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Summary 

This paper develops a finite element method which gives accurate 
numerical approximations to magnetotelluric data over two-dimensional 
conductivity structures. The method employs a simple finite element 
technique to find the field component parallel to the strike of the structure 
and a new numerical differentiation scheme to find the field component 
perpendicular to strike. Examples show that the new numerical 
differentiation scheme is a significant improvement over the standard 
finite element procedure when meshes of poor quality are used. Algorithms 
for incorporating the differentiation scheme into the finite element 
matrix equation and for computing partial derivatives of magnetotelluric 
data with respect to mesh parameters are derived in order to simplify the 
computation needed to do the inverse problem. 

1. Introduction 

The magnetotelluric (MT) response over an arbitrary two-dimensional con- 
ductivity structure can only be solved with numerical methods such as finite element 
(FE) and finite difference. In the usual application of these methods, the component 
of the electric or magnetic field parallel to the strike of the structure (Ex or H,) is 
found approximately at a finite number of points (or nodes) that describe a mesh. 
Values of this ‘ solution field ’ between nodes can be estimated by interpolation. The 
field components not found directly, ‘ auxiliary fields ’, can also be estimated- 
typically by numerical differentiation of the solution field. 

For a given problem and mesh, the degree to which the numerical solution, as 
parameterized by the mesh, can describe the spatial variations of the analytical 
solution determines the quality of the mesh. In general, mesh quality increases with 
the number of nodes used, but considerations of computer time and size of computer 
memory place a practical upper limit on this number. Also, the accuracy of the 
solution fields is usually greater than the accuracy of the auxiliary fields. One possible 
way to handle this problem is to numerically solve the first order Maxwell’s equations 
for all the field components directly. This raises the status of the auxiliary fields to 
that of solution fields and avoids numerical differentiation. This multi-component 
approach, however, is very time and memory demanding. Given the one-component 
approach (two-component if Ex and H, do not decouple into independent modes), the 
accuracy of numerical methods is dictated by the practical limits on mesh quality and 
the technique used to compute auxiliary fields. 

* Received in original form 1975 February 4 
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In spite of these limitations, several published numerical schemes (for example, 
Swift 1967; Coggon 1971; Jones & Pascoe 1971; Pascoe & Jones 1972) give accurate 
results for electromagnetic problems provided each mesh used is carefully designed to 
suit the conductivity structure and frequency. One important consideration in mesh 
design is to avoid very non-uniform node spacing. This was illustrated by Williamson, 
Hewlett & Tammemagi (1974) with regard to the Jones & Pascoe (1971), Pascoe & 
Jones (1972) finite difference method and confirmed by Jones & Thomson (1974). 
Another consideration is the problem of having a too large vertical node spacing 
near the Earth’s surface, which results in an inaccurate estimate of the auxiliary 
fields E ,  and H ,  obtained by differentiating with respect to depth. Pascoe & Jones 
(1972) improve the accuracy of E,  and H ,  by assuming that Ex and H ,  have the 
anaIytic one-dimensional functional dependence on depth (exponentials) between 
nodes. As pointed out by the authors, it is not clear that this procedure is appropriate 
for the general two-dimensional problem. 

The purpose of this paper is to present an implementation of the FE method that 
gives accurate solution fields and auxiliary fields in situations where good mesh 
design is not easy to accomplish. One such situation occurs when there are large 
lateral changes in electrical conductivity. For example, if a vertical contact separates 
a 100 : 1 conductivity contrast, then a vertical node spacing equal to 0.02 skin depths 
(a more than adequate spacing) on the resistive side of the contact is equal to 0.2 
skin depths (a marginally adequate spacing) on the conductive side. To get adequate 
node spacing everywhere would require either the addition of many nodes to the mesh, 
the use of very uneven node spacing, or the use of a general FE mesh that allows 
arbitrary placement of nodes. 

A second example of mesh design problems occurs in the application of linear 
inverse methods to MT data interpretation. The methods of Backus & Gilbert (1967) 
and Jordan (1973) for iteratively improving an Earth model require the solution of 
many forward problems-one per datum per iteration. Partial derivatives of each 
datum with respect to all the model parameters must also be computed for each 
iteration. Therefore, two difficulties with numerical methods are aggravated. First, 
since so many forward problems are solved and partial derivative calculations are 
necessary, limits on the number of nodes used are severe. Second, the mesh cannot 
be designed carefully except for the initial guess model. Each change to the con- 
ductivity structure makes the mesh less suitable for the next iteration. The mesh 
can be changed iteratively, but writing a successful algorithm for improving the mesh 
at each step of the iteration would be difficult. 

