.t). 

They arise from primary sources in the high atmosphere and from 

secondm'y sources within the Earth. At the Earth I s surf ace their N: 

Y. amplitude is 



-_ .... -
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orders of magnitude . smallel' than the quasi-static main field. 

Theh' depth of penetration into the Earth in limited by the "skin­

effect". i. e. b/~pposing action of electromagnetically induced 

eddy currents in conducting matter below the surface • These 

currents produce the already mentioned secondary cor~ponent of ]i. 

They are driven by the electl'ic field E(l'.t' generated by the - ' 

changing magnet ic flux according to Farad y I S induction law (cf. 

· 7.3). The time-fluctuations in J-i are referred to "geomagnetic' val'ia­

tions. those in f. as geo-electric.·or "tellur:ic" variations. 

· The connection bet\~een 1i and E is established by three physical 

properties of internal mattel': the conductiV'~1.ty (J (01' its recipro­

cal the l'esistivity p), the permeability 11 a<:.nd the dielectric con­

stant e. The permeability of ordinary l'ocks is very close to unity 

and the approximation 11 = 1 is adequate. The magnetic ef'fect of 

displacement durrents which is proportional to e can be neglected 

within the earth (cf. Sec. 7.3), leaving the. conductivity (J as 

the sole prop2·,~t' ,connecting f. and]i. Both fields tend to zero at 

. sufficiently great depth, the skin-depth 

· being a characteristic scale length for the depth of penetration 

of an oscillatory field expCiwt) into a medLum of resistivity p. 

Geomagnetic induction data are usually presel1ted in terms of trans­

fer functions which connec·t as 'functions of :frequency and locations 

certain components of f and H. Examples ar~ ~he imagneto-telluric 

transfer functions! betvleen the tangential cGll!lponents E. '<""",cl 1+ 

and the magnetic transfer functions between the vertic~l and hori­

zontal compon:;mts of li only. These transfer' functions form input 

t; data for magneto-:!:;elluric and geomagnetic ~epth .§.oundings, 
:;'..< 

." . ··abbreviated HTS and GDS. 
~ ~ . ,--, 

Notations and units. Rectangular coordinates (x,y,z) are used with 

"Z. positiVe down •. If x is towal'ds local r.1agnetic north and y towards 

local magnetic east, the follOl"ing notations of the magnetic and 

electric field compon~nts are common: 



c 

Bx = B B = Y 
D 

E = EN E = EE' • ,x ,y 

The vertical magn~tic component Bz is usually simply denoted as Z. 

All ' :)..11, b f H h d ' 1 ' equatlons are SI-unlts, ut or tetra lona geomagnetlc 

unit iy = 10- 5 GauR> may be quot~d. A-convenient unit for the 

telluric field is (mV/km). The magneto-telluric transfer function 

between (E ,E ) and (H ,H ) will'have in these units the dimension x y x y 
'{mV/kffi}/y with the conversion 

1 mY/km 
y 

to SI-units. Measuring the period T = 211/wof time-harmonic field 

variations in seconds, 

p = 1. !PT km, 2_ 

if T is measured in hours, 

p = 30.2 IPT km, 

the unit of p being in either case (Qm); )lo = '+11 • 10- 7 volt sec/ 

Ampin. 

7'.3 Electromagnetic wave propagation and diffusion through 
uniform domains 

Consider a volume V for which the physical properties )l,~,a are 

constants. Then E and H are non-divergent within V and connected 

by Maxwell's field equations (. = a/at) 
• 

rot H = aE + ~~o E 

• 
rot E = -J.1J.1 B • 0 
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Elimination of E or H yields a second or'der partial differential 

equation 
• •• 

,V 2 F = ]111 (aF + e:e: F ) 
o - 0-

where F denotes either the electric or the magnetic field vector 

(div F = 0). This equation can be interpreted as a wave equation 

or as a diffusion equation, depending on the fastness of the field 

varia'tions in relation to the decay time 

T = e:e: 1 a ' , 0 0 

of free electric charges within V. 

Let W be the angular frequency of harmonic field variations, i.e. 
• • • 
F :: iwF and F = -w 2I. Then the basic differential equation is 

conveniently written as a wave equation 

2 W 2 { ( , -1} V F :: - (c) 1 + ~«]T 0) F 

for WTo » 1 and as a diffusion equation 

V2F :: 2i{1 + (iwT )}F 
p2 0 -

for WT « o 1. In the first case the field truly )2E,,?p_~~'::t:~2 'through 

V with the speed 

( ' )-1 'factor and lWTo as absorpt~on 

In the second case the field diffuses into V with 
1 

P = (2p/w]1o)7 

as skin-depth. The diffusion can be regarded as "quasi-stationary" 
" 

in the sense that the propagation term (iwT ) is sufficiently small 
o 

" against unity. 

For p :: 11a in Qm 

5 Since p will be less than '10 Qll\ I,i thin the Earth, fields for fre-
S 

quencies up to 10 cps possess a'quasi-stationary diffusion beloH 
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the surface. Only near certain sulfidic Ol;le veins the "effective" 

decay time '0 may be in the order of fractions of seconds due to 

induced polarisation and the propaga'tion term may not be necessarily 

small against unity. 

The air just above the ground has a resistivity in the order of 

101~" stm, yielding a time constant, of about 10 minutes. Hence, o " 
fast fluctuations "propagate") VJhile sloVJ variations "diffuse" 

" from their ionospheric sources to the Earth's surface. 

For geomagnetic soundings only the field at and beloVJ the Earth's 

surface matters, regardless hoVJ the primary field reaches the 

surface. It is necessary, hOyleVer, to make one definite assumption 
" . -, 

about the nature of the primary field in the following sense: 

Non-divergent vector fields such as E and H in uniform domains 

can be decomposed into tVJO parts 

A A 

F = F + F = rot(rT) + rot 2'o't(_rS) - -I -II 

VJhere r denotes a unit vector in some specified direction, here 

the z-direction. T and S are scalar functions of position. It is 

readily seen that the so-called "toroidal" part FI is or'thogonal 

to r, i.e. in the here considered case FI is tangential to planes 

z = const. The remaining so-called "poloidal" part FII of F has 

three components: r ~ 
~ \ I / \ , /,1 r z, s \ -7-" '" 

"t r I ~ \ ) Z \-\ 

'" 
Let nOI'! PI and PIr be a "toroidal" and a "poloidal" diffusion 

vector, both satisfying 

V2p = iwp 0(1" + , )P, 
o 0 -

from Hhich the toroidal and poloidal parts of H are derived by 

definition as folloVJs: 



Observing that 

rot rot rot P ::: - rot(V:a!-grad divE) ::: -iw).lo" rot!, the electric 

vectors follow then from Max\.]ell t s field equations as 

2i P 
::: p2 rot rot RI; EII ::: -i-(::"'1-+-i-) 

Since the field which is derived from PI has a !angential magnetic 

field, it is termed the "'Ul-mode" of the total field. The field 

derived from FII ' on the other hand, has a !ange~tial electric 
field and represents the "TE-mode" of the total field. 

Suppose that the conductivity is a sole function of depth, 0 ::: o(z), 

and 'therefore the diffusion vector' vertical downward: R ::: . (010,)? z). 

Let P be in planes z ::: const. a harmonic oscillating function z . 
of x and y .1ith the "wave numbers" k:x: and ky in x and y-direction: 

Then 
rot P ::: (ik , -ik ,0) p 

Y x z 

<lP laz 
where 1:::' 0 and Ikl 2 = k Z + k 2 It can be shown that C is 
'C Po x y' 

a scale length for the depth of penetration of the field into the 

uni'forffi domain. Insert nOyl rot l? and rot rot R into the equations 

as given above and obtain the following relations between field 

components setting WTo=O: 

E =ik erE E =ik erE z x x z y x 
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Since Cl and CII cannot be zero for a finite wave number Ikl, TM­

modes will have in the here considered quasi-stationary approxima­

tion zero magnetic fields in nonconducting matter as in air above 

the ground. Hence, the existence of TM-modes within the primary 

field cannot be ruled out by magnetic observations I since it will 

be seen above the ground only in. the vertical electric field E , 
z 

provided that this vertical electric field is not due to local 

anomalies of the secondary induce~ field (s. below), In reali t~\ 

the detection of a primary E \\fill be nearly impossible because 
z 

changes of the vertical electric field due to changing atmospheric 

condi tions appear to be orders of magnitude greater -than those 

connected with ionospheric sources. Therefore it is an assumption 

that the primary fields in geomagnetic induction studies are TE­

fields. 

In that case the secondary induced field above and within 

substructure 0 = 0 (z) is likewise a TE-field. The sum of 
n 

a layered 

both 

fields will be referred to as the "normal" field H 
-n 

and E for the 
-n 

considered SUbstructure. Its depth of penetration is characterized 

by the response function CII = C
n 

which according to the basic re­

lations given ·above can be derived from the magneto-telluric "im­

pedance" of the field 

E nx 
Hny 

iWll C o n 

or fr'om the geomagnetic ratios 

H Hnz 

(MTS=magneto telluric sounding) 

nz = Ok C -H- J. , 
nx x n 

= ik C Il""" y n ny 
(GDS=geomagnetic depth 

sounding) 

Suppose the iniernal resistivity is within a limited range also 
dependent on ~ horizontal coordinate, say x: 

o =·0 (z)"+ 0 (y,z). 
n a· 

Now a local anomaly Ha(y,z) and Ea(y,z) \\fill appear within the 

secondary field. 

• 



-89·· 

Two special types of such anomalies can be distinguished. If the 

electric vector of ·the primary fields is linearly polarized in 

x-direction. i.e. 

E ~ (E , 0, 0) 
-n nx 

and consequen-tly 

H "(0, H , H ) , 
-n ny nz . 

the anomaly has an electric vector likeVlise only in x-direction, 

because the floVl of eddy currents Vlill not be changed in direction. 

Hence, the anomalous field is a ±E-field 

E "(E , 0, 0) 
-a -ax 

H " (0, H , H)·, 
-a . ay az 

This polarisation of the primary field vec-tor is termed E-polarisati 

If the electric vector of the primary field is linearly polarised 

in y-direction, the normal field is 

E = (0, E ny' 
0) 

-n 

and consequently 

H = (H , 0, 0) 
-n nx 

provided that its depth of penetration lS small in comparison to 

its reciprocal Vlave number, yielding H 
the .nz 

" O. Only Vli-th this con-

straint is flO\oJ of eddy currents conflned 

x " const. and the resulting anomalous field 

with zero magnetic field above the ground; 

E = (0) E ) E ) -a ay az 

H = CH , 0, 0). -a ax 

to vertical planes 

will be a TM-field 

This polarisation .of the primary field is termed "H-polarisation", 

For three-dimensional structures 

u = u(x,y,z) = u (z) + u (x,y,z) n a 

the anomaly of the induced field will be composed of TE-and TH­

fields which cannot be separated by a special choice of coordinates. 

'fhere is, hOVlever, the following possibility to suppress in model 

calculation the TM-moae of the anomalous field; 



Suppose the lateral variations a are confined to a "thin sheet". 
a 

This sheet may be. imbedded in-to a layered conductor from which it 

must be separated by thin non-conducting layers. Then no currents 

can leave or enter the non-uniform sheet and the TM-mode of the 

induced field is suppressed. Such mOdels are used to describe the 

induction in oceans, assumed to be separated from zones of high 
mantle conductivity by a non-conducting crust. 

~"'l' G", (~ L _ ... __2 ______ _ 

V "<-.--"---

,,-t-

Schematic summary: 

Source field 

TE 

TM 

TE 

Induced field 
normal 

TE 

TM 

TE{ 

TE { 

anomalous 

o 
o 

TE(H = 0) 
nx 

TMeE = 0) nx 

TE+TH(general) 

TE (-thin sheet) 

'AppenCl-ix: tO~7: 3-; Recurrence formula for the calculation of the 

depth of penetration C for a layered substratum (cf. chapter 2) 
p 

Definition: C = - ap ~az 
o 

Differential equation to be solved: 

which satisfies 

Continuity condictions: 

a2 p 
--..2 = {iw~1 a 

o 

1. TE-field: Hand E must be continuous which implies 
that C-is continuous 

2. TM- fie_Id: Hand (E ,E ,aE ) are continuous which implies - _ x y z 
that aC is continuous. 
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Model: 

Solution for uniform half-space: Cl = 
(0- = (5 ) 

= liwl1 (5 + o 0 

.0 

Recurrenoe formula fOl" layered half-space· {Cn = 

(5 
Cln+1 K + n tanh(a ) 

n (5 
n+1 n 

Cln = (5 
K { __ n_ + C K tanh(a ) } 

n (5n+1 In+1 n n 

C .= 
IIn 

C(z )}: 
n 

The TE-field within the n'th layer at the depth z = z + E, 
n 

z < z + c < z l' can be calculated from its surface value n n n+ 
according to: 

g(z ,z +c)} • E (0) 
n n x 

h(z ,z +c)} • H (0) 
n n x 

with g(z ,z ) = cosh S - sinh S /(K C ) . r s rs rs r r 

h(z ,z ) = cosh B - sinh B • K C r s rs rs r r 

for s·< n 

and g(z, z +c) = cosh(K c)-sinh(K c)/K C n n n n nn 

h(z ,z +cl = cosh(K c)-sinh(K c) • K C n n n n nn 
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K (z - z ) 
r s r 

The formula. for Ex applies also to Ey and Hz ' the formula for 

7.4 Penetration depth of various types of geomagnetic variations 
and the overall distribution of conductivity within the Earth 

Th1'ee types of conduction ,vhich vary by orders of magnitude have 

to be distinguished: 

1. Conduction through rock forming minerals 

2. Conduction through fluids in pores and cracks between rockfor­

ming minerals 

3. Metallic conduction 

1,: Since the minerals of crustal and mantle material are expected 

to be silicates, the conduction through these minerals will 

be that of semi-conductors. Their resistivity lS in the order 

of· 105 nm at room temperature but decreases with temperature 

according to 
-AlkT a (T) = a e • 

o 

T is the absolute temperate, k Boltzmann's constant; a and A 
. 0 

are pressure-dependent and composition-dependent constants 

within a limited temperature range, for which one specific 

mechanism of semi-conduction is predominant. Hence, in plots 

of In a versus T-1 the cr-T dependence should be repr'esented 

by joining segments of straight lines. Laboratory experimen-ts 

with rocks and minerals at high temperature and varying 

pressure have confirmed this piece-wise linear dependence of 
-1 

Ina from T . Furthermore, they shO\'led that the composi tion-

dependence of a is mainly contained in the pre-exponential 
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parameter a and that the pressure dependence of a and A should o 0 
not be the determining factor for the conductivity down the depth 

of several hundred kilometers. 

1:2.00 

f------,----, 

The a-T dependence of Olivin (Mg, 

Fe
II

)2 Si0 4 has been extensively 

investigated by various authors 

for temperaturs up to 1400 0 C and 

pressures up to 30 kbar. This 

mineral is thought to be the main 

constituent of the upper mantle 

with a Hg : Fe ratio of 9 : 1 : 

(MgO. g FeO. 1 )2 Si0 4 . The diagram 

snows the range of a(T)··curves 

as obtained for Olivin with gO% 

Forsterite (Mg
2
Si0

4
). It is believed that the discrepancies among 

·the curves 

degrees of 

over orders of magnitude are mainly due to different 
. f IT ~,III" h" h 1"" 1 oxydatJ.on 0 Fe to < e Wl t In t e 0 l Vln samp es 

used for the measurement. In fact, the samples may have been oxy­

dized in some cases during the heating experiment as evidenced by 

the irreproducibility of the a(T)-curves. However, the r'ange of 

possible conductivities for olivin with 10% fors·terite is greatly 

narrowed in at the high temperature end, where we may expec-t a 

resistivity of 10 to 100 Qm for 1400
0

C, corresponding to a depth 

of 100 to 200 km I-lithin the mantle. 

2.:Electrolytic conduction through salty solutions, filling pores and 

cracks of unconsolidated rocks, gives clastic sediments resistivi­

ties from 1 to 50 Qm. The resistivity of sea water I-lith 3.5 gr 

NaCl/liter is 0.25 Qm. There should be an increase of resistivity 

by one or two orders of magnitude at the top of the crystalline 

basement beneath sedimentary basins. 

Near to the surface the conduction in crystalline rocks is also 

electrolytic. Their resistivity may be here as 101-1 as 500 Qm, but 

it increases rapidly with depth, when the cracks and pores close 

under increasini pressure. Below the Mohorovicic-discontinuity 

the conduction through grains can be expected to be more effective 

than the conduction through pore fluids. If, however, ·partial 
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melting occurs, the conduction through even a minor molten 

fraction of crystalline rocks could l.clIler the res isti vi ty by, 

say, one order of magnitude. 

3.: Metallic conduction is expected to gi:l.'e the material in the oute 

core a resistivity of 10- 5 nm. This 1.0.1 value is required by 

dynamo theories for the explanation of the main field of the 

Earth. 
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The frequency spectrum of geomagnetic variations which can be 

utilized for induction studies extends from frequencies of 

fractions of a cycle per day to frequencies of 10 to 100 cycles 

per second. At the low frequency end an overlap wlth the 

spectrum of secular variations occurs ,-,hich diffuse uplvar'ds 

from primary sources in the Earth's core. 

~£.l}~m~J:.j._9.-J3'p'_~9~rum of geom",gneti~y.a.ri~ions: 
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Dst (=~i~turbed)-variations: After magnetic storms the horizontal 

H-component of the Ear-th f s magnetic field shO\.JS a worldvJide de­
crease. Within a week after stormbeginn H returns asymptotically 

to its pre-storm level. This so-called Dst-phase of storms shows 

negligible longitudinal dependence, while its latitude dependence 

is well described in geomagnetic coordinates by 

BD (I) = - H cost; 
st 0 

I is the geomagnetic latitude of the location considered. The 

source of the Dst-phase may be visualized as an £quatorial Eing 

current (ERC) which encircles the Earth in the equatorial plane 

in geomagnetic coordinates: 

i 
I r 

. - loo _~ 

1f th_e interior of the Earth were a perfect insulator and no eddy 

currents were induced, the vertical Dst-component would be ZDst = 
B sin I. In reality, only one fourth to one fifth of this value o 
is observed due to the field of eddy currents which oppose in Z 

the primary field of the ERC. Let LDst denote the inductive scale 
re rh It,-o 0 
\JO'< '1:. = ~ length of Dst' a be the Earth I s radius, then for I = 45 

2C
Dst Z = -Dst a 

(cf. sec. 8.2) 

Hence, with ZDstlBDst :: 0.2 the depth of penetration will be 600 

kni. 
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~ (§.olar .9.uiet) variations: On the day-lit side of the Earth thermal 

convection in combination with tidal motions generate la~ge-scale 

wind-sys'tems in the high atmosphere. In the ionosphere these winds 

produce electric currents which - for an observer fixed to the 

Earth· - move with the sun around the Earth. During equinoxes there 

will be two current vortices of equal strength in the northern and 

southern hemisphere, th~ir centers being at roughly 30 0 N and 300 S. 

Due.to these currents local-time dependent geomagnetic variations 

will be observed at a fixed site ,at the Earth's surface. They .are 

repeated from day to day in similar form and are called ttdiurnal tt 

or Sq-variations: 

_~1_~_I_, "' 'J si ",..-d 

1--­

o 
---, 

• 0 
~OJf 1 ' 

i 
....•.. - ... -.-~. ------

'-. 

Again th.e ZSQ-Amplitude is much smaller than to be expected from 

D f ']. E h If Z(m) d D(m) d . SQ or an lnsu,atlng art. 'SQ an SQ enote the amplltudes 

of the rn'th subhannonic of the diurnal varic,tions (m= 1,2,3) I! 
. . d ) c (mY correspondlng to the perlo s T = 24, 12, 8, 6 hours and 'SQ the 

inductive scale length of this subharmonic, 

z(m) = CSQ 
sQ a 

(m+l)(m-l-2) H(m) 
m sincj> SQ 

(cL 8.2) 
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with. as geographic latitude. From the ZSQ : HSQ ratio of continental 

stations a depth of penetration between 300 and 500 km is inferred. 

The penetration depth of SQ in the 'ocean basins is still uncertain. 

Bays and Polar Substorms: During the night houps "bay-shaped" de­

flections of the Earth I s magne'tic field from the normal level are 

observed from time to time, lasting about one hour. Their amplitude 

increases steadily from south to north, reaching its highest value 

in the auroral zone. Similar variaiions, but much more in-tense and 

rapid, occur during the main phase of magnetic storms, un·til about 

one day af-ter stormbegin. 

The source of these so-called "polar substorms" is a shifting a,)d 

oscillating current lineament in the ionosphere of the aurora zone. 

The curI'ent will be partly closed thr·ough field alligned currents 

in the magnetosphere, partly by wide-spread ionospheric return 

currents in mid latitudes: 
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If th.e Ear-th. were non-conducting, \,e would observe south of the 

pOlar electrojet PEJ strong Z-variations during polaI' substorms. 

They vlOulcl represent the field of a line current and be comparable 

in amplitude -to Jl- and D-vaI'iations, arising :from overhead "rcturn 

currents I! in mid-latitudes. In reality, the Z-amplitucle during 



polar substorms is in mid-latitudes Ce.g. Denmark, Germany) much 

smaller than the amplitudes of Hand D because the vertical field 

of induction currents nearly cancels the vertical field of the 

polar je-t. Under "normal condi....-tions" -the Z: H ratio is about 1: 10. 

Assuming for the 

number of 10- 20 

of penetra-tion is 

mid--lati tude s ubstorm field an effective loJave 
_ -4 

000 km, yielding kx - 3-6'10 as wavenumber, 

Z 
= Hbay k 1 - 150 to 300 km. 

bay x 

depth 

There are indications that the penetration depth of bays into -the 

oceanic substructure is substantially smaller. The ocean itself 

produces an attenuation of the H-amplitude of about 75% at the 

ocean bottom, deep basins filled with unconsolidated sediments can 

yield a comparable attenua-tion ('8. g. North German bas in) . 

Pulsations and VLF-emissions: Rapid oscillations of the Earth's fiel 

with periods between 5 minutes and 1 second are called pulsations. 

Their ampli-tude increases like the ampli-tude of substorms strongly 

\>Ihen approaching the auroral zone. Their typical midlatitude 

amplitude is 1 gamma. The source field str'uc-lure of bays and pul­

sations is similar, the depth of pene-tra-t:ion of pulsations being 

largely dependent on the near-surface conductivity. It may range 

from many kilome-ters in exposed shield areas to a fel-l hundred 

meters and less in sedimentary basins. 

The "normal" Z: H ra-tio of puls ations is too small to be deterrnin8cl 

with any )Oeliability outs ide of the auroral zone. HOIoJever, "analflalo\ 

Z-pulsutions. are frequent and usually of very local charalcter. If 

pulsations occur in the form of lasting harmonic oscillations, oite! 

vii th a beat-frequency, they are called "pulsation trains" pt, sin!,)., 

pulsation events are' called "pi", pulsations Iolhich mark the be­

ginning of a bay· disturbance are called "pc". All three types have 

a clear local time dependence, occuring almost daily: J f 
H 0..,.. -::::> -p ~ t "J, rI cyw 

'Pc 11/ 
jV 

,d-u1r------- --, 
<10 -1-ni)lt('1cf 

l_~ ___ ._._. ___ . __ • ___ ~_ .. 



Very rapid oscillations with frequencies between 1 and, say, 100 cps 

(::Hz) are called - from the radio enginieers point of view -

"::!.ery low !requency emissions: VLF~ Their amplitudes lie well below 

ly. They occur usually intermittendly in "bursts" and are contrCllled 

·in their intensity by the general magnetic ac-tivity. In e'xposed 

shield areas they may penetrate dOl-ll1lvard a few kilometers, but 

everywhere else they will be totally attenuated ~Iithin -the very 

surface layers. 

Sudden storm commencements and solar flare effects: The begin of a 

magnetic storm is usually marked by strong deflections in Hand Z 

up to 100y within one or two minutes. This so-called "sudden storm 

.£ommencemen-t" SSC, signals- the inward motion of the magnetopause 

(separa-ting the magnetosphere from the interplanetary space) under 

the impact of a suddenly increased solar wind intensity. SSC's 

are a world wide, simultaneously occuring phenomenon. They are, 

however, -too rarely occuring events (1 per month) for induc-tion 

studies. 

The momen-tarily increased solar wave radiation, caused by sun spot 

eruptions, produces a shortlived (S minutes) intensification of the 

Sq-system, its magnetic effect is called a "solar flare event". It 

measures a few gammas and like the ssc is a rarely observed var>ia-

-tion type. 
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8. Data Collection and Analysis 

8.:1. Instruments 

Magnetic sensors for geomagnetic induction work on land should meet 

as many as possible of the following requirements: 

(1) Sufficient sensitivity and time resolution 

(2) Directional characteristics I-Ihich allow observation of the 

magnetic variation vector in ~ell-defined, preferably ortho­

gonal components. 

(3) Stable compensation of the Earth's permanent field, if re­

quired. The sensors should not show "drift" on a time scale 

comparable to the slowest variations to be analysed. 

(4) Compensation of temperature effects or linear temperature de­

pendence with \'Jell defined temperature coefficients for subse-' 

quent corrections. 

(5) Low power consumption to allow field operations on Het or dry­

cell batteries Cless than 100 mA at 10 to 20 Volts DC con­

tinuous power drain). 

(6) Minimum maintenance, allolving unattended operations over days, 

weeks or months, depending on the period range to be investi­

gated. 

" (7) Electric out put signal, adaptable for digital recording 
"" 

No single sensor system can possibl~ meet all requirements over the 

full frequency range of natural geomagnetic variations an.d the 

choice of instruments will depend on the type of variations under 

investigation. They record either the total field H = H + 6H as 
'{ 0 

sum of t~e steady field H and the variation field o~by compensa-
o· -

tion of H , the time-derivative A = oA or a combination of 6H and 
_ 0 ~* 

bH. In geomagnetic'"latitudes the spectral amplitude dis·tr'ibution of 

oH and oil, averaged over extended periods of moderat.e miwnetic act.i­

vity, is the follo\'Jing: 

K the variation field oH only 
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The nex-t diagram shows the resulting spectral range of adequate 

sensitivity and stability for various magnetic sensors, suitable for 

geomagnetic studies: 

Bays. PuIs. VLF Obsv. 

Performance on 
point (2) to (7) 
2 3 4 5 6 7 

,):,orsion fibre 
magnetometer 
(Askania vario~­
graph, Gough· 
Reitzel vario­
graph 1.) 

i 

I 2.) 
,--
i 
I 
I 
I· 
I 

\ 

I 

I 
I oH + + + + + 

I 
\ 
I 
I 
i 

Fluxgate in21gne-1 
tometer (foer- i 

ster Sonde) 3.) 

, oH + + ;- + 

Grenet-vario­
meter 1.) 

Induction coilsi 

Proton prece-

oH, oH + + 

+ + 

ssion magne-to--'-------­
metel' 3.) 

B toH + + ,. 
o 

Rb-vapor magne­
tometer 3.) 

1. ) 

2. ) 

3. ) 

H +oH o + + 

Compensation of H by mechanical tor'que o 
Bobrov-quartz variometers cJovilet variometers 

) . 
Compensation of Ho with bias fields 

{-

+ 

The horizontal components of the surface elec-tpj c field E which is 

connected to oH and oIl can be estima-ted ei-ther from the knov7ledge 

of the depth of penetration C at the period 1: or from the knO\vledge 

of the resistivity p of the upper layers, assumed to be unifor'm. 

Measuring H in (r), C in (km), T in (sec) and p in (am) gives 

=1!S.p'H 
T 

%1v. 

Using the spectral amplitudes as given above and C 
(--

from'previous 

section) the follO\.Jing spectral ampli tuc1es of E/H and E are obtained 

for mid-latitudes during moderate magnetic activity: 

+ 

+ 

-I-

+ 
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A horizon'tal elect'ric field component in the direction s is observed 

as the fluctuating voltage E • d between -two electrodes in a distance s 
d parallel to §. Due to possible self-polarisation of the electrodes 

a quasi-steady voltage of considerable size lnay be superimposed 

upon the fluctuating voltage, truly connected to geomagnetic vari.a­

t~ions. This self-poten-tial amounts for elec'tr'odes in a salt solu-

tion comparable to 

> 1 

100 

10 

0.1 

ocean vlater 

\101-t 

mV 

mV 

mV 

to: 

for unprotected iron rodes 

Cu-CuSO~ electrodes 

Kalomel (= biophysical) electro, 

Ag-AgCl?(=oceanographic)electro 
" 

It may vary slowly under changing conditions in -the vwi:erbea:rj_ng soi 

Hence , it should be as small as pos sible in comparison to the vo:L-tag 

truly connected to oH and of!. This applies in par-ticular "to periods 

of one hour and mOJ"e. There are two options Jco avoid these ull\vaJ1"ted 

electrode effects: Large electrode spacing (d ::. 10 km), high-quali'l:y 

electrodes. Preference should be given to the second option, using 

electrode spacings of, say, 100 m. The use of a large electrode 

spacing does not imply necessarily that a mean electric field, 

averag-ed over local nealo-surface non-uniformities, wiLL be obser'vecl, 

since the observed voltage may s-till be largely determined by local 

conditions near to either one of the electrodes. In any case, the 

site of the electrode installation should be surveyed with .dipol­

s6undings or DC-geoelectrics to ensure layered conditions at and 

be-t'veen electrodes, 
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8.2 Organisation and objectives of field opcrations 

Geomagnetic induction work can be carried out by (i) single--site 

soundings, (ii) simultaneous observations along profiles, (iii) 

simultaneous observations in arrays covering extended areas. It may 

be possible to replace simultaneous by non-simultaneous observations, 

provided that -the variation fie id can be "normalized" with respect 

to the mean regional variation field. This "normal'! field may be 

the field at one fixed site with no indications for the presence of 

lateral non-uniformities, or it may be the averaged field obtained 

from distant permanent observatories. Usually the noY'malisation is 

perfoT'med in the frequency domain, introducing se-ts of transfer 

functions. 

Single site vertical sounding: 

The resistivity structure within the depth-distance range of penetra' 

tion is regarded a sole function depth: p = pCz). Its extent is 

given by -the modulus of -the induc-tive scale length C(w) at the con-
0.< "P sidered frequency, v1hich increases \vi th 

the increas ing pel'iod. If a ~ti_c:~-l]-.. 

geomagnetic sounding is to be carried 

out, the source field Have-number s·truc" 

ture as function of frequency, ~ = ~(w), 
must be lenoHn Ccf. Sect. 7.3 ). 

For diurnal Sq-variations, fOl' instance, Ivave-numbers are del'i vable 

from the fact that the Sq-field of the equinoxes is symmetric to 

the equatol' and moving Hi·th local time from east to Hest. Hence, 

the east-I'lest Have-number of the m' th subhaPlDonic of Sq will be 

m/a Hith a denoting the Earth's radius. 

Magne~~o--telluric soundings are independent of the ",'ave number, pr'o­

vided that the depth of penetration is sufficiently small in com-
- -1 1 parlson to le lee I « 1. Taking the gencpal dependence of C on k 

into account, it. is preferable to stay Hith vertical soundings in 

the range in \vhich C(w) is' independent of k. 
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For a da-ta reduction in the frequency domain (cL Sec. B.3) the 

following set of transfer or response functions will be defined: 

Hnz ::: A H E ::: Z H n nx nx xy ny 

Hnz -- B H E ::: Z H n ny ny yx nx 

For a frequency-space factor of the source field 

exp{ilwt + k R)} 

the response function C(w) ::: C which characterises the dowl1\oiard 
n 

depth of penetration is connected'to these transferfunctions accor-

ding to 
A Z 

C ::: n --.:£:L. 
ik 

::: 
n iWllo x 

B -z 
C ::: n ::: ~ 

n ik iW]Jo y 

The Cagniard apparent resistivity if 

p (w) ::: (Jp I C (W) 12 , a 0 n 

the phase of the impedance by 

$CW) ::: arg(Zxy) ::: arg(Cn ) 

the modified apparent resistivity by 

p"CW) ::: 2 wjl{ImCC )}2 
o n 

given by 

Hhich can be used as an estimator of the true resistivi-ty a-t the 

depth 

(cL Sec. 2.5 and 9.1) 

A compurison ,of the various equivalent response 

given sUbstruetur~ives the following display: 
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Tests for the assumption of a layered distribution and the source 

field wavenumber are given by 

z = xy 
z 

xy 

In addition there are certain constraints with regard to modulus, 

phase and frequency dependence of the transfer functions. Ccf. Sec. 

2 . 6 ) . 

The compatability of MTS and GDS vertical sounding results can be 

tested by the requirement that 

H = wV'{k E - le E } 
nz 0 x ny y nx 

asreadily seen form the second field equation rotE = -iwV H . 
-n o-n 

If the wave-number structure of the source field is not kno,,;n, a 

1I0rizontal Gradient GDS can be fOl'med: Observing that 

. aE dE 
. H n" nx -lWV = --.:..:..L - --o nz dX dy 

the differentation of E = C iwV H wi·th respect to y and of nx n 0 ny 
E = -iwV C H with respect to x yields ny 0 n nx 

dH dH 
H = C {~ + -.!lY.}. 

nz n dX . dy 

Since the electric surface field may be distorted by lateral non­

uniformities even Hhen their scale le,ngth and dep'th is small In 

comparison ,to the depth of· penetration, 'the E-field observaU,0i1s 
. 

may be replaced by observing the tangen'tial· magnetic field also 

at some devth d belO\, 'the surface, i. e. by conducting a Ver.:tical 

Gradient _GDS. No lenoHledge of the vlave-number str'uc'ture of the 

source field Hill be required, but"the resiitivity p bet0een the 
. ·0 . 

. surface and the subsurface points of observations \~ill be required. 

Assume that the lateral gradients of H are small in comparison 
nz 

to the vertical gradients of Hand H in vieH of the condition nx ny -. 
Ikcl « 1. Then it £ollmls readily £loom the first field~quation 

-.J 

rot .!:In = (J 0 ~ for d < z < 0 tha't 

dH 
--.!2Y 
dZ 

dH nz - ay-
, BH 

- _-.!!Y. = 
dZ 

E /p rx 0 
and 

{lE 
nx az- - - E Jp. 

ny 0 



-10/-

Let q be 

H (H ) 
nx ny 

the tranfer function betvleen H (H ) at the surface and nx ny 

Then 

at the depth z = d: 

H (d) = q H (0) 
nx nx 

ilH 
nx -az- and C 

n 

\~here I q I < 1. 

= 9 -1 
iwil a d o 0 

Single si,te geomagnetic structural sounding: The SOUl'ce field is re­

garded as quasi-uniform Ck = 0) and the vertical magne'tic component 

therefore as anomalous, arising sOlely from lateral changes of the 

resistivity wi'thin the depth-distance range of penetration, where 

In this special 

H = CH ,H , -a ax ay 
normal magnetic 

domain: 

Here 

p = p (z) + p (x,y,z)\ 
n a 

case the resulting anomalous magnetic vector 

H = H ) 
az z 

vector H -n 

is linearly dependent on the Quasi-uniform 
• . J. 