The numerical scheme described in this paper reduces some of the harmful effects 
of bad mesh design. This is achieved with a new technique for numerically differentiat- 
ing the solution field to get the auxiliary field needed to define MT apparent con- 
ductivity. The solution field is obtained with a simple FE scheme that leads to a 
matrix equation very similar to the transmission network equations given by Swift 
(1967). The equation can be solved by the same upper-triangularization and back- 
substitution algorithm used by Swift. More versatile applications of the FE method 
to electromagnetic problems, using general mesh geometries and a general para- 
meterization of the solution field, are described by Reddy & Rankin (1973), Silvester 
& Haslam (1 972) and Coggon (1 971). The numerical differentiation technique developed 
in this paper could also be developed for these or other FE methods. The technique 
developed here might also be used as an alternative to more elaborate methods. 

2. The magnetotelluric equations 

If electrical conductivity c, magnetic permeability p, and electric permittivity E 

are independent of the x co-ordinate (see Fig. l), then two uncoupled electro- 
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magnetic modes exist when sources and boundary conditions are also independent 
of x. The ' H ,  mode ' involves the field components H,, E,, and E,; the ' Ex mode ' 
involves Ex, H,, and H,. Following Swift (1967), Maxwell's equations for both 
modes can be written (assuming eCiW' time-dependence and mks units) 

a,z+a,.J = -yv ) 
a, V = -yJ 

a,v = -111 

using the following substitutions: 
H ,  mode 

V =  H x  

J =  -4 
I =  E; 
? =  CT - I'm 

Y =  - iwp 

i 
Ex mode 

E x  

HY 

-Hz 
- imp 

CT - i o e  

The quantities H,, pH, ,  H , ,  Ex ,  (a-iwe) Ey,  and E ,  are continuous across a 
vertical contact that gives a discontinuity in CT, p, or E.  H,, H,, pH,,  Ex, E,: and 
(Q- ioc) E, are continuous across a horizontal contact. These continuity conditions 
can be summarized with 

V, I ,  yJ continuous across vertical contacts 

V ,  y1, J continuous across horizontal contacts 

X 
a i r  

1 Y ear th  

Z =  zmax 

a ( z )  
FIG. I. Cross-section of a two-dimensional Earth model. Electrical parameters 
u, p, and e depend on y and z inside the four boundaries. Outside the boundaries the 
parameters are either one-dimensional or symmetric about the lines y = y,,, and 

Y = Ymm. 

M 
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One second order equation for I/ can be obtained from the three first order 
equations: 

The MT impedance for the two modes is defined to be 

H, mode Ex mode 

and the complex apparent conductivity is 0, = - i o p J Z 2 .  An MT datum is taken 
here to be either loglo~cA~ or ph eA (in degrees) at the radial frequency o at a station 
on the Earth's surface. 

Boundary conditions 
The boundary conditions used in this paper simulate a plane wave source having 

no x or y dependence radiating above a halfspace which has electrical parameters 
e(y,z) and p ( y ,  z)* inside a region 0 < z < z,,,, ymin < y < ymax. In air (z < 0) 
c = 0 and ,u = 4n x lo-' (the free space value in m k s  units). Both c and p depend 
only on depth for z > z,,,. 

The boundary conditions are specified at y = y,,,, y =ymin, z = zmax, and 
z = zmin. The plane wave source is expressed by setting the horizontal magnetic field, 
H ,  or H y ,  to 1 at z = zmin. In the H ,  mode, zmin = 0 because H ,  is constant in air, 
as seen by setting r ]  = 0 in (2.1). In the Ex mode, zmin is negative and chosen such that 
the secondary fields induced by lateral changes in c and p are approximately zero at 
z = zmin. If the boundary conditions described below are used at ymin and y,,,, then 
choosing zmin < ymin - y,,, is adequate for most realistic-Earth problems. 

For both modes, z,,, must be large enough so that below z,,, either the secondary 
or total Ex or H ,  field is negligibly small. 

The ymin and y,,, boundaries can be used to model two situations, which are 
illustrated in Fig. 1.  First, if cr and p depend only on depth outside ymin < y < y,,,, 
then approximate boundary conditions can be imposed at y = ymin and y = y,,, 
that express this. The approximation will be accurate if the boundaries are far from 
lateral changes in c and p, thus making the fields outside the boundaries essentially 
one-dimensional. The second situation permits the statement of exact boundary 
conditions. Namely, if c and p are symmetric about the lines y = ymin and y = y,,, 
(and consequently periodic with a period of 2~max-ymin]), then imposing a,, Ex = 0 
or aYHx = 0 on the boundaries expresses this symmetry. Looking ahead to Section 
8, both situations occur in the conductivity structure in Fig. 4. The structure is a 
1 km square dyke underlain by an infinite conductor. The right-hand boundary is 
placed far from the dyke since the fields are approximately one-dimensional there. 
The left-hand boundary is placed at the centre of the dyke because this is a line of 
symmetry in the conductivity structure and in the fields. 