= CH ,H ,0) iJi the frequency-distance 
nx ny 

H = W H 
-a -n 

(xx :xy
) VI = VJ yx yy 

Vl zx Wzy 

denotes a matrix of linear transfer functions as functions of fre­

quency and surface location. This implies that also linear relations 

exist between H and the total (=obser0ed) horizontal variations: z 

H = A H + B H az x y 

with 

H = H + H x nx ax H = H + H 
, Y ny ay 

W =A(1+W )+BW 
zx xx yx vI =BO+11 )+AVl 

zy yy xy 

These alternative transfer functions A and B can be derived now from 

observations at a single site. Their graphical display in the form 

of Parkinson-Wiese induction arrows indicates the trend of the sub­

surface resistivity structure '"hich is responsible for the appearance 

of anomalous 'Z-variations: 
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The in-phase induction arrow is defined by (in Parkinson's sense of 

orientation) by 
A " £ = - Re{x A + Y B} 

and the out of-phase arrow by 

q tt + Imais{~ A + " y B} 

where x and y are unit vectors in x- and y-direction. Generally 

speakirig, the in-phase arrows point tONards internal concentrations 

of induced currents, i. e. to zones of lower than ttnormal tt re­

sistivity at one particular depth. TheYmay point also avlay from high 

resistivity zones around which the induced currents are diverted. 

Vertical soundings with station arrays: 

The resistivity structure is regarded as layered, P = p(z)Jbut the 

inducing source field as non-uniform. Inducing a-nd induced fields 

Hill have mc_tching wave-number spectren with well defined ratios 

betHeen spec-tral components in accordance to the subsurface re-

si s ti vi-ty structure. l3-eftea-t-ft-4he-s-'EeFt-ie-]'l---frp-rB:)I-\±n-6-e-p---e0-n-s-i-d0-pa=8--GHs-, 

e_lJ-€~:,_..:t-lw-tJ.g-h--_t-h_i_&--1-a-'t€-!'a-±-_tlffi_fO't'm-i-t-y_ma-y-':_B-e--_~i-pe-El---GR-ly-f~-a 

li-mi-"te-El--G-ej.l-'Eh---pafl,g-e-i-B--wh-i-e-h--'Io-ft-e-±-l-1B-1.tB€cG---etH",pe-n:H>-ma-,h-n;1-y--f:=kBw- _ 

_ (.g.e-0nta-gne-t-i-e-eB-\1He-i-n-g.,-magH0-t-G~~l?-i--B-&0tlR-El±B-g-;i,-B--E-I'el-aPi-&a+i-eR 

wi-t.-h-pe-s-pe0-~-Fe--s-'d-Pf-a-e-e-B4:-Ptl~pe+. 

Let U and V be field components of the surface field in the frequency 

distance domain: U = UCw,R), V = VCw,R). They are decomposed into 
A A A 

the wave-number spectren UCw,k), VCw,k) 

+ co A ikR 
U(W,R) = J J UCw,k)e 

- «> 

V(OJ,R) = ... 
with 

" "- 1J (w' _ kf 
RCw,k) = -'-'-'---A 

VCW:,k) 

dk 
Y 

according to 

dk x 
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as transfer function between A and B in the wave number domain, which 

contains the information about the internal res:i_sti vi ty distl'ibution. 

A vertical sounding of this distribution is made by considering 

R as a function of frequency, k being fixed, or vice versa. 

If the array covers the whole globe, the sphericity of the Earth re­

quires the replacement of the trigonometric functions by spherical 

harmonics in spherical coordinates (r,6,A): 
co n 

U(w,e,A,r=a) = E E 
n:= 1 m=o 

a: Earth's radius; 

fer functions have 

pmCcos6): Associated'spherical 
n 

then the form 
UmCw) 

RmCw l = --,--,n __ 
n VmCw)-

n 

function. The trans'-

The first and still basic investigations of the Earth's deep conduc­

ti vi ty structUl'e have been carried out by this approach (SCHUSTER, 

CHAPl1AN and PRICE). 

If the array of stations coveps only a region of limited extent, it 

may be impr'acticable to de-compose the observed field into wave­

spec-tral components or it may be even impossible because only a small 

section of the source field structure has been observed. In "chat 

case vertical array soundings ape carried out preferably with response 

functions in the frequency-distance domain. 

Suppose the source field is quasi-uniform ,in one horizon-tal direc·- ) 

tion, say, 

u = U Cw ,y) and V = V (w ,y). Le:-t 

1 RCw,y) = 
211 

+'" A ik 
J R(u],ky)e y 

-00 

dk 
Y 

be the inverse Fourier transform of R. Then, jf V is given by the 
A A 

'!2r<;>duct. of R with U in the (!J, kl domain, V vlill be given by a 

'convolution of R wi-th U in 'che (w,y) domain: 

+00 
with ,R H U:= J RCw,y-nl U(nldn. 
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If, for instance E = V and H = U, the magnetotelluric relation 
x y A A 

E· = w~ C H of x 0 y 
the k-w domain \ViII transform';' into 

with NCw,y) as Fourier transform of CCl0,k). Observe that reyersely 

-too 

C(w,k) = f NCw,y)e.- iky dy 

and therefore 

CCw,O) = f N(w,y)dy. 
_00 

Hence, if H 1.S quasi-uniform within the range of the kernel N, 
y 

E (w,y) = iw~ C(w,O) H (w,y) x 0 y 

which is the CAGNIARD-TIKHONOV relaticn commonly used for single 
. "' site sound1.ng_s. 

In a similar way the magnetic ratio.of vertical to horizontal· va­

riations can be generalized to 

H Cw,y) = M(w,y) K H Cw,y) 
y y 

Hith M(w,y) as Fourier transform of iky C(w,ky )' 

The response functions N and M have their highest values close to 

y " 0 and approach zero for distances y which are large in compari-

son to the modulus of C(w,k=O): 

\1\1 e> .... \..-<. ""ty\.t'''n \re.... -cL-v'<'Y'l Cl j " ------

L-_____ ~-" 
---~7 

.t. J 

J 

--:1. 
)' s ; ";r'l.,{~'----

" :l , --" r "7 
'" , 

L ______ . _____ -:: 
7 

Hence, as to be expected, only the field wi"chin a certain distance 

from the point or area of interest influences the relations betVleen 

field components used for geomagnetic or magnetotelluric vel,tical 

soundings. Consequently, the requirement of a layered structure 

applies only to this limited depth-distance range as characterized 

by I C LW ,0) I . 



-111-

§tructural soundil~ with station arrays: If not only the source 

field but also the resistivity structure are laterally non-uniform, 

no generally valid linear relations be-tween normal and anomalous 

field components exist. In -the following it will be assumed that 

the source field is either quasi-uniform or for a given frequency 

well represented by a single set of wave numbers. Then the rela­

tions betVTeen the various field components can be expressed by 

linear transfer functions in the frequency-distance (w,R) domain. 

They can be formulated either for the "normal" horizontal field of 

the whole array or, if necessary, also for the local horizontal 

field only. In either case it is necessary to remove from the ob­

served vertical magnetic component its normal part in accol·dance 

to the normal resistivity dis-tribution and the source field struc­

ture. It is assumed that the normal depth of penetration is small 

in comparison to the scale length of lI,on-uniformity of the source 
.., . ~ 'l.V1~"c..I, .. ,...., rt i-:s, th C\ r ... " 

fleld, i_.e. H «H , H ~~~ the lnternal dlstrlbutlon of eddy nz ny nx, 
currents will be independent of the source field structure. 

Under these constraints the foll0l'7ing linear relations can be for­

mulated: 

H = H - H 
-a -n 

or al-ternati vely 

= 

w xy 

W yy 

VI zy 

z xy 

z 
yy 

= A H + B H x y 



The.se sets of transfe.Jfunctions represent 1 h ' t f h ~J _ : e 1npu -or t e model 
calculations to explain the anomalous fields H ox' E in terms of -a -a 
a resistivity anomaly 

Pa(x,y,z) = P - Pn(z), 

P (z) being- known. 
n 

There exist various constraints about acceptable sets of transfer 

functions, for examples the functions in either one column of VI 

must describe a magnetic field of solely internal origin as dis­

cussed below. 

The basic complication in the presence of 3-dimensional structures 

is due to the fact that the TE and TM mode of the anomalous field 

cannot be separated, This separation is possible, however, if the 

resistivity structure is 2-dimensional, say 

P = Pa (y t ,z) . - a 

If then the normal E-field is linearly 

polarised in x'-direction, the 

contains only TE modes with E -a 

anomaly 

parallel 

to x, and H in 
-a x, -constan-t: 

r/·~· ~//. 
' .. ! - j- ~'> 

.f' ,: ')' 
I 1 ,~ 

J ,.' '/ 

/' /1 
" '" ! 

, 
E-polarisation. 

planes 

If the normal magnetic field is parallel to x I , i:he 

anomalous field is 1n the TM mode wi-th zero magne-tic fields above 

the ground. Hence, H -a 
const.: H-polaris,ation 

= 0 for z = 0 and ~a 

Ccf. Sect. 7. 3). The 

lies in planes X'­

new sets of transfer 

functions in (x' ,y' ,z) coordinates a:('e given by 

o 

W' = 

Z-L 

.\vhere the subscript (1\ ) refers to E-polarisation and -the subscript 

(J_) to H-polarisation. The resulting symmetry relations for Wand 

Z in general (x,y,z) coordinates can be derived as follows: Let 

=( 
c s 

) ( -~ s 0 ) T TH = c 0 
-s c 0 0 1 

be rotation matrices, transforming E and H from (x,y,z) to (Xl ,yt ) z) 

coordinates, c = cosa -and s = sina: 
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E' = T E H' = T H -11 -n H' = TH H -a n 

Since 

E' = Z'H' = Z'TH = TZH , 
-n -n -n 

it follows that 

Z = T-1 
Z' T. 

In a similar way it is readily verified that 

W = T~l W'T. 

Hence, 
2 - scH

hll + s I-1h \1 

"(: 
( -cs I zl\+Z.l.1 

W scl-1
h11 

2 Z = c W
h11 2 2 

s vlzl\ c I-1zll 
c Z.L'- s Z!\ 

which implies that. 

W + W = Ii!h\\ xx yy 
and Z· - Z _. zn.

J1 
- Z. I 

xy yx ..... 

are invariant against rotations and that 

vi -W =0, 
xy yx 

c
2

Z\\- s2ZJ.1 

cs! ZH+Z . ...! 

"Skew" parameters which charac·terise the deriation from true 2-

dimensionality are the moduli of the expressions 

1-1 -1-1 
.2:L-Y!":. 
1-1 HI xx yy 

and 
Z +Z 
~-Y.Y 
Z -Z xy yx 

) 

If a geomagnetic sounding at a single site has been performed near 

such a 2-dimensional structure, the relations which connect A and 

. B with Hand H reduce to 
zx zy 

Bsc) 

If -the first relation is multiplied by c and the second relation by 

s and then the sum of both is taken, it foll0l1s that 

Ac + Bs = 0 01' B/A = - tgo:. 

This implies that the in-phase and out-of-phase induction arrows 

will be everyt~here perpendicular to the trend of the structure, 

which can thus been found. 
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In magnetotelluric soundings information about the trcnd comes from 

the fact that 

-2Z xx 
Z +Z xy yx 

2 Z 
=-.~= 

Z +Z xy yx 
tg 2Cf.. 

However, after Z has been rotated into Z' for the thus found angle Cf., 

no distinction is possible which one of the off-diagonal elements of 

Z' refers to E- and H-polarisation. If in addition the direction of 

the geomagnetic induction arrow is known, such a dis-tinction becomes 

possible. Furthermore _ ! ZI\ [, > [Z.l..[) if the structure is better conduc­

ting than its environment and vice versa. Hence, it can be decided 

whether the induction arrOVl points toward a well conducting zone or 

away from a poorly conducting zone. 

The distinction between the impedances of E- and H-polarisation is 

.~mportant, if fop, a first estimate a i-dimensional interpretation of 

Z by a layered substratum is made. Such an interpretation may give 

meaningful results for ZU, but in general noi: for Z.-L' A tes t _for the 

proper choice of the impedance element for a i-dimensional interpre­

tation comes from the fact that vii thin a given area ZII varies less 

from place to place than Z~. 

A test for self-consistency of the transfer functions \17h and \'i z alar!) 

a profile y' perpendicular to the strike of a 2-dimensional struc­

ture arises from the purely internal origin of the anomaly: 

and 

where 

K ;)( f = 
IT 

1 +00 
! f U() / (y' -n I ) an I 

-00 

denotes a convolution of \-I
h 

(or W ) wi 1:h the kernel functi on j hry. 
z 

8.3 S.I'.ectr·al Analysis of Geomap;neticInduction Data 

The objective of the da-la reduction in the frequency domain is the 

calculation of transfer functions. They linearly relate functions 

of frequency4~ field component Z -to one or more other fiel~};-ompo­
nents X, Y, .... Let Z(t), X(t) and yet) be the obs~r0ed time va­

riations of Z, X, Y during a time intervall of length T either from 



·-
the same or from different sites. Let Z(w), X(w), yew) be the Fourier 

transforms of ZCt), XCt) and YCt). Then a linear relation of the 

form 

ZCw) = A(w) X(w) + BCw) Yew) + 5Z(w) 

is established in which A and B represent the desired transfer func­

tions between Z on the one side and X and Y on the other side; 5Z is 

the uncorrelated "noise" in Z, assuming X and Y to be noise-free. 

As the best fitting transf:;r functions will be considered those l,hic1-

produce minimum noise < [oZ[2 > in the statistical average. Here the 

average is to be taken either over a number of records or within 

extended frequency bands of the width l;f which is L times greater 

than the ultimate spacing 1fT of individual spectral estimates. The 

. noise: signal ratio defines the residual £Cw),~atio of related to 

observed signal the coherence R(w): 

£2 = <1~zI2> 
< [Z [2> 

The coherence in conjunction 1-7ith the degree of freedom of the 

averaging procedure establishe.s confidence limits for the trans fer 
- -

functions A and B. 

The averaged products of Fourier transforms are denoted as 

S < Z Z x >: spectrum of Z. -- pOl-1er zz 

S < Z Y 
j{ > . spectrum betl<leen Z and = cross zy 

wi-th S = Sj{ 
zy yz 

In summary, the data reduction involves the £ollol-1ing steps 

Ca) Fourier transformation of time records 

Cb) Calculations of power and cross-spectra 

Cc) Calculation of transfer functions 

Y 

Cd) lClalculation of confidence limits for the trans­
ferfunctions. 

Steps Ca) and Cb) can be subs-ti-tuted by the following al ternati vas: 

* Ca ): Calculate auto-correlation functions R CT), zz 
correlation (unctions Rzy (T), '" Hi th T being a 

"T « T: 
rnax 

and cross-

time lag, 
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R (T) = f Z(T-t) Z(t)dt 
zz T 

R (T) = f Z(T--t) Y(t)dt 
zy T 

with 0 < T < T max 

(b*); Take the Fourier transforms of the correlation functions 

and obtain as in (b) power- and cross-spectral estimates, 

if the averaging is done vIi thin frequency bands of the 

width ~f. There is a formal correspondence between the 
-- -1 

maximum lag T and ~f • max 

The actual performance of the steps Ca) tq (d) with one or more 

sets of records is now described in detail. 

a. Fourier tl'ansformation. The time series and their spectra are 

given, respectively to be found, 

which are equally spaced in time 

a.t discrete values of t and w, 
and free] uency. Let Z e-tc. be - n 

'instantenuous value of Z(t) for t = t , n = 0,1,2, '" N with 
n 

~t = t 1 - t . Outside of the record, extending from t to t
N

, n+ n 0 

Z(t) is assumed to be zero. 

Let Z m be the Fourier transfor-m of Z(t) for the frequency f " f 

an 

m 
Because of the finite length T of the record the lowest resolvable 

frequency and thereby the frequency spacing will 
-1 

T = nf - f and f has to be a multiple of fif. 

be given by 

Because Z(t) is - 1 m 
given at discrete instances 

vable frequency, called 

procal of (nt'2), i.e. 

the 

and f 
M = M~f. 

/:;,:t 
--7 ~ 

of -time, ~t apart, the highest resol-
r-, • ' 

:cN",y-,g~U=l.::::s....:t=--.:f:..:r=e-"g-"u:.::e::.:ns.Y, will bet 11 ere c i -

_-:1. 

r<'<- 'T' ------ ----') -
! 

<>(---------- (). IJ.t ) 

I· 
rv 

121 
----') I -<'---

i.,-/ o l. 
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+00 
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-iw t T -iw t 
f Z(t)e n dt :: J Z(t)e n dt 

o 
will be evaluated Dumerically according to the trapezoidal formu.la 

of approximation, Setting 

Zo :: ~[Z(to) + Z(tNU 

and observing tha-t 

w t :: 21T f t 
m n m n 

21Tmn 
:: -rr 

the discrete Fourier transform of Z(t) is 

Z m 

N-l 
:: fit {r Z (cos 21Tnm n -N-

n::1 

. . '21Tnm) 1 l sln--
N

- ! m :: 0,1, .. , M 

A linear trend of the record .~i thin the chosen interyal may be 

written as 

Z' et) :: d(t - t 
T 0 

.vi th 

T - -) 
2 to < t < tN 

A cor'rec·tion for this trend in the frequency domain implies that 

the imaginary Fourier trans form of Z' (t) , 

z' e f ) = (-1) m-1 i d T m = 1,2, ". H 
m 21Tll 

is substracted from Z 
m 

A second correction arises from the fact that Z(t) does not vc.nish 

necessarily outside of the chosen intervall. In that case the 

original time function can be multiplied in the time domain \·d.th "­

weight function Wet) which is zero for t < to and t '> tN' The 

Fourier transform of the product 

Wet) • Z(t) 

is given by a convolution of Z with the Fourier Tl'ansform of 11: 

W(w) * Z(w) :: i r. W ~ z~ 
A m-m m 
m 

A frequent.ly used Height func"cion is 

Wet) -_ 1[1 21TCt T)-J - + cos -- -t'--
2 2 T 0 
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which has Hie Fourier transform 

N 

w(fl 

W(f=f ) 
m 

1'1"' 

= 
{i for m 

= 
0 

, T 
for 1 ll\ 

= 11 

0 for m > 1 

The convolu,tion of W with descpete values of Z peduces then to 

1 - , 
(2-(Zo + Z1) m :: 0 

<z > = 1 ~ W A' 
m T m-m ZA =')1:. Z + l(Z +2. )"1. m 2 m If m+ 1 m-l j 

1 - -
2(ZI1_1+ ZI1) 

m = 1, 2, ... N-l 

m = 11 

where -.: Zm > is the discrB -te Foupier trans form of vJ(t) • Z et). This 

smoothing procedure of the original spectrum is ca.lled "hanning" 

after Julius von Hann. 

In certain cases it will be necessary to apply a numerical filter 

to the time series to be analysed before_ the Fourier transformation. 

This filtering process consists in a convolution of zet) with a 

filter function Vet) in the time domain and thus corresponds to a 

mul tiplication of Z with vi in the frequency domain. But because 

tlle filtering procedure is intended to ppepa1"e the time series for 

the Fourier transformation it must be carpied out in the time domajn 

If W denotes the filter weight for t :: t , the discrete fopm of 
II 11 

the convolution is 
+D 
"l~ax , W x Z:: ~ W A • ZA 

-DJ'Jax 
n-Xl Xl 

Usually even 'filteJ"s are employed, vl(t) :: I-J(-t) to preserve 'the 
> -

COl"Y'ect phase of the Fouriel" components. The -transform of vi is chose: 

in such a way that it acts as a heigh-, 101-1- or bandpa.ss filte1" for 

fr,equency-independent ( = "white") spectra: 

IO\H r tt.C'. 

f, 
! ( b(~1'd~'"'IQ.H 
, ,. 

(l f,-.. , ~--".. ,;~ ...- _. _ ... , ,,-
, '< 
I ./' \ , \ 
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The vleig~'t function \>J is then found by calculating in Foud,el" tl'ans­

form of W: 

W e+ iwt dw 

The purpose of filtering the 'time series before making a Fourier 

'transformation is 

(a) a prewhitening of "che spectrum, levelling off peaks and compen­

sating spectral trends 

(b) a reduction of unwanted larger spectl'al values close to zero 

frequency, arising from a background trend in the time series 

(c) a suppression of spectral power beyond the Nyquist frequency 

to avoid "a,liasing". Spectral values for the frequencies 

f 2M- r , fr and f 3M- r ,' f M+r , f M_r etc. 

are undistinguishable (1' = 0,1;2, ... , M-1): 

<- JJL-· --7 

·h. Calculation of pOHer and cross spectra: Let P denote a product 
---- ill ...... X "" ..... x . 
ZmZJ~' ZmY~ etc. for a frequency fm' m = 1,2 .... 11. The calculat'ion 

of pOHer and cross spectral estimates from r'eal data requires that 

such produc'ts are averaged wi,th ~ cer-tain degr'ees of freedom, V'-: 
Suppose that the available record length just gives the desired re­

solution l1f '" T-1 for the transfer func'tions to be detePlllined. In 

this case spectral products 

individual records and then 

P have to be clGri.ved for a number of 
m 

to be averaged. Average the spectral 

products and not the spectral values! The resulting mean value 

Srn = < Pm > 

is tbe desired pONeI' or cross spectral es,timate. If 1, records have 

been used, ~'" = 21, because the sine- and cosine'transfor'ms of the timE 

series contribute independently to the calculatiolls of S . m 
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If the record length T allows a floequency pesolution Af 

is much smaller than a meaningful resolution Af for the 

= T- 1 which 

transfer 

functions under consideration, then P can be averayed over 
m 

L = Af/Af spectral values within (M/L-1) frequency bands of width 

Ai between f 0 = 0 and fM = MAf. 

Taking the avepage of P Ivi thin fpequency bands implies that g. nu­
m 

mer>ical filter Q(f) is applied to P(f), yielding the desired power-

cross spectrum by convolution: 

S = Q x P ::: Af m 

+M 
k 

-M 
(P = "px). The filters to be used are even functions of f, bel-

-m m 
shaped and with zero values outside a range which is smallep then 

M Af. Setting Q(f) = 0 fdr f > fQ' 

m 
S = Af{ ~Q QA(P A + P A) + Q P } 
In A" m m+m m-m 0 m 

m=1 

8f j 

\ Illlli I"I! ! I ! 
ill_ "_I ~_i ~t ..'-1-'-'-...l.I_1 

I 
I 61 I---T 
: ?- r---4' j . 

I ~I' 1.-1 
'~L' ' I j! 
i I: i -, 
l___ !_-__ I __ 

o 1-" fM 
-0 f -'> 111. 

The"pesulting smoothed spectral estimates 

roughly L = liflAf degr>ees of freedom. The 

dom \r'may be somewhat smaller, depending 

of the filter. T~ey are defined as 

S have been derived with 
m 

effective degrees of free-

on the frequency dependence 

-'It' = 2 var(u) 
var (uq) 

wh~re var(u) denotes the variance (=dispersion) of a random variable 

u(f) and var(uq) the varlance of Q x u, hence 

'rv = +~ 
J 

-to 
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THO convenien't filters ,are 

'the Parzen f:Llter QCf) 3 (sinx)4 = T 
'j X ' 

the Bartlett filter QC£) 1 (sinx) 2 = T 
2 x. 

wi th x = :!!. fT. The bandl'lidth 
2 

is given 

fil ter) . 

-1 
by"'ir C Parzen filter), 

respectivity by 2/T CBartlett For the Parzen filter the 

degrees of freedom are V' = 1. 84 Land fQ = 2/T~ 

l"axU-., S; C.l.~ 

" \ ' - \, "I , , 
'\ '; "-
'I I --,... 

o 

'c. CaTculat'ion 'cif 'tra'rlsfe'rfl.ln'ctions 

The non-correla'ted part of Z is 
n 

6Z = Z - A X 
m m 'Tll If) 

<:> 

B Y n, In 

...... -

for the frequency fm . In the average over L adjacent frequencies 

or L individual records the power-spectrum of the non-correlated 

part in Z shall be a minimum: , 

- -s = < CoZ ~ oZ~) > = Min! oZ0z If) n) 

Hence, the derivatives of S6z0z vd,th re~pecit t~ the real and ima­

ginary parts of the transfer functions AIT\ and Bn, have to be zero: 

() S (lS 
6z6z +i~oZ =<Cz-A X _ 

aReCA
n

) almCA) n 
n' 

B Y)X ~ > = 0 
n 

A 

= 
B 

S zx 

S 
zy 

etc. 



··122--

using the notations as_intr~duced above. The subscripts m are ommittec1 

Elimination of either A or B yields the basic formula1;s for the de­

termination of transfer functions in geomagnetic and magnetotelluric 

soundings: 
s s s S 

A = zx yy zy yx 
S S - [s [2 

XX yy xy 

s s - s S 
B = zy xx zy xy 

S S - [s [2 
XX yy xy 

The coherence can be derived from 

R2 = (AS + SS )/S 
xz yz zz 

as it is readily seen from 

. S . = S - AS - BS . {j.zoz zz xz yz 

If only a relation between Z and X 01; Y' is sought or if X and y 

are linearly independent (S = 0), then the above derived relations xy 
reduce to 

A = 
S 

zx 
S xx 

s s xx zz 

S 
B = .....3IY. S 

yy 

[s [2 
R2 =~_ 

S S yy zz 

s [s [2 + S [s [2 
\1\1 zx xx zy R2 = ....L.l..- _ 

S S S xx yy' zz 

I 

d. Calculation of confi.dence limits for the trans f-'er functions 
, . 

In order to establish confidence limi,ts for the transfer functions 

A, 13 of the previ.ous section it is necessary to find 'the probability 

dens i ty _ fun9tion ("pd fll) of their devia'tions from their "true tI 

values A , B . We assume that estimates of A and 13 according to the o 0 
least-square method of the previous section are Vlithout bias, i.e. 

without systematic errors (E = expected value): 

E(B) = 13 o 

Henceforth, random variables will be written Vlith capital letters 
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(e.g. X), their realizations by observation with lower case letters 

(e.g. x), and their true values Hith the subscript "0" (e.g. x ). o 

Let f(X) be the pdf of a variable X. Then the probability that a 

realisation x exceeds a value G is 
00 

Cl. = J f(X)dX. 
G 

Hence, there is a "confidence" of 

B = (l-a) • 100% that x doe~ not 

exceed G. 

The folloHing pdf's Hill be needed in this section: 

(1) The "Gaussian Normal Distribution" of a normalized variable 

\vi th the dispersion 1 and zero mean value: 

(2) The X2-distribution fOl" v degrees of freedom: 
2 

f (1') = 
X 

1 

(y. 1) ! 
2 

2 V 1 (X )"2 .-
2 e 

-X-
2 

(3) The Fisher-distribution for ~1 and v
2 

degrees 

v
1
+v

2 
~1 v~ (v~_l). 

( --2--- --1)! v 1 v 2 F 

of freedom: 

·These distributions are encountered in the following problems: 

Consider a random variable X Hhich is normally distributed Hith 

a .dispers ion 

Let 
x = 

1 n 
E 

n i=l 
X. 

1. 

be the. realized .sample mean value of n realizations of X. These 

mean values are also normally distributed with the dispersion 

E(lx - x 12) = Lx var(X) = 
o 2 • 

n' J. 

according to the "central limi·t theorem". 
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Let 

1 E Cx.-x)2 
n-l 1. i 

be the realized dispersion within a sample of n observations. 

Then the normalized dispersion 

Cn-l)S2 
U = 

will be a random variable with 

degrees of freedom. Let S~ and 

a X2 distribution for u = n-l 

S2 be the dispersions within 
2 

samples of n l and n
2 

observations of two different variables 

Xl and X2 • Then the ratio of their normalized dispersions 

S2/s2 
F = 1 01 

S2/s2 
2 02 

will have a Fisher-probability density distribution f F Cn-l,n-2). 

We regard now the Fourier transforms Z, X, Y as random variables 

Z, X, Y and denote their realization for a single record or a 

single frequency component as x, y, z. In a similar way, a and b 

shall be the realized transfer functions for a limited number of 

records or a limited frequency band t1f, their true values being 

a and b . We assume now that Z depends linearly only on X and 
o 0 

that X is observed error-free: 

Then 

E C X) = x o 

z = a x + oz 
000 

oz is the "realized" not correlated part of z for a single o 
record. The variable Z shall be normally distributed with the 

dispersion 

var C Z) = 8 2 
0' 

which will be also the dispersion of oZ: 

ECZZ¥) = ECoZ oZ*) = S2 
o 

By minimizing the uncorrelated power <OZoZ*> = S,' for a number 
uzuZ 

of records or for a number of frequency lines within a frequency 

band of the Iddth t1f a realization of the transfer function A is 

obtained: 
a = <Z X"'> 

<X Xi'> 
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Observe that the residual, of Hhich The pOHer has been bloougll't to 

a minimum, is 

OZ ::: ax - Z 
o 

in contrast to the lI-true 11 residual 

OZo :: 

The random variable 

U :: 

a x o 0 
- z. 

has a X2-distribution with n degrees of freedom, where n is the 

number of records or the number of lines used to obtain the 

average. 

If a variable U Hith a X2 :distribution of v degrees of freedom is 

decom~osed into two components U1 and U2 ' 

U :: V
1 

+ U
2

, 

V
1 

and U
2 

will be likewise .X
2
-distributed and the sum of their 

degrees of freedom will be v: 

v :: \l + \l 
1 2' 

This decomposition \vill be carloied out now wi-th U as defined 

above: Clearly, 

The power of the averaged residual has been minimised by setting 

Hence, 

implying that 

;/ «Z - Ax)x >:: O. o 0 

'= .::.l6zl~~~_ 
S2 

o 

has a X2-distribution of n - 2 degrees of freedom because 

11 
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must be a X2-distribution of 2 degrees of freedom 

real and imaginary part of (A - a o )' The ra-tio 

U2/2 IA-ao12 ~lxol2 > 

F = U1 /(n-2) = <16zI 2 > 
• 

in view of -the 

n-2 
2 

has a Fisher-distribution f F (2, n-2). Using the notations from 

above, 

S 
6z6z 

<Ix' 12> = S o xx' 

S 
zz 

and observing that 

= IS 12 /(S • S ) the Fisher-distributed ratio becomes zx zz xx' 

F = n-2 
2 

We have found no\" -the pdf of the deviation of A from its true value 

to be in terms of its modulus 

lA - a I = IAI RE I ~2 F . o \ n-

Let G 
B = J f F (2, n-2)dF 

o 

be the probability that F does not exceed the value F = G, observing 

that fF is a one-sided pdf. Then there will be the probability B 
that the modulus of A lies within the confidence limits' 

in the complex plane. 

The threshold value G for a desired value 

of B can be obtained in ciosed form because 

Hence, 

m ml-1 n-2 = (--:) - Ivith m = m+l" -2-' 

G 
B = J f F (2, n-2)dF -

o 
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,. 

or 2 
G 

1 1 = 
S)l/m 

- . n-2 Cl -
Example: n = 12 and S = 95%: 

2 1 ..,. 
n-2 G = 20') - 1 = 0.82 

or 
!MS! !A! 

E 0.91 = • 
R 

2 1 
n = 12 and S = 99%: /-- G = /1oo~ - 1 = .rr:-s = 1. 22 

n-2 1 ' 

2 5 
n = 12 and S = 50%: l n-2 G = l2 - 1 = r.T5 = 0.39 

For large n and m » lny Cy 

valid: 

1 . = l-S)' the following approximations are 

2 G:: 1. lny 
n-2 n 

!Ma! = !A! E • /In? . 
" Rlii 

This approximation. exemplifies the general propaga.-tion-of-error laVl, 

namely that the errors are 2'educed proportional to the square r'oot 

of the number of observations. 

In the more general case that Z depends on X and Y Ivith a non-zero 

coherence between X and Y confidence- limits can be obtained j,n a 

similar Vlay: Let 

z = a x + b Y + OZ , o 0 0 0 0 

assuming that now X·and Y are realized error free. Then the risher-

distributed ratio, involving 

b . turns out to be 

the deviation of A and B from a o and 

0' 

4 

which has a f r (4, n-4) distribution. The confidence limits for A and 

B cannot be calculated individually, 

to be zero. On the o-ther hand, if Vie 

are equal, 'then 

F = !A-a !2 o 

S + S + R~{2S } 
xx yy xy_ 

E 2 S zz 

unless of course S is taken xy 
assume that !A-ao ! and !B-bol 
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which alloHs the determination of combined confidence limits for 

A and B. The threshold value of F for a given probability i'> can 

be derived from 

1-fl = 1 (1 + ~-) -

1 + 1G 
m 

(~) Hith 

m+2G 

n-4 
m = -2-' 

8.4. Data analysis in the time domain, pilot studies 

. Suppose the time func·tions to be related linearly to each other are 

not oscillatory but more like a one-sided asymtotic return to ·the 

undisturbed normal level after a step-Hise deflection from it: 

-~---.-.-----. -_._._.-

It may then be preferable to avoid a Fourier transformation and to 

derive inductive response func·tions in the time domain. 

If Z depends linearly only on X, i.e. 

-Z(w) = A(w) • X(w) + 6Z(w) 

in the frequency domain, then ZCt) Hill be derived from XCt) in 

the time_ domain by· a convolution of XCt) Hitl1 the Fourier ·trans-

form of A, 
1 

ACt) := -21T 

+00 
f ACw) iwt d e w. 

Since Z C·t) cannot dcpend on )( C t) at some future time T > ·t, the 

response function ACt) must be zero for t < 0, yielding 

Z(:t)-6Z(t) = ACtheX(t) = } 
A(:t-'T) 'XCt)dT= fACt' )XCt-t' )dt' • 

o 
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As a consequence, the real and imaginary part of ACw) will be related 

as functions of frequency by a dispersion relation: 

Re(A) " K x ImCA) 

with KCw) = ;w 
The time-domain response ACt) is now determined from a given record 

of ZCt) between t = 0 and t " T by minimizing" {BZCt)}2 within this 

intervall: 

T '" 
!{Z(t) - fACt') X(t-t')dt,}2dt - Min! 
o o 

Lt is assumed that XCt) is known also for t < O. Differentation (vith 
"-

respect to A(t=t) gives 

'" T " A 

f A(tt){ f X(t-t')-X(t-t)dt}dt' 
o o 

T A 

= f Z(t) X(t-t)dt. 
o 

Let again Z "Z(t = n"At) denote the value of Z at equally spaced 
n 

instances and let A , be the value of ACt') for t' = n'At. Then the 
n 

replacement of the integrals by sums yields a system of linear 

equations for the determination of the An" n' :: 0,1, ... N: 

N' N 
l.: A;{ l.: 

n! =0 n n"o 
X n-n 1 

for n = 0,1,2, ... N. 

-
N 
l.: Z X A 

n n--n n=o 

Chosing N < N, the response values can be determined by a least­

square fit. Otherwise a generalized inversion of the system oE 
equations can be performed. 