The four boundary conditions can be expressed in the general form 

= zmax ( l / ~ )  8, v + a1 v = B 1  (2.3a) 

z = Zmin (1/4) a, + a2 v = P 2  (2.3b) 

Y = Ymax 

Y = Ymin 

(1/q) a y  V + a3 v = P 3  (2 * 3c) 

( l / ~ )  a y  v +a4 v = 84. (2.3d) 
* Displacement currents are ignored in magnetotellurics due to the low frequencies used. There- 

fore, e is assumed to be zero everywhere including in air. 
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The boundary conditions discussed above are obtained by setting m3 = flj = u,, - 
p4 = Oand 

H ,  mode Ex mode 

ui = Z", ZHSl 

P I  = 0 0 

a2 = L 0 

D2 = L - 1  

where Z,, is the MT impedance of the half space z > z,,, and where L is a very large 
number. 

3. Variational approach 

The field V ( y , z )  satisfying (2.2) and (2.3) can be derived from a variational 
principle:* V ( y ,  z )  minimizes a functional 8(v  ay V ,  a, V )  called the Lagrangian. 
The theory behind this is available in many textbooks (see Morse & Feshbach 1953, 
Chapter 3, for a complete and original development) so only a brief summary is 
presented here. 

The Lagrangian is written as an integral of the Lagrange density L :  
Y m a x  Z,.. ,. 
Ymin Z r n l P  

The real quantity Y is minimized when V satisfies the complex Euler-Lagrange 
equation 

The Lagrange density for V is given by 

The Lagrange density in (3.3) inserted into (3.2) gives (2.2). To avoid the use of 
complex quantities, one could derive the same result by using the real part of L in two 
real Euler-Lagrange equations-one equation for the real part of V and one for the 
imaginary part. 

Boundary conditions 
The boundary conditions in (2.3) can also be incorporated into the variational 

approach by adding an integral over each boundary to the Lagrangian. For each 
of the four boundaries the following integrals are added: 

1 z = zmaX 9, = R e  

1 Z = z m i n  Y 2  = -Re 

y = ylnax 8, = R e l d z  [F V 2 - &  V ]  

(3.4a) 

(3.4b) 

(3.4c) 

* The variational principle used is an extension of Hamilton's principle from time-dependent 
conservative systems to dissipative systems described in the frequency domain. 
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y = ymin LZ4 = -Re!& [F V 2 - p p 4  V ] .  (3.4d) 

Minimizing 9 + Y1 + Y 2  + Z3 + 9, is equivalent to solving equations (2.2) and 
(2.3). This is proved in Appendix 6 of Zienkiewicz (1971). 

4. Finite element solution 

The FE method finds the functioii V ( y ,  z ) ,  chosen from a restricted set of functions, 
that minimizes the Lagrangian. The method is described in detail in Zienkiewicz 
(1971) and is described here only for the particular implementation used in this paper. 

The regionzmi, < z < zmax, ymin < y < y,,, is divided up into rectangular elements, 
each having uniform q and y. A node is defined at the corner of each rectangle. 
Inside a given element having width MI and height h, Vfy, z )  is assumed to be of the 
form 

The constants ci are uniquely determined by the values of V at the four nodes of the 
element. Therefore, for all the elements in a mesh having M rows of elements and 

V ( y , z )  = c,+c, y + c , z + c , y z .  (4.1) 

FIG. 2. Schematic diagram of a rectangular mesh. The vector v1 contains NS-I  
values of Valong a row of nodes. The (i,j)th element, shaded and enlarged below, 

has mesh parameters hl, w j ,  .rt(j), and y I ( j ) .  
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N columns of elements, the (M+l) (N+1) values of V at the nodes determine 
V ( y ,  z) everywhere. This defines the set of functions from which the FE method chooses 
the one with the smallest Lagrangian. The parameterization of V ( y ,  z) with (M + 1) 
( N +  1) values based on the functional form in (4.1) is the only approximation made 
in the FE method when the boundary conditions are exact. 