Consider the limiting cases that 

(1) the frequency response is real and independent of 
frequency, 

(2) -the frequency response is imaginary and proportional 
" -1 

to w 

a 
o 

A :: 
2 

The first case is realized by the inductive 'scale leng"tll C above 
, n 

a perfect conductor' at -the elep-th Z7. or by -the impedance fop a thin 
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sheet of the conduc-tance 1 above a non-conduct ing s ubstr'atum: 

C = ZK, Z = 1/1. The second case can be realized by the same n n _ 
models, interchanging C and Z Ccf. Sec. 9.1): n n 

C 
n 

The Fourier transforms 

Z 
n 

of 

a Ht-O) 
o 

1-----­
I 

= 

Al 

h 
iW]1-

0 

and AZ are 

A et) = 
- Z 

ro 
sinwt 

b o J -w- = 
-coo 

<v l\ - I.", [-\1 ',-

- -----~-==---

t ---" 

sgn e t hb 
o 

Hence, in the first case Z depends on X at tlle same instance of 

time only, in the second case on X with equal weigh-t during the 

entire past: 

t 
,- Tlb f X(-t' )dt' 

o 
-00 

These simple relations are very useful to conduct a pilot reduction 

of sounding data. Case e 1) applies to magnet:otelluric soundings in 

sedimental"Y basins, underlain by a crystalline basement, to ver­

tical geomagnet'ic soundings vli-th very long periods, reaching the 

conducti ve part of the mantle, and to structural geomagne-tic soun­

dings where the perturbed flow of induction currcn-ts is in-phase 

with the normal magnetic field. 

The. bas ic linear relation for structural geomagnetic soundings can 

be written then simply by products in the time-domain: 

net) = A • Het) + B • H (t). 
az x Y 



This l'elation implies that -the local geomagnetic disturbance vector­

H = (H , H ,H ) lies at all instances of time in a plane which 
- x y az 
is fixed in space. The intersecting line q of this plane with the 

(x ,y) ·-plane gives that polarisation of the nonnal field vector
J 

for 

which no anomalous vertical variations are ptoduced. In the case 

of 2-dimensional structures, this would be the direction of their 

trcmds CcL Sect. 8.2). 

Various graphical methods have been developed to find the orienta­

tion of this "prefer-red plane" for the local geomagnetic distur­

bance vector. In a "Parkinson-plot" the orientation of -this vector 

is displayed for individual events on a unit sphere. They tend 

to fall onto a plane intersec-ting the sphere. The projection of the 

unit vector normal to thi~ plane defines the length and direction 

of the "Parkinson induction arrow" at the considered site. The 

orientation is chosen in such a manner that a horizontal disturbance 

in the direction of the induction arrmv is connected with a posi-

tive (=downward) anomalous 

vI -

H az 
N 
_t_ 

I 
S 

- E 

For th.e constl'uction of a "Wiese-diagram" the ratios 

u = and 

are plotted in Cx,y)-coordinates for indiv:idual even-ts,u in x-

direction and v and y-direction. 

onto a s·traight line, having '!:he 

The points eu,v). tend to fall 

equation 

1 = A • u + B·v, 

from which the coefficents A and B 

can be calculated. The "Wiese-induc­

tion" arpm" with A as x-component and 

B as y-component is opposite to the PnT'kinson arroh'. 



In an "Untiedt diagram" the endpoints of the horizontal disturbance 

vector (H H ) are drawn as a curve in (x,y)-coordinates during a 
x y 

single event. Lines (,hich connect time ins·tances of equal vertical 

disturbance H will then be parallel to the.intersecting line of 
i'.z 

the preferred plane wi·th the' (x ,y) -plane. The "induction arrO\,JS I! 

are normal to these lines and their length is given by the ratio 

of H to the s imul taneous horizontal disturbance vector., pro]' ected az ~ 

onto the direction normal to the connecting lines. 

X"" I~ Y 
Ir--~-'-, 

. Parkinson and Wiese diagrams which utilize the If , H ,H relatiom 
az x y 

of numerous individual events can be employed also in the case of 

2-dimensional structures with an anomalous field which is not 

exactly in-phase \-lith the normal field. Then more 01' less simisoida 

variations are chosen with readings at well defined times, e.g. at 

the time of maximum deviation of H from the undisturbed level. az . 

• 
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9. Data interpretation on the basis of sel'ect'ed models 

9.1 ~ayered Half-space 

The interpretation of geomagn~tic sounding data by a layered re­

sistivity distribution p = Pn'z) is appropiate at those single 

sites or fOl" those arrays Hhich do not shoH anomalous magnetic 

Z-Var'iations and Ivhich have a polarisation-independent magne·to­

telluric impedance: 

W = 0, 

The transfer functions to be used for the interpretation are 

the inductive scale length 
for zero Havenumber 

the impedance 

the ratio' of internal to 
external parts in the 
Havenumber domain 

C ([o,0) 
n , 

S 
n 

1 - kC 
n = 1 + kC 
n 

The transfer function of the 'l'-algorithm to be used for the lineari­

sation of the invers~ problem is 

y = 2 In(!iwll Ip C) 
n 0 0 n 

Hhere p is arbitrary reference resistivity (cf. chap. 6.4). o 

Considering these transfer functions a.t one particular frequency) 

the par'ameters of the folloHing models can be derived directly 

from them. These parameters may then be used to resemble as func­

tions of frequency certain characteristics of the true resistivity 

distribution. All formulas are readily derived from the formulas 

for TE-fields at zero Havenurnber in chap. 7.3, annex. 

, 
(a) Single frequency interpretation of the modulus of transfer-

functions (C'agniard-Tikhonov): the model consis·ts. of a uniform 

half-space. Its resistivity is 

= Wjl I C I 2 _. 
o n W]J o 

_. 0.2 
E 

l h~12 U'lm), 
" y 



(b) 

if the period T is measured in seconds, E in mV/km and H in y. , x y 
p is the "Cagniard'apparent resistivity" of the substratum at 

a 
the considered frequency. 

Single frequency interpre-tation of the l'eal part of Cn : 

The model consists of a perfect conductor a-t 
;{ 

the depth z = z beneath a non-conducting -top 

layer. 
ImCZ ) 

= REdc } 
n 

= __ n_ 

Wllo 

is the depth of the "perfect sUbstitute conductor" at the con­

sidered frequency, indica'ting the depth of penetration into 

the substratum at that frequency. 

(c) Single frequency 
~~ 

in-terpretation of the imaginary part of C : 
n 

The model consists of a thin conductive top 
T (, 
. =, "'\~=:r:, == 

, \ \ g""',CIO \ \ 
\, , \ \ ", \ \, 

layer of the conductance T;{ = J a(z)dz, 
o 

covering a non-conducting half-space. This 

apparen-t conductance is given by 

T;{ = 
-Im(C ) 

n 

Wll Ic 12 o n 
= 

-Im(C ) 
n 

Re(Z ) 
n = ---

Cd) Single frequency interpretation of amplitude and phase of response 

functions; q, = arg{Zn}' 1: 0 < q, < 1T/4: The model consists of 
;{ 

a thin top layer of the conductance T above a uniform substra-

tum of resisti vi-ty p;{7': 

-Im(C ) - RealCC ) 
n n = 

Wjl I C 12 
0- n 

= p • a 2 

Re(Z ) ,- Im(Z ) 
n n 

2~ 1T/4 < • < 1T/2: the model consists of a non-conducting top-

layer of thickness h above a uniform substratum of the re-
'- .. ;{ 

s~st~ v~ ty p : 
• 

h - Real(C ) + Im(C ) = 
n n 

ImCZ ) 
n 

Re(Z ) 
n 

* p = 2 wll'{Im(C )}2 = 
o n 



I{ 
p can The "modified apparent resistivity" be used as an estimator 

'" thd h"!-of the res1st1v1ty at e ept z = Re{C } 
n 

h 
1 l{ • 

= + '2P w1th 
f:"Y" 

pI{ = /.0!-_P_ as apparent skin-depth of the subst~'atum. The representation 
Wl1 

of the tgue resistivity distribution p(z) by the modified apparent 
. .. d' . b' ~ ( I{) ~ . 11 d' t . f d res1st1v1ty 1str1 u-t1on p z 1S usua y a equa -e, 1 - P ecpeases 

with incpeasing depth. It is less satisfactopy, if p increases with 

depth. 

(e) Multiple frequency intepppetation with a three---layer model: 

= Wll Th = o 

as thickness 

2 h d
1 

pi 
of the 

This interpreta-tion combines the single 

frequency lnterpretations (b) and (c), i.e. 

the model consists of a thin -top layer with 

the con,ducta)1ce T, a non-conducting in-ter­

mediate layer of the thickness h above a 

perfectly conducting substra-tum. Then 

h 
1 + in s 

J 

is the induction parameter of the model with d
1 

top layer and P1 /
--2 ;-:;-- . 

= 1 --- as lts 
Wll T o 

skin-depth 

"i-th the requirement that P1 « d,. . 1 

If ns » 1, implying that h »> P1' the induction is predominan-tly 

in the surface sheet, the r'esponse functions 

C 
n = 1 

iWll T ' 
0_ 

z = n 
1 
T 

ape independent of h, thus allolrling a unique determination of T. 

In par-ticular, 

Hence, if y = 
are reference 

1 
p " 

a l<l11 T 2 
o 

log P Ip and x = a 0 
va.lues), then 

log TIT eT" o 

y = x - logC21T]J o 

period; Po and To 

• 

i'..e. the Pa vs. period CUI've in log-log presen~cation is a straight 

;1: vli'l:h l<l as curve parameter 
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line ascending under 450
, its intersection poin-t on the x-axis 

~~~.-----

given by 

or 

" 357 

x 
with TT " To • 10 I in seconds and Po in nm. 

If, on the other hand, ns « 1, the.re will be effectively no induction 

in the thin sheet and 

The log-log plot of Pa vs. T is again a straight line, now ~~-'='~ 

din~ under 45°: 

y :: -x + 

The depth h is determined by the intersecting point x
J 

with the 

x-axis! 

t 
1 

o 

, , 

, 
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Exercise 

Geomagne-tic variations. in H (nor-th component), D (east component) 

and Z (vertical component) have been recorded a-t Goettingen from 

September 5, 17 h to September 6, 2h GMT 1957. During the same time 

intervall records have been obtained also of the telluric fleld in 

its north component EN and its eastcomponent EE' Scale values and 

directions of positive change are indicated. 

(1) Determine the magneto-tellur~c impedances EN/D and EE/H for 

fast (period:: 10 min) and slo\, (period:: 1 hour) variations, 

evalua-ting peak value readings of pronounced deflections from 

the smoothed undisturbed level. 

Calculate the apparent resistivity p and estimate the phase <p 
o 0 0 a 

of the impedance (0 , ± '+5 , ± 90 ) • Interpret p and <p with . a 
one or two layer models fo~ the two period groups separately. 

Then search for a model which could explain both period gr'cups 

by calculating the response function y and solving a system 

or two to four linear equations. 

(2) The magnetogram shows pronounced variations in Z which in view 

of the low latitude of Goettingen can be interpreted as being 

due to a resistivity anomaly. Check the correlation of Z with 

Hand D by visual inspection. Then choose effec·ts with 

distinctly different H : D ratios and determine the coefficient 

A and B for the anomalous vertical field Z = AH -I- BD. 

Interpret the result. 

• 
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9.2 Layered Sphere 

The sphericity of, the real Earth has to be taken into account, 

if for the considered frequency the depth of penetration is 

'comparable to the Earth I s radius a divided by N. Here N is the 

highest value of the degree n of spherical su~'face harmonics 

which describe the surface field as functions of la-ti-tude and 

longitude. There is a formal correspondence between the wave 

number k and n/a or bet-ter InCn+l)/a (s. beloH). 

Only the long-period variations Sq and Ds -t pene-trate deeply enough 

to make a spherical correction of their plane-e arth response 

functions necessary. The Dst source field is effectively of the 

degree n = 1, while the Sq source field contains spherical har­

monics up to N = 5. In fact, the surface field of the m'th Sq 

subharmonic is well described by a spherical harmonic of the 

degree n = m + 1 when m ranges from one to four. The ra-tios a/N 

are therefore roughly 6000 km for Dst and 3000 to 1200 km for Sq. 

These values have to be set in relation to -the depth of penetration 

of Dst from 600 to 1000 km and to the depth of 

from 300 to 500 km. 

penetration of S 
q 

Hence, in either case there will be the need 

tion, but it should be noted that it will be 

of a spherical correc­

bigger for S because 
q 

the greater spatial non-uniformity 

of deeper penetration of D t' 

of Sq outVJeights the effect 

_ s 

The theory of electromagnetic induction in conductors of spheY.'ical 

symmetry surrounded by non-conducting matter can be summarized 

as follows. Let 

be the magnetic and electric field vectors of time-harmonic TE­

mode fields in spherical geocentric coordinates; r is the geo­

centric distance, A the angle of longitude and e the angle of 

co-lati~cude Coo 90 0 
minus la-titude) on a spherical surface. The 

diffusion vector from Sec .. 7.3 points 

radially inwards toward l' = 0: 

from external sources 



with 

and 

rot rotP= 
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P = (0, 0, P ) -r 

rotP 

-p is expressed on a surface r = const. by a series of spherical r 
surface harmonics. The diffusion equation V2p = iW)JG P vlithin o v -
the v'the shell is -then solvable by a separation of variables 
(K 2 = iW)J 0 ): v 0 v 

N n 
P = iK E E 

r v n=l m=o 

where the characteristic radial function fill satisfies the ordinary 
n 

second order differential equation 

Its general solution are spherical Besselfunctions jn and nn of 

the first and second kind, 

with Am 
n 

decribe 

and Bm as complex-valued constants of in-tegra-tion. They 
n -

the in--going (Bm) and out-going (Am) solution, the latter 
n n 

being zero 5elow: the ultimate shells, surrounding an unifoI'm 

inner cope, because n has a singularity at r = 0 while j .,. 0 _ n n 
for r ->- O. 

The charac-teJ'istic scale length of pene-tl'ation is defined as 

cm = r fm; m 
n n gn 

wi-th d(r fm) 
gm = n 

n dr 



The field within the conducting sphere, r < a, is derived from £'. 
as described in Sec. 7.3. Observing that the radial component of 

rot rot P reduces by the use of spherical harmonics to 

iK v 
r 

E E n(n+1) fm pm e imA , 
n n n m 

the field components of the spherical harmonic of degree nand 

order m are: 

HA 
m .- gn 

H = fm 
r n 

and 

ES = 

EA = + 

E = 0 r 

im pm/sinS 
n 

n(n+1) pm 
n 

fm im pm/sinG 
n n 

fm dpm/sinS 
n n 

. 

J 

imA e 
iWl1 r o 

imA 
e 

The impedance of the field at spherical suril'aces, expressed in 

terms of C~, is then as in the case of plane conductors given by 

For the field outside of the conducting sphere, r > a, the solu­

tion of the radial function is (in quasi-stationary approximation) 

_ Am(~)n+1 {­
n r 

Hence, the surface value of the char'ac·teris1tic scale length for 

r = a is found to be 

m' , , '(A+B)a a 
,Cn = 1\+B-(n+1)1\+nB _. n+1 • 

1 +" A/B 

1 - Ell AlB 
n+1 

The ratio of internal to external par-ts of '!the magnetic surface 

field if.; by definition 



yielding 

The ratio of 
m d. C accor lng 
n 
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srn Am I m 
= - n Cn+1)B , 

n n n 

1 n+1 Srn 
Cm a n n = n+1 n 1 + Sm 

n 

internal to external parts is therefore derived from 

to 

1 
n+1 Cm -

Sill n a n = n n+l 1 + n Cm . 
a n 

" which demonstrates the role of n/a, respectively Cn+1)/a, as equi-

valent Havenumber of the source field in spherical coordinates 

Ccf. Sec. 9.1). 

The spherical version of the input function for the inverse problem, 

based on a linearisation according to the 1jJ-algorithm, is con­

veniently defined as 

-with K2 = 
o 

is of -the 

uniform. 

iwV Ip . It will 
o 0 

order CnICl/a)2, 

be shown that the spherical correction 

if the conductivity is more or less 

If degree and order of the spherical harmonic representation of 

the soupce field are independent of frequency (this is true for: D st 

but not for S ), the inverse problem can be solved by depiving 
-- q -

from spherical response functions a preliminary plane-earth model 

~Ci). This model is subsequently tpansformed into a spherical Earth 

model pCI') with I-JEIDELT's transformation fOlomula: 

A A 

pCI') = fl'Cr/a) • p(z) 

Hith 

fer/a) = 
(n+1)(~)n + nCE)n+1 
____ -'r=---__ .=a __ 

2n + 1 
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and 
z = 

fCr/a) • C 2n+n 

An algorithm for the direct problem fOl" spherical conductors can 

be formulated as follows. It is designed not to give the transfer 

function Cm for a given model itself but an auxi1ary transfer 
n 

function 

• 

as a direct equivalent to the tranfer function C of plane con­

ductors. To see its connection to Cm, differentiate the characteristic 
n 

depth function fm with respect to r, observing that the differen­
n 

tiation of spherical Besse1functions Ivi th respect to their argu-

ment u is 

and the same for n . Then 
n 

iK ·CAm J' 1 + Bm n 1) - n+1 CAm J' + Bm n ). 
v n n- n n- r n n n n 

Hence, 
d fm 

fmCr/Cm m fm n 
gn = + r = dr n n 

or Am 

Cm 
A nC 1 
Cm (1 n -

= • - ---) 
n n r 

Am 
with nC Ir as "spherical correction I'. 

n 

n 
- n) 

Continuity of the tangential components of the electric and 

magne.tic field requires that Cm and thereby Cm as well are con·-
n n 

tinuous functio"ns of depth. Let r L be the radius of the inner 

core of 
th 

con ducti vi ty er L' surrounded by C L-1) uniform shells, -the 

shell bet\<leen rv and r v+1 Cv = 1,2, ... L). y 

cl 
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Then 

1 jn(uL) 

KL i jn-l (uL) 

with u L :: iKL r L ~~cause the in-going solu-tions are zero within 

the core. But en for l' :: r
L 

can be expressed also in ter'ms of 

the general solution of the (L-l)'th shell: 

A 

with ui, :: iKL_1 rL' As A a consequence, e~ for r :: r L- 1 is now ex-

pressible in terms of em(J?L) and thus an algorithm can be esta-
n A 

blished for the calculation of the surface value e~(r1 :: a). In 

numerical evaluation it is preferable not to derive -the spherical 

Besselfunctions for the arguments Uv and u~ themselves, but to 

reformulate the algorithm by expressing j and n . in terms of n n 
hyperbolic functions (cf. Dover Handbook of Mathematical Func-tion, 

Formula 10.2.12): 

Ttn(u) :: in+1{g sinh(z) + g (z) coshCz)} 
-n-1 n 

·"i th u :: iz and the follOl"ring recurrence formula for the 

g (n :: 0, ± 1, ± 2 ... ): 
n 

If 

-:I. 
:: Z 

-2 :: -z , 2n+1 - z- gn . 

I z I » 1, the approxima-tions g ::: z -1 for n :: :!:2, ± 4, .,. and 
n 

::: -Z2 • (n+1)'n/2 for n :: ± 3, ± 5, ... are valid; g-1 :: O. 

By making use of the addition theorems of hyperbolic functions 

the algorithm can be given a form simular -to the recurrence for­

mula of plane conductors (cf. Appendix to Sec.7.3) 



with 

Cl = (r 
\!. v 

and- a
1 = gn gl 

-n 

a 2 = gn gl 
n 

a 3 = g-n g' n 

all = g-n 
gt _ 
-n 

£1 = g-n-l 
gt 

n 

£2 = g gt 
-n-l -n 

£3 = gn-l 
gt 
-n 

£ If = gn-l 
gt 

n 
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g-n-l 
I 

gn-l 

g-n-l g' 
-n-l 

gn-l g~n-l 

CI 

°n-l g~-l 

gn gt 
-n-l 

- gn 
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gn-l 

- g-n 
gt 
n--l 

- g-n 
gt 
-n-l 
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", 
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, 
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The argument of g is u = 
n v 

iK r , the argument of gt is ut=iK r . 
v V n V V v+l 

If lu I and [ut I are large _ v v compared to unity, i. e. if the mecm 

radius is much larger than the skin-depth of "che v t th shell, the 

coefficients a are of the 
n 

-1 -
ut) , the spherical correc-v . order ±(u 

tion coefficients En of the order u t - 1 or u- 1 u t - 2 . 
v v v 

-~ uv 

Consider for example the case of a. uniform sphere of the radius a, 

the conductivity cr, K = iWPoG and u = iKa. Then 

Am 1-
C er= a) = • 

n K 
g-n-l + gn • tanh(u) 

g + g tanhCu) n-l -n 



Assuming the skin-depth 

(Iul » 1), tanh(u) :::'1 

to be small in comparison to a, 

and with z = u/i = Ka 

n(n+1) 
2z 

n(n-1) 
2z 

- 1 (1 _ .J:l.) 
K z 

The resulting approximate spherical transfer function 

11 - n/z = R 1 - n/z(1-n/z) 

1 
R 

has its plane-halfs2ace value except for a spherical correction 

of the order (n/z)2. 

9..3. Non-uniform thin 'sheets above a layered substructUl-:~ 

The thin-sheet approximation has been introduced by 

PRICE to geomagnetic induction problems. It applies to those 

variation anomalies for which the~'e is reason to believe that 

they arise from lateral changes of resistivity close to the 

surface. For instance, highly resistive basement rocks may be 

covered by well conducting sediments of fairly uniform re­

sistivity Ps but variable thickness d. 

Two conditions have to be satisfied, if this surface cover is 

to be treated as a "thin sheet" of variable conductance 

T = dip : s 
(i) Its skin-depth 12ps/(~)Jo at the considered frequency mus-t 

exceed the maximum thickness d by a-t least a factor of 2. max 
(ii) The inductive scala-length C-(UI,O) for the matter below the 

n 
surface cover, assumed to be a layered half-space, must be 

large in comparison to d max 

Under these conditions th.e electric field 1·1i thin the !I-thin sheet" 

may' be. regarded as' constant for 0 < Z < d, reducing the first 

field equation -to its thin-sheet approximation 



H+ H- ~ 

:: -z X j 
-tg -tg 

with 
i :: , E 

as sheet current density; H+ 
-!g 

is the tangential magnetic field 

above the sheet at z = 0, H the -tangential magnetic field 
;::tg 

below the sheet at z = d' , z is the unit vector downward. 

z 

y 

_.-... --_ .. -_.. --.-. ·_-·----1 
G), I 

Consider for example a sedimentary cover with p = 2stm,novlhere 
s 

exceeding 1+ km in thick:ness. Then condition (i) will be satis-

fied for periods up to 2 minutes and condition (ii) fOl" deep 

resistivities in excess of, say, 50 stm. 

The response functions for the normal field above the sheet at 

z = ° are readily found from 

z+ -
C+ 

C n n 
:: -.-- :: 

n lUJjJ 0 1 + iWjJ T C 
o n 

where Tn lS the constant normal par-t of T, while Cn has to be 

derived from the given substructure resisti vi-ty profile. The 

field equations. to be considered for the evaluation of the va-

riation anomaly are 

H+ - ~ 

- H :: -z X ia -atg -a-tg 

with 

ia = E T + E (T + T ) 
-n a -a n a 



The second field equatioD implies that the vertical magnetic 

field is also to be regarded as a constant between z = 0 and 

z = d. 
I'n addition there are boundary conditions for the anomalous field, 

arising from the fact that its primary sourced lie vii thin the 

sheet. 

Pilot interpretation: In many cases the anomalous field has no 

inductive coupling with the substructure because ~ts half-width 

is smali in comparison - to ,C -,. In that case no currents are in--n 
duced by H in the substructure and the anomalous magnetic field -a 
is solely due to the anomalous sheet current j a within -the sheet. 

For reasons of symmetry 

or 

Observe that the inductive coupling of -the normal field has not 

been neglected, i.e. its internal sources lie within the sheet 

as well as within the substruc-ture. Assuming that T is knovl11 
n 

and -that it is possible to identify the normal part of the total 

electric field E = E + E either by calculation 01' by observations 
-n --a 

outside of the anomaly, the anomalous part of t:be conductance T a 
is readily found from observations of H+ t and E . In this 'day, -a -g -a 
using the example from above,the variable depth of the basement 

below the sedimen-ts, 

d = cl + d = P eT + T ). n- a s n a 

can be estimated. 

If an elongated structure is in H-polarisation with respect to 

the normal field, -the magnetic variation anomaly will disappear 

(cf. Sec. 7.3). T-he pilot investigation of the conductance is done IH 

even more simply because the sheet current density must be a 

constant in the direction normal to the trend: 



ET" j-L" const. .L 
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E T + E T - J' ,,0. n.L a a.1. - a 

This approach has been used by HAACK to ob-tain a fairly r'eliable 

conductance cross-section thl'ough the Rhinegraben. 

In the case of E-polarisa-tion a different kind of simplification 

may be in order: Suppose th'e half-width of the anomaly is 

sufficiently small in comparison to CW)lOT)-1 everwhere. Then no 

significant local self-induction due to H which produces E - az -a 
takes places, i.e. the electric field driving the anomalous 

curren-t will be the large-scale induced normal field only: 

Ta A 

H+ ~--(zxE ). 
a.L- 2, nil 

Assuming E:nuagain to be known, the conductance anomaly is now 

derived from the observation of the tangential magnetic var'iation 

anomaly normal to the trend, 

In the actual performance with real data all field components 

may be expressed in terms of -their 

and thus be normalised wi-th regard 

transfer 

to 11+ 
ntg 

functions Wand Z 

Direct problem for -Z":dinie'ris'io-rialstructures 

Let T be variable only in one horizontal direction, say, in y­

direc-tion- which implies that the anomalous field is also variable 

only 

jax " 

in that direction, 

CB-polarisation) 

le J' ay" ax 

E T 
nx a 

+ E T 
<'!X 

aE fay" iW)l H ax 0 az 

obeying the field equa-tions 

(H-polarisa-tion) 

and 

H H+ -' 
ax ax - Jay 

E T + E T 
ny a ay 

aH- lay" -aE 
ax 0 az 



Here er deno'tes the conductivity at the top of the sUbstratum 
o 

and 

for 

E az 
the anomalous vertical field at z = d which is responsible 

driving currents upwards from the substructure to the sheet 

and vice versa. 

The boundary conditions, reflecting the "thin-sheet origin" of the 

variation anom'aly, are 

for z 

for z 

CE-polarisation) 

= 0: H+ = -K H H 
ay az 

= d: H- - L H H ay - 11 az 

CH-polarisation) 

H+ = 0, 
ax 

The kernel function of the convolution integrals are 

1 
KCy) = 

11'y 

sinCy k ) 
Y 1 +'" 

LII (w , y) = 11' J 
o ik C-IICw,k) y n ,y 

sinCy k ) 
Y '" 1 J = 

ik C-ICw,k) 
y n y 

11' 
'0 

dk 
Y 

d k 
Y 

Here C~II lS the response function of the substructure for the 

anomalous TE-field in the case of E-polarisation and C- I the 
, n 

response function of the substructure for the anomalous TM-field 

in the case of H-polarisation. 

The kernel K is the separa'tion kernel, introduced in Sec.S.l. It 
+ connects Hand H in such a manner that the source of the ay az 

anomaly is "internal" wh,en seen from above the sheet. The kernels 

L are the: Fourier transforms of the response functions, intro·· 

,duced in Sec. 7.3, >vhich connect the tangential and horizontal 

field components above a layered half-space. Their application 

to the anomalous field at z = d implies that Hand E diffuse -a -a 
dOlvl1war.<:l. into the substructure and disappear for z .> "'. They 1'e-

present the, inducti ve coupling of 'the anomalous field with the 

subs't1'ucture. ' 
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Field equations and boundary condition together constitute a set 

of four linear equations, for an equal number of unknown field 

components. They are uniquely de-termined in this Hay. A solution 

tOl-lard the anomalous tangential electric field in I.'l-polarisation) 

for instance, gives 

8E ax 
Cly 

= iwV CE , + E ,). o nx a ax 

A similar solution toward the anomalous current density, in H­

polarisation gives 

, 
a 

'n 
, 
(5 

o 

For a given model-distribution these equations are solved numeri­

cally by setting up a sys-tem of linear equations for the unknOl,m 

field components at a finite number of grid poin-ts along y. The 

convolution integrals, involving derivatives of the unknown field 

components'l-lith respect to y, are preferably treated by partial 

integration I-Ihich in effect leads to a convolution of the unknol-ln 

field components themselves with the derivatives of the kernels. 

It should be noted tha-t the kernels L approach for y + 00 finite 
- -1 

limiting values, given by'{2C Cw,O)} . 
n 

IrNe:-ose problem fo~ tWQ-dimens ional strncJ.:.1J1:'.as 

I.t -is' also possible to consider the anomalous conductance 'a as 

the unknown qu'antity to be determined from an observed elongated 

variation anomaly, in the actual calcuJ.a-tions to be represented by a 

se-t of respective transfer functions. The normal sheet conductance 

'n and the resistivity of the substructure, for which the kernels 

L have to be determined, enter into the calculations as free model 

parameters. They can be varied to get the 

when using more than one frequency of the 

best agreement in , Cy) 
a 

variation anomaly. 
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Another poin-t of concern is the reali-ty of the resulting numeri­

cal values of Ta' Usually empirical data will give complex values 

and the free parameters should be adjusted also to minimize the 

imaginary part of the calculated conductance. 

In E-polarisation the elimination of H gives ay 

T a E + E nx ax. 

We can then eliminate either H;y and Haz' if Ta is to be determined 

from anomalous electric fieldJor we can derive Ta from the anoma­

lous magnetic field by observing tha-t 

E (y) = ax 

by integration 

.iwJl 0 

2 

A A 

sgn(y)dy 
_00 

of the second field equation. The normal electric field is 

derived from the normal magnetic field by setting 

E. = iWJl C+ (w,O) H+ 
nx 0 n ny 

when the source field lS quasi-uniform and 

E 
nx 

when the source field is non-uniform; NII(w,y) is the Fourier 

transform of 'c' C~II(w,k). Cf. Sec. 8.2, "Vertical soundings "i-th 

station arrays". 

In H-polarisation only the anomalous electric field is observable 

at the surface. For the elimination of the anomalous magne-tic 

field at the IOHer face of the sheet from the field equations 

we use the generalized impedance boundary condition for the ano­

malous TM-field at the surface of the substructure Ccf. Sec.7.3 

und 8.2): 



with NIC~J,y) 

above gives 
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being the Fourier transform of C-ICw,k ). Insertion n y 

1: Cy) " a E ny 

E ) + 
ay 

+ E ay 

E 
ay 

1: 
n 

9.4 Non-uniform layersab'ove and Hithin a layered structure 

The source of the surface variation anomaly is assumed to be an 

anomalous slab between z ,,·zo and z " Zo + D in which the re­

sistivity changes in vertical and horizon·tal direc·tion: P"P +p . -- . n a 
The region above and below the slab are taken to be layered, 

P "P being here a sole function of depth Ccf. Sec.3). 
n 

The response functions for the normal variation field are defined 