The following notation, illustrated in Fig. 2, will be used to label the mesh para- 
meters q,  y, h, w and the solution V. The values of V at the nodes immediately above 
the i’th row of elements are denoted F( j ) ,  j = I ,  . . . , N + 1 .  In vector notation these 
values will be written as the N +  1 by I column vector vi. Therefore v1 and vM+ are 
the vectors of values along the zmi, and z,,, boundaries respectively. The entire set 
of nodal values of I/ will be denoted by the ( M +  1) ( N +  1) by 1 vector v which 
consists of the vi placed end to end: v = (vl, vz, ..., vM+J.  The element in the i’th 
row and j’th column of elements, the (i, j)’th element, has parameters denoted q i ( j ) ,  
r i ( j ) ,  hi and wj. Using these definitions, V ( y ,  z )  inside element (i,.j) can be written 

J’z 1 [ wj li WjIZi 
4’ 1’(Yj+-?, Z i + Z )  = Vi(j)  1 - - - = + - 

+ V,( j+l )  - - ~ [ i j  wj yz hi 1 
+ V i + i ( j >  - - - yz ] + V i + l ( j +  1) [”I (4.2) [ ii w j h i  wj hi 

where ( y j ,  zi) is the location of the upper-left corner of the element. 
The integrals in (3.3) and (3.4) can be expressed in terms of these quantities. 

9 in (3.3) is the sum of integrals over each element. The integral over element 
(i, j )  is+v? K, v, where v, is the 4 by 1 vector 

ve = [vi(i>, viCj+l), vi+Ici), Vi+l ( j+ l ) IT  (4.3) 
and K, is the 4 by 4 symmetric (but not Hermitian) matrix 

whose four independent components are 

K, will be referred to as an element ‘ stiffness ’ matrix, a term borrowed from stress- 
strain analysis. 
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The integral of L over all of the elements can be assembled into one quadratic 
form involving all of the nodes: 9 = Re+vT Kv. K is the ( M +  1) (N+ I )  by (A4 + 1) 
( N +  1) symmetric ' global stiffness ' matrix whose components have contributions 
from each of the MN element stiffness matrices. 

Boundary conditions 
Adding the integrals in (3.4) to the Lagrangian expresses the boundary conditions. 

To derive the FE representation of pl, assume the shaded element in Fig. 2 is on the 
zmax boundary. If a1 and P1 are assumed to vary linearly along the bottom of the 
element, then they can be parameterized in terms of the node point values a l ( j ) ,  
q ( j +  l), Pl(j), and P 1 ( j +  1). Then (3.4a) integrated over the boundary of this one 
element contributes Sv,' T, v, -yeT f, to the Lagrangian where 

1 0 0 

and 

It should be pointed out that the functions a1 and D1 are not necessarily continuous 
along the boundary. A discontinuity in q causes a discontinuity in al and pl. 
Therefore, at each node on the boundary, two values of a1 and p1 are needed-one 
each for the elements to the left and right of the node. Thus in general, 2N nodal 
values of a and P are needed along thezmr, and z,,, boundaries. 

The total integral in (3.4a) can be assembled from the element contributions. 
Similar contributions to (3.4b) through (3.4d) can be assembled from the other 
boundary elements. The total Lagrangian can then be written 

(4.7) 
where K includes the contributions from the T, and K,, and f includes contributions 
from the f,. (4.7) is minimized when v satisfies the complex matrix equation 

Y + 8, + 8, + Z3 +S4 = Re{+vTKv- vT f}  

KV = f. (4.8) 
To avoid complex numbers, one could minimize (4.7) with respect to the real and 
imaginary parts of Y and derive a-set of matrix equations which are just the real and 
imaginary parts of (4.8). 

5. Computing J from V 
In order to compute the MT impedance, V and J are needed at the Earth's 

surface. V can be interpolated from the solution to (4-8) using (4.2). The standard 
FE procedure for computing J (defined to be - (l/q)a,V) is to take the derivative of 
(4.2) and divide by q. Therefore, inside element (i, j )  J has the form 

This formula is not very accurate unless hi is very small. Computed this way, J is 
independent of z inside the element and is most accurate at z = hi/2 and least accurate 
at the top and bottom of the element. 
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A more accurate method for computing J is described in this section. First some 
definitions are needed. In the last section vi was defined to be the values of V along 
the i’th row of nodes. Now define gi+ and gi- to be the nodal values of the con- 
tinuous (in the y direction) function G = q J  along the same row of nodes. gi+ and 
g i -  use the parameters q i ( j )  and qi-  ,(j), respectively. G is assumed to vary linearly 
between nodes; inside elements, G is assumed to have the same functional dependence 
on y and z as V does in (4.1). Since G is not continuous across horizontal contacts 
( J  is), gi+ and gi- are not equal in general. Also, if the N ratios vi-,(j)/qi(j) are 
not all equal, then it is impossible to define J so that G is continuous in they direction 
and J is continuous in the z direction. The method described below forces G to be 
continuous across vertical contacts but does not guarantee that J be continuous 
across horizontal contacts. The standard definition of J in (5.1) has this same 
property. 

With this notation it is easy to see that (5.1) is equivalent to defining 

(5.2b) 

where G i + f j )  and G;+l(j) are the components of the vectors gi’ and g;+l. It is clear 
from (5.2) that the standard method for computing J has gi+ = g;+ 1. 