for ·the normal structure as given by p . If the anomaly lies at 
n 

the ·transition bet.veen two extended normal regions, two normal 

solutions hav·e to be formulated. It should be no·ted that in that 

case the anomalous field vIil1 not disappear but converge outside 

of the anomaly toward the difference of the t.vo normal solutions. 

Henceforth, the normal structure, the normal response functions) 

and ·the normal fields Hand E will be assumed to be knmm -n -n 
throughout the lower c.onducting half-space. The source-field VIill 

be regarded as quasi-uniform except for source fields in E-polari-
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sation in the case of longated anomalies when a non-uniform 

source can be permitted (cf. Sec. 9,3, calculation of E from -nx . 
H ! ) . 

ny 

The principal problem in basing -the interpretation of actual 

field data on this type of model consis-ts in a proper choice 

of the upper and 10He1' bounds of the anomalous slab. The following 

arguments may be useful for a sensible choice: 

The anomalous region must be reached by the normal variation 

field) i.e. Zo should not be made larger than the depth of pene­

tra-tion of the normal field as given by le (00,0) I at the highest _ n 

frequency of an anomalous res pons e. A Imver bound for the depth 

of the slab is not as readly formulated because the anomalous 

response does not disappear necessarily when the depth of pene­

tration is much larger than z + D, i.e. I'-'hen no significant 
o 

normal induc-tion takes places wi-thin the anomalous slab. Only 

if the anomaly is elongated and the source field in E-polarisa­

tion, can it be said that the dep-th Zo + D must be at least com­

pal'able to the normal depth of penetration at the lowes-t fre­

quency of an anomalous response. 

Pilot studies: In section 8.2 the general properties of the im­

pedance tensor Z above a non-layered structure have been discussed 

and the following rule for elongated anomalies HaS established: 

The impedance for E-polarisation does not diverge markedly from 

the impedance of a hypothetical one-dimensional response for the 

local resistivity-depth profile, while the impedance for H-pola­

risation Hill do·so unless the depth of penetration is small in 

comparison to the dep-th of the internal resistivi-ty anomaly and 

the inductive response nearly normal anYHay. 

Suppose then that an impedance tensor has been obtained at a·lo­

cation y on a profile across a quasi-twodimensional anomaly Hhich 

by rotation of coordinates has zero or almos-t zero diagonal ele­

men-ts and that a distinction of the offdiagonal elements for E- and 

H-polarisation can be made (cf. Sec. 8 .2). l~egarding the E-polari­

sation response for a first apPl'oximation as quasi-nor·mal, a local 

inductive scale length 

C!l (oo,y) :: ..,1.- Ell (oo,y)/H! (~J,y) 
~oollo -
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is calculated as function of frequency and location. It is 

converted into an apparent CAGNIARD resistivity and phase: 

or alternatively into the depth of a perfect substitute conductor 

and a modified apparent resistivity; 

which' can be 

vity profile 

combined' into a local depth versus apparen-t resisti­
* )f 

PII(zll ' y). 

If the magnetic variation anomaly rathe1' than the geoelectric 

field has been obse1'ved, the anomalous part of Ell can be derived 

by integration over the anomaly of the vertical magnetic varia·tions, 

while the normal part of Ell is calculated from the nonnal impedance 

outside of the anomaly or derived theoretically fop a hypothetical 

normal 1'esistivity model: 

+00 
= iw].! {C H + J . 0 n n _00 

or in terms of transfer functions wi t)l respect to Hn J.. 

+00 
A A "-

C (w y) = iw].!{C + 
If' 0 n £"" sgn(y-y) Wz~(y) dy} , 

using for the transfer function of H the nota-tions of page 113. az 

Magnet qtellu1'ic and geomagne-tic depth sounding data along a 

profile are in this Hay readily converted either into CAGNIARD 

resistivity 'and phase-contours in f1'equency-distance coordinates, 
'~ 

into lines of depth-of-pene·tration z ' at a given frequency, 

or into modified apparent-resis·tivi-ty- contours in a z 'l( -distance 

cross-section Either one of these plots will outline the frequency 

range, respectively the depth range, in Hhich the source of the 

anomaly can be expected to lie, and provide a l."ough idea about the 

resistivities likely to occur Hithin the anomalous zone. 
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Single frequency interpretation by perfect conductors at 

variable depth 

Geomagne-tic variations anomalies show freque_ntly nearly zero 

phase with respect to the normal field, the transfer functions 

which connect the components of Hand H being real func-tions 
-a -n 

of frequency and locations. This applies in particular to two-

types of anomalies. Firstly to those Hhich arise from a non­

uniform surface layer, thin enough to allo., -the "thin-shee-t" 

approximation of the previous sec-tion vii th predominant induction 

Vlithin -the sheet (n »1). Secondly, it applies to anomalies s ' 
above a highly conductive subsurface layer at variable depth 

benea-th an effectively non-conduc-ting cover. 

In the first case E Vlill be in_phase Vlith H , in the second 
n n 

case ou-t-of-phase (cf,Sec.9.1). But it is important -to note that 

the anomalous variation field H will be in either case roughly a 
in-phas e. \Vi th Hn' 
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Both types of anomaly can be explained at a given frequency by 

the undulating surface S of. a perfect conductor belovl non-con-' 

ducting matter. Its variable depth below the surface point (x,y) 

Hill be denoted as h'J\(x,y). Outside of the anomaly h* shall be 

constant and equal to the real part of C
n 

at the considered fre­

quency. 

This kind of interpretation is intended to demonstrate -the effect 

of lateral changes of in-ternal resistivity on the depth of penetra­

tion as a function of frequency and location. It does not provide, 

however, quantitative information about -the resistivities involved 

nor does it allow a distinction of the two -types of anomalies 

mentioned above. 

J.I <l,:2. ~ __ ~ 
:... ..... -1;.1,p..y<... 

t\-r. 0"'0"' t"~ 

~""r,- ,' ....... 
::;y.- -- t- ...... -- / .............. '----- ,./ '- -. 

z 

----....=-:::-=--=-..: -". - --
)' -. ---;;. 

v 
Clearly, the magnetic field belo,,] S must be zero and the magnetic 

field vector on S tangential vii th respect to S because the con-
.. - . norJ\lal - h h -tlnul-ty condl tion for the fleld component tov::; requlres t at -t lS 

component vanishes just above S. 

Di'rect model problem: For a given shape of S the anomalous surface 

field can be found with the methods of potential field theory, 

SJ_nce H \vill be irrotational and of internal origin above S. If -a 
in particular S has a simple shape independen-t of x, the field 

'" lines for E-polarisation in the (y,z)-plane for z .:: h (y) can be 

found by conformal mapping as follows: 

Le-t w(y,z) = y(y',z') + i·z(y',z') be an analytic function which 

maps the line z'=O of rectangular (y',z') coordinates into the line 

z=h*(y) of rectangular (y,z) coordinates. Lines z' = const. are in­

terpreted as magnetic field lines of a uniform field above a perfect 

conductor at constant depth, their image in the (y,z)-plane as field 

lines of a distorted field above a perfect conductor at the variable 



157 -

* depth h (y), the image of the ultimate field line z'=O being tangen-

tial to the surface of the conductor as required. 

If Rn= (Hny'O) denotes the uniform horizontal field vector at a 

point in -the original (y', z') coordinates, the components of the 

field vector H= (Ry,H z ) at the image point in the (y,z) coordinates 

can be shown to be given by 

with 

H , 
n 

The difference H - H represents the anomalous field to be -n 

S :::: 0 

Inverse problem: The shape of the surface S can be found inversely 

from a given 

lines of -the 

the anomaly 

surface anomaly by 

field H +H • Field -n -a 

constructing the internal field 

lines \o]hich have at some distance 

the required normal depth Re(C ) define 
n· 

pr-ovided of course that the surface 

the Earth's surface anywhere. 

thus found does 

the surface S, 

not intersect 

The actual calculation of internal field lines requires a dOv1l1ward 

extension of the anomaly through -the non-conducting mat-ter above 

of 

the perfect conductor, using the well developed methods of potential 

field continuation tOlvards its sources. In order to obtain sufficien­

stability of thenumeric<ll process, the anomaly has to be low-pass 

filter-ed prior to the dOlvl1l-lard continuation Vii th a cut-off at a 

reciprocal spa-tial wave number comparable to the maximum depth of 

intended dOh1nward extrapolation. 
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A field line segment with the horizontal 

then -the vel"tical increment 

dz 'h = dx + 
~x 

dy = 
H az 

H +H 
nx ax 

dx + 

and the entire field line is the"constructed by numerical integra-;­

tion; 

An analytically solvable inverse ~roblem: Suppose the observed 

anomaly is 2-dimensional and sinusoidal, 

Because of the internal origin of the anomaly 

= -c cos(k,y)H , . ny 

the internal field increasing exponentially wi-th dep-th, 

= H (y.O) , -a ' 
k·z e 

Hence, the slope of field lines at the depth z is 

( ) k' z dz -c cos k,y 'e 

d 1 - ( ) k,z Y +c Sln k-y -e 
= , 

yielding by integration 

as the implicit solution with z as the constant of integration. o 
Here it vlill be chosen in such a way -that the highest point of the 

field line is st:ill below the Earth's surface z=O. 

VIe infer from the field line equation z(y) tha:t field lines above 

sinusoidal anomalies oscillate non-symmetrically around the depth 
+ z=z with L=2n/k as spatial wave length, Their deepest points z=z o . 

are at y=L/4,-3L/4,±."."., their highest points z=z at 

y = - L/4 , 3 L/ q , +.' .' .' . 
14"v, _ ,J ~~z 

I ~/ '< -." r'--
;/ / "\' / 

7 
o ---'"? 

~ __ . __ /.. .. _. _...11" .. __ .. _. \_~ ___ \ ___ . .L ___ _ 
AO.t "I\.; 

, l-\;-> '/"'.' / _._ ' '-._ A __ '" 
_.-' -

z 
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Suppose the spatial wave length of the anomaly is large in'com­

parison to the deepest point of penetl"ation z +. Then the approxi­

mate field line equation 

z(y) = 
Zo -c/k.sin(k.y) 

1 + c·sin(J<·y) 

can be used wi-th the requirement that Zo is equal to or larger 

them c/k. The mean amplitude of the field line oscillations is 

readily expressed now in terms of. the amplitude of the observed 

surface anomaly as given by the factor c, namely 

1 + -"2 (z -z ) = 
c -1 

---;;2' (z -+ k ) 
1 - co' 

If, for example, a moderate anomaly has the amplitude c=0.25 and 

a I,ave length of 628 km, the mean amplitude of the field line­

oscillations are given by (zo+100)/4 km, zo~ 25 km. Using zo=30 km 

gives a mean amplitude of 33 km and-the field line oscillates 

bet\-leen 4 km and 70 km. This numerical example demon(3trates that 

even minor anomalies require rather large undula-tions in the depth 

of a perfect substitute conductor. 

'Multi-freguency interpretation b:Ll:ocal induction in isolated 

bodies 

Most geomagnetic induction anomalies arise from a local rearrange­

ment of large-scale induced currents. In some ca.ses, however, it 

may be justified to assume that the source of the anomaly is a 

conducting body which is isolated by non-conducting matter from 

the lal'ge"scale current systems. Such a body ca,n be, for instance, 

a crustal lense of high conductivity within the normally highly 

resistive crust. 

The direc-t problem: Consider a body of (variable) conductivity 

betI-Jecn z=z1 and z=2, • The surrounding matter' at the same depth is 

effectively non-conducting at the considered frequency, i.e. large­

scale induced currents which flow in the normal structure above and 
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below can nei-ther enter nor leave this body. 
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The inducing field is the normal field H~ between z1 and z2 J 

regarded as· uniform. For simplicity it is assumed that the nor­

mal structure between z=O and z1 represents a "thin sheet" of the 

conductance T • Then the attenua-t:Lon of H' with respect to the 
n n 

normal field H at the surface z=O is given by 
n 

H')/H = ins /(1 + in ) 
n n s 

TJ = W]l C- T son n 

as thin-sheet induction parameter (Sect.9,3 and Appendix to 7.3). 

Three aspects of the arising induction problem have -to be con­

sidered: (i) the local induction by H~ within the body, (ii) the 

electromagnetic coupling of this body with the normal substr·ucture 

below z2' (iii) the coupling of the body with the surface ccverabove 

In order to make problem (i) solvable in a straightforvlard manner 

uniform bodies of simple shape such as spheres and horizontal 

cylinders of infi11i te length have -to be selected, The anomalous 

field due to the inductlon in these bodies is of frequency-indepen­

den-t geometry. This fact per'mits simple solutions of the inverse 

problem as seen below. 

Consider -the case of a horizontal cylinder of infinite length, the 

radius R and the conductivity 

intersects the (y,z)-plane at 

0 Z ; its axis is parallel to x and 

the point (0, z ). The normal horizon-· o 
tal field is· pcll'allel to y and p1'oduces by induction curren-ts l\1hich 

floH parallel to x in the upper halve and anti-parallel to x in the 

lower halve of the cylinder, Thei1' magnetic field outside the cy-

lindcr is the field of a central 2-dimens :i.onal dipole of the mOJilent 
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m antiparallel to y. It has thc components 

-2 H (y,z) = m cos(28)-r , 
ay " 

I () . (e") - 2 ! Y z "-m s In 2 • J:' 
az ' 

with 1'2 " y2 + (zo -"z) 2 and cose " "Z'o/r, sine" y/r. 

The dependence of the dipole moment on the inducing field Viill 

be expressed in terms of a response function. Lc"t m", be the 

dipol moment of a perfectly conduc'ting cylinder Vihich shields 

the external field completely from its in"terior. Hence, the in­

duced field at the point (0, z -R) just above the cylinder o 
must be equal to H~, i.e. 

Vihich implies tha't it cancels H' within the cylinder as required. 
n 

The response func"tion of the cylinder with respect to a unifor-m 

inducing field perpendicular to the axis is now defined as the 

complex-"valued ratio 

Vihich can be shovm to be a sole function of the dimensionless 

induction parame"ter 

" The modulus of f(l1 Z) vlill approach zero for l1 Z « 1. and uni"ty for 

l1 Z »"1, its argument changing from 900 for l1 Z + 0 to 00 for 

l1 Z + "', Hence, at sufficiently high frequencies the anomalous 

field from the cylinder ,Iill be in--phase Hi th H I and not in-
n 

crease beyond a certaill " inductive limit", "hile at sufficiently 

10H frequencies the anomalous field Hill be out-of-phase and 

small in comparison "to the field a"t the inductive limit. 



! 
f 
j 
I 

./ 
I 

fin 
"-

- "!G2 -
'\ 

\ 

\ 
I 

'it 
I .22::" I I 

"no" ! 
i 
I ..... _/ / 

0 

,?z. 

-------..-
/ 

/' 
/' 

,-

-.., -, 

- --..... _ ... " ..., 

The transfer function between the anomalous and normal field 

are now readily expressed in terms of a frequency-dependent 

response function, a frequency-independent geometric factor, 

and a frequency-dependent attenuation factor Q' for the normal 

field: 

with 

An approximate solution of problem (ii) can be obtained by re­

presenting the conductive substructure below the surface sheet 

by a perfect conductor at the (frequency-dependent) depth Re(C-) 
. n 

and by adding to the anomalous dipole field the field of an 

image dipole of the moment R2H' at the depth 2'Re(C-)-z , 
n n 0 

"7 
''\i!.-~--'-!->;-="""7<=:::=--=-)-~-''''. 

_. 2. 
;,. 



- 163 -

Problem (iii) involves mainly the attenuation of the up\"Jard 

diffusing anomaly H by'uniform surface layers. This attenuation 
-a 

is, hOHever, a second or'der effect and can be neglected, if 

a-t the considered frequency -the Hidespread normal field pene­

trates the sur'face layers to any ex-tent, i. e. if the modulus 

of Q' is sufficiently close to unity. 

The inverse problem: Assuming the anomalous body to be a uniform 

cylinder, the model 

ferred from surface 

tions for Hand J-I 

parameters zo'- R, ()R can be uniquely in­

observations, providing the transfer func­

are knmm for a-t least tHO locations and ay az 
frequencies, Forming here the ratio~ 

H /H ~ tan(28) az ay 

the angles 8 and i:hereby the position of the cylinde1' can be 

found. The depth of the cylinder axis being knovm; the dipole 

moment R2f(n) can be calculated. Its argument fixes the 

of the induction parameter n
Z 

and tHO determina-tions of 

different frequencies the radius R and the conductivity 

Rand z being knmm, the field of the image dipole o 
can 

size 

nz at 

oZ' NO\\1 

be cal--

culated. The inverse procedure is repeated nOH with the observed 

surface anomaly minus the field of -the image dipole until con-­

vergence of the model parameters has been reached. 

Interpretation "ith BIOT-SAVART' s la'tl 

Let 1 be the currc;nt densi-ty vector vlith:Ln a volume dV at the 
.. I) I) J) "', .. 

pOJ_nt l' = (x, y, z). '1hen accordlng to BIOT-SAVART's law in SI 

units -the magnetic field vector ai: the point 2:: = (x, y, z) due 
" to the line-current element idV lS 

1 H = 
-;> 
l X (1' " r) 

dV. 



This la\'1 can be used to interpret an obsepved surface anomaly 

of geomagnetic variations in tepms of a subsupface distribution 

of anomalous induction cur-rents, 

an intepnal conductivity anomaly 

which in turn are pelated to 

o , i,e. to local deviations 
a 

of 0 from a nopmal layered distribution 0 (Z), 
n 

It has been poin-ted out in Sec. B • 3 that the anomalous part of 

the geomagnetic and geoelectric variation field can be split 

ini:o TE and TM modes (= tangenti!3-1 eleci~ric and tangential 

magnetic modes) and that only -the TE modes produce an observable 

magne-tic variation anomaly at the Earth's surface. Consequently, 
/> 

only a TE anomalous current dens i ty .distribution iaII can be 

related to the anomalous magnetic surface field H , the sub·­. -a 
script "11" refering to the solution 11 of -the diffusion 

equation. 

/> A 

Deno·ting the tangential componen"Ls of iaII simply with 
/> 

i ax and 

i ay ' the components of the anomalous surface field are given 

by -:> A 

1 - lax z 
H (x,y,O) .-

411 
! dV ax 
V r2 

/> 

1 
l Z 

Hay(x,y,Q) = ! ay dV 
411 

V r2 
A "- A "-
i (y--y) - iaL(x-x) 

Haz(x,y,O) 1 ! ax dV = Lf '/1 
V r2 

with r2 = (X_~)2 + (y_y)2 + ~2 The inverse problem, namely to 

find from a glven surface anomaly the internal anomalous current 

distribu-tion, has no unique solution. vii thin certain constraints, 

hm'1ever, i·t can be made unique, at least 

anomalous 

in principle. For in­

current flow is limited stance, it is assumed that the 

to a cer·tain depth range which implies that the matter between 

this dep·th range and the st}rface is regarded as non-conducting 

at the cons idel'ed frequency. 

The surface anomaly can be extended now dowJHlard to the top of 

·the anomalous depth range \-,7ith standard me-thods which require 
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only adequate smoothing of the observed anomalous sm,face field. 

Then a certain well defined depth dep'endence of 'the anomalous 

current density is adopted as discussed below and the anomalous 

current distribution can be derived in a straightforward manner. 

Suppose an observed anomaly H at a given frequency has been ex--a 
plained in this way by a distribu'tion of anomalous internal 

currents. Its connection to the internal conductivity is esta­

blished by the normal and anomalous electric field vector accor­

ding to 

i 
-all = ° E + (On + ° ) . E 11 . a -n a -a, 

Assuming the normal conductivity dis,tribution 0
n

(Z) to be known, 

E as a function of depth 'is readily calculated. There is no -n 
simple way , hOl>lever, to derive the anomalous electl"ic field of 

the TE mode except by numerical models as discussed below. There 

is in particular no justification to regard it as ,small in com­

parison to the normal electric field and tllUS ,to drop t:he second 

term in the above relation. Instead the follov;ing argumentation 

has to be used: 

The anomalous electric field in the TE mode can be thought to 

contain two distinct components. The first component may be re­

garded as the result of local self-induction due to !iaI I ' l"-

can be neglected at sufficiently low fl"equencies, vJhen the h~lf­

Hidth of the anomaly is small in comparison to the minimum skin­

depth value within the anomalous zone. 

The second component arises from electric charges at boundaries 

and in zones of gradually changing conductivi,ty. These charges 

pl'oduce a quasi-static electric field normal to boundaries and 

parallel ,to in'ternal conductivity gradients vlhich ensures the 

continui,ty of the current across boundaries and internal gradient 

zones. Hence, this second component of the anomalous electric 

field does not disappear, I>Ihen the frequency becomes small. 

It vanishes, however, if anomalous internal currents do not cross 

boundaries of gradient zones, i.e. when the normal field is in 

E-polarisation wi,th respect to the 'tr'end of elongated structures. 
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Only in this special case will be justification to neglect the 

term oEa at low fr0queneies and to use the approximation 

i 0 E -all = a-n 

·to calculate the intel"nal conductivity anomaly 0 from the ano­a 
malous current density and the normal electric field. It will 

be advisable to regard here 0 as a sole function of x and y . a 
and thus to postulate the same depth dependence for the anomalous 

current and the normal electric field. 

Interpretation with numerical models 

So far idealized models for a laterally non-uniform subs·tructure 

have been considered. They allowed a simplified treatment of 

the induction problem and had in common that only fe\>/ free para­

meters were involved. Once numerical values vJere attach~d to 

them, the observed surface anomaly of the variation field could 

'be converted rather easily into variable model parameters to 

characterize the internal change of subsurface conducti vi·ty at 

,some given depth from site to site. 

The introduction of more realistic models leads to a sUbstantial 

increase of the numerical work involved and should be considered 

only, if transfer functions for the anomalous surface field are 

knOl·]J1 Hi th high accuracy. The inverse problem to derive a se-t 

of variable model parameters directly from obser'vations can be 

solved by linearisation, i.e. by the introduction of a linear 

data kernel, connecting changes of the surface responsc to 

changes in -the subsurface conducti vi ty structure (cL Sec. 6) . 

As before a normal structure 0 outside of the anomaly is given, 
n 

the variable model parameters representing only lateral changes 

of a with respect to an within the range of the anomaly. Unless 
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stated otherwise, source fields of lateral homogeneity are 

as sumed, yielding in conjunction 11i th a -the normal fields H 
n n 

and E as known functions of depth. 
n 

Conductivity anomalies aa = a - an are restricted to an anoma­

lous slab above or within a laterally uniform structure, exten­

ding in depth from z1 to z2' Within this slab two basic types 

of conductivity anomalies may be disi:inguished: 

(i) slabs with gradually changing conductivities in horizontal 

direction or (ii) .slabs which consist of uniform blocs or re­

gions, separated by plane or curved boundaries. 

In the fi1:'st case electric changes are 

slab,yielding closed current circuits 

distributed within the 

" divi = 0 as required in 

quasi-stationary approximation. Consequently, divE = -(E'grada)/cr 

will not be zero. In the second case only bloc boundaries carry 

free surface changes and the electric field will be non-divergent 

within the blocs. In either case a solution of the diffusion 

equation for H or E has to be found under the condition that -a -a 
the anomalous field approaches zero with increasing distance 

from the anomalous slab. 

Numerical methods for -the actual solution of the direct problem, 

when a is given a 
cussed in Sec. 2 

and 

and 

or E are to be found, have been dis­
a 

Here some additional comments: Models 

should be set up in such a way tha-t either the shape of the ano­

malous body or the anomalous conductivity is the variable to 

be described by a set of model parameters. After fix in" the free 

parameters, in particular z1 and z2' the model parameters for 

the description of the anomaly are varied until agreement is 

reached betvleen the observed and cillculated transfer func-tions. 

Suppose that models of type (iD are used, that only vertical 

and horizontal boundal,ies are permi-tted, and that the anomalous 

slab is subdivided by equally spaced horizontal boundaries into 

layers. Then the variable model parilmeters are either the po­

sitions of vertical boundaries, enclosing a body of constant 



- 168 -

anomalous conductivity cr or . ac 
cr of the blocs m = 1,2, '" am 

the anomalous conductivity values 

H, separa·ted by equally spaced 

vertical boundaries: • 

-- '"2. -- --
-:l. 

---2~--

If the search for a best fitting se-t of model parameters is to 

be done by an iterative inverse method rather than by trial-and­

er-ror ,~inear data kernel matrix G = (gnm) has to be found for 

an initial model. In this matrix the element g represen-ts the . nm 
change y of the anomalous transfer function at a certain surface 

n 
point and frequency R which arises in linear approximation 

n 
from a change xm of the model parame·ter in the ID I th bloc of the 

starting model. The resulting system of linear equations 

y = I g x is solved with the methods of Sec.6. Its solution 
n m .nm m 

represents the improvement of the initial model, if y is the 
n 

misfit between observed and calculated transfer functions for 

the initial model: The process is repeated Vlith the improved 

models until the necessary improvements x are small enough to 
m 

justify a linear approximation. 

Wh.ich complications arise 1n the general case that not only the 

internal conductivity structure but also the inducing source 

field are laterally non-uniform? l'irst of all, in addition to cr 

as a func-tion of depth the magnetic field H (e) of the external 

source must be a known fun·ction pf supface location. In the 

n 

special case of the equatorial jet field this source field con­

figuration will be more or less the same for .all day-time variations 

and thus a normalisation 'of the observed sUl"face field by the 



field at some distillguished surface point will be possible, for 

ins-tance by the hOl"izontal field a-t the dip equator. 

The conversion formulas of Sec. 5.2 and the methods described 

in Sec. 8.2 ("Vertical soundings Hith station arrays") are nO\\1 

used to find t-he internal part H(i) of the normal magnetic field 
n 

-and the normal electric field En as functions of the surface 

loca-tion and frequency. finally, the normal surface field is ex­
~ C O"h,); c{r ..... h .. v"h... 

tended dOHll\\1ardVwi th the spatial fourier transforms of the dOl-m-

ward extension factors as given in the Appendix to Sec. 7.3. 

Now the normal field within the anomalous slab lS known and the 

diffusion equation for the anomalous field can be solved numeri­

cally in the same way as before, when the slab or the anomalous 

region themselves are chosen as basic domains for the numerical 

calculations. Here a final schematic summary of the various steps 

of the calculations, when the source is the combined field of the 

equatorial jet and the 10H-latitude Sq: 

rrn o <:€I .. .,( 
-.---"--~-
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,~ 
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. '-- --- --------

I!lterpretation I-lith scale model experiments 

Numerical model calculations may be too elaborate, if the induc­

tion by a non-uniform source in a three-dimensional anomalous 

structure has -to be considered. An example is the coast effect 

of the equatorial je-t, Hhen -the dip equator crosses the coast-_ 

line under an angle. - No complications arise at those places, 

when the dip equator is parallel to the coast and the jet field 

in E-polarisation (s. above). -

In situation of great complexity the quali-tative and even quan­

tit,rtive understanding of surface observa-tions may be furthcred 

by labora-tol'y scale model experiments, simulating the natural 

induction process on Cl reduced scale. Invariance of the electro-
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the product WGL 2 constant with L denoting the length scale. 

The primaJ~y inducing field is produced by an oscillating dipole 

source or" by extended curren"t loops, situated as "ionospheric 

sources" above an arrangement of conductors which represent 

the conducting material below the Earth's surface. Alternatively, 

the conductors as a whole can be placed into the interior' of 

coil"s, say Helmholtz coils, and thus be exposed to a uniform 

source field. 

,/ 
o o 

---- "----

'~ 

The magnetic source field a"t the surface of the conductors is 

exactly known. Hence, by substrating it from the observed field, 

measured "li th small triaxial pick'-up coils, the induced field 

from the conductors can be investigated. The electric field can 

be measured also by submerging, for instance, an arrangement 

,of metalic conductors into a much less conducting electrolyte 

(s. below). 

A basic difficulty in conducting a scale model expe'riment, vlhich 

is truly equivalent to the induction process in nature, arises 

from the necessarily finite dimensions of the conductors in the 

scale model. If" the conductors are placed below the sour'ce of 

the inducing field, their finite dovlJ1vlard extent represents no 

problem because the ultimate conductor can be dimensioned in 

such a way that "the electromagne"tic field is comple"tely shielded 

from the space beneath the scale model. Their finite length and 
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width, however, forces the induced currents to flow in loops 

which in strength and phase may be totally controlled by the 

edges of the conductor. In order to avoid this unwanted effect 

the source field at the level of the conductors should die away 

before reaching the edges of_the scale model. For instance, if 

a line curr'ent source is used, the half-width of 'the line current 

field on the surface of the scale model' should be considerably 

smaller then the width of the model. 

7 

~ 18\~-:;\ .... \"<", \\"-.':" " 
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These complications do not arise of cour-se, when no attempt is 

made to simulate local anomalies of a large-scale induced current 

system, i.e. when the scale model is placed into the interior 

of coils in order to simulate local induction in isolated bodies 

(cf. subsection on this topic in Sec. 9.4). 

Here are to men'tion the scale model experiments by 'GRENE'l' and 

LAUNAY who showed hOl'] a large-scale induc,tion can be simula'ted 

also by the induction in the interior of coils. Their objective 

was ,to make a scale model of the coas't effect at complicated 

coastlines. They noted that the inductive coupling between 'the 

ocean and highly conduc't ing material at some depth within "(he 

Earth is well represented by a system of image currents at the 

level 2 .h~ below the ocean. Here xc again the depth of h is a 

perfect substitute conductor for "ehe oceanic substructure at the 

considered frequency. 

GRENET and LAUNAY use as model conductors two thin metallic plates 

which are connected along two edges by vertical conducting strips. 
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One of the thin plates represen·ts the ocean and one of its 

edges is given the shape ~f a cer~ain coastline to be studied. 

The second plate represents the level of the image currents. 

The whole arrangement of conductors is placed into a Helmholtz 

coil in such a way that the yertical strips are parallel to 

the' magnetic field. Plates and strips no", form a loop normal 

to the magnetic flux within the Helmholtz coil and thus currents 

are induced which flow in the "oceanic" plate parallel to the 

"coastline". 

In SPITTA's arrangement for the study of the coast effect the con­

duc-tors are placed belo", a horizontal band-current closed by 

a large vertical loop. The oceanic and continental substructure 

is represented by a thick metalic plate, the oceans by a thin 

metalic sheet Vlhich partially covers the plate. The thickness 

of -the plate is large in comparison -to 1!he skin depth and its 

wid-th abou-t t",ice the half-Vlidth of -the field of the band­

current at the level of the plate. The induced current systems 

form closed loops "ithin plate and sheet and can be assumed 

to be largely horizontal. By placing one edge of the coverlng 

sheet belmv the 'center of the band-current the coast effect of 

an ionospheric jet 

and jet. 

~---, --------, t":':'" ' ' '. ~ . I 

can be studied for any angle bet\<leen coast 

rX 

t:>p "\,) i<v.'" 
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length~scales model: 
7 -

1 : 10 . In this way 

~OOO km in nature can be reproduced. 
6 ratio of length-scales is ~ : 4-10 . 

-, 

nature should be in the 

current loops of some 

In SPITTA' s- experiment the 

A 4 km thick ocean is re-

presented by an aluminium sheet of ~ JlUll thickness, a highly con-­

ducting layer in the mantle at 360 km depth-by an aluminum plate 

9 cm below the sheet. The width of this plate is 2 m and is 

equivalent to 8000 km in nature. 

Model conductors may be <;,hosen from the following materials: 

Cu " AL ~ Pb 7 

Graphite 3 _10 4 

(saturated) 
NaCI solution 20 

H
2

S0
4

, HN0
3

, HCI_solution 60 

(concentration of maximum 
conductivity) 

11 

11 

11 

In SPITTA's experiment the conductivity-ratio model: nature is 
7 - . 2-10 :4. Hence, wlth a -6 ratio of length scales of 1/4-10 a 

-2 £requency of 1 kHz in the model corresponds to 1/32-10 - Hz :::lcph 

in nature. 

DOSSO uses graphite to represent the oceans and highly conduc­

ting material in the deeper mantle, saturated NaCl-solution to 

represent the continental surface layers and the poorly conduc­

ting portions of crust and uppermost mantle. Since his model 

:frequencies are only slightly higher (1 to 60 kHz),.a one order 

of magnitude greater ratio-of length-scales (1:10 5 ) has to be 

used to simulate-natural frequencies between 1 cph and 1 cpm. 
, 

The lists of available model conductors shows that it is diffi­

cult to simulate- conductivity contrasts of 1:10 or 1:100 which 

are of particular importance in the natural induction process. 

Only salt solutions of variable concentration could provide a 

sufficient range in model conductivity, but their relatively 

. -
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low conductivity requires the use of very high frequencies 

(10 3 kHz) and extremely large model dimensions (10 m). 

In conclusion it should be pointed out 'that even those scale , 
model experiments which do not reproduce the natural i~duction 

in a strict quantitative sense may be useful for a descriptive 

interpretation of complica'ted variation fields. In those cases 

only the impedance or the relative changes of the magnetic 

£ield with respect to the field at one distinguished point above 

the model will be considered and compared with actual data. 

~O. Geophysical and geological relevance of geomagnetic 

induction studies 

. 
:In explora'tion geophysics the magnetotelluric method, prefe'rably 

in combination with geomagnetic depth sounding, has been applied 

with some success to investigate the conductivity structure of 

sedimentary basins. Electromagnetic soundings with artificial 

sources as well as DC soundings which truly penetrate through 

a sedimentary cover of even moderate thickness are difficult 

to conduct on a routine basis. Hence, it seems that electro­

magnetic soundings with natural fields are more efficient than 

,any other geoelectric methods in 'exploring the overall distri-

bution of conductivity in deep basins. 

In particular the integrated conductivity T of sediments above 

a crys'talline basement is well defined by the inductive surface 

response to natural EM fields and can be mapped by a survey 

with magnetic and geoelectric Y'ecording stations. If in addi­

tion some estimate about the mean conductivity of the sediments 

can be made from high frequency soundings, the depth of the 

crystalline folloHS directly from T. 

If structural details of sedimentary basins are the main interest 

of the exploration, a mapping of 'the electric field only accor­

ding to' s~rength and direction for a given polarisation of the 

l'egional horizontal magnetic field Hill be adequate. The inter-

I 
I 
i 
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pretation is handled like a direct current problem in a thin 

conducting plate of varlable conductivity. This so-called 

"tellul·ic method" represents a very simple kind of inductive 

sounding~, but the preferential direction of the superficial 

currents thus found usually gives a surprisingly clear im­

pression about the trend of structural elements like grabens, 

anticlines etc. The usefulness of this method arises from the 

fact that these structural elements can be detected even when 

they are buried beneath an undisturbed cover of younger sedi­

ments. 

-<- --

,.- ..-- - --. 
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Geomagnetic and magnetotelluric soundings are less useful for 

exploratinn in areas of high surface resistivity, in particular 

in crystalline regions. Even pUlsations penetrate here too 

deeply to yield enough resolution in the shallow depth range of 

interest for mining. Audio-frequency soundings Hi th ar'tificial 

or even natural sources Hill be better adapted and are widely 

used in mineral exploration. 

The probing of deeper parts of crust and mantle with natural 

electromagnetic fields Hill eventually lead to a detailed 

knowledge of the internal conductivity distribution down to 

about 1000 km depth. Its relation to the downVlard rise in 

temperature is obvious, in fact electromagnetic soundings pro­

vide th'e only, even thol!gh indirect method to derive present­

day temperatures in the upper mantle. 
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Other derivable properties of mantle material like density and 

elastic parameters are.largely determined by the downward in­

crease in pressure with only a second-order dependence on 

temperature, which is hardly of any use for estimates of mantle 

temperatures. 

The remarkable rise of conductivity between 600 and 800 i<:Jn depth, 

however, should not be understood as temperature-related but 

as indication for a gradual phase change of the mantle minerals, 

possibly with a minor change in chemical composition, this lS 

with a slight increase of the Fe:Mg ratio of -the olivine­

spinell mineral assembly. 

The conductivity beneath the continental upper mantle from 100 km 

down to about 600 km is suprisingly uniform and seems to indi­

cate -that in this .-depth range the temperature gradient cannot 

be far away from its adiabatic value of roughly 0.50 C/km. The 

-J1)ysterious appearance of highly conducting layers in the upper­

most mantle may be connected to magma chambers of partially 

molten material and to regional mantle zones of higher than 

normal temperatures in general. The expected correlation of high 

mantle conductivity, high terrestrial heatflow and magmatic 

activi"cy clearly exists in the Rocky Mountains- of North America. 

There are also some indication for high conductivities beneath 

local thermal areas. The Geysers in California, Owens Valley in 

Nevada, possibly Yellows tone and the Hungarian plains are 

examples. It should be pointed out, however, that there exist 

also regions of. high subcrustal conduc-tivi ty with absolutely no 

correlation to high heatflow or recent magmatic activity. The 

-most prominent· inland anomaly of geomagnetic variations, which 

has been found so far, namely the Great Plains or Black Hills 

anomaly in North America J lacks still any reasonable explana-tion 

or correlation to other geophysical observations. 

One' grea-t unsolved problem in geomagnetic inductions 

studies is the depth of penetration of slow variations into the 

mantle below ocean basins. There are definite reasons to believe 
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that the upper mantle beneath oc.eans is hotter than the mantle 

beneath continents down to a depth of a fevl hundred kilometers. 

If this is so, a correspqndingly higher conductivity should exist 

beneath oceans which could be recognised from a reduced depth 

of penetration in comparison to continents. Once a characteristic 

conductivity difference between an oceanic and a. continental 

substructure has been established, this could be used to recog­

nize former oceanic mantle material beneath present-day con­

tinents and vice versa. 

First soundings with recording instruments at the bottom of the 

sea have been carried out. They confirmed to some extent the 

expectation of high conductivities at extremely shallow depth, 

but these punctual soundings may not be representative for the 

oceans as a v/hole. Here the development of new experimental 

techniques for expedient seafloor operations of magnetic and 

geolectric instruments·nas_ to be awaited . 

.Gpserva~:i.Gtls.·Gn,. mid-oceanic islands provide a less expensive 

way to study the induction in the oceans which in the case of 

substorms and Sq is strongly coupled to the crustal and sub-
. . . the oceaDS.. '. 

crustal conductlvltles beneath. Hut agaln oceanlC lslands 

are usually volcanic and their substructure may differ from that 

of ordinary parts of ocean basins. 

The island-effect itself is no obstacle for soundings into the 

deep structure. In fact, this effect represents a pm'lerful 'tool 

to investigate the induc,tive response in the surrounding open 

. ocean, since the· theoretical distortion of the varia'tion fields 

due to the islands can be regarded at sufficiently low frequency 

as a direct current problem for a given pattern of oceanlC in­

duction currents at some distance from the island. Setting the 

·dei-isity of these currents in relation to the observed magnetic 

field on the island gives the impedance of the variation field 

for the surrounding ocean of known integrated conductivity. To a 

first approximation induced currents in the ocean do not contri­

bute to the horizontal magn€tic field on the island. Hence, by 

knovling their density the horizontal magnetic field on the sea 

floor can be calculated from which the inductive response function 

for the oceanic substructure follows. 
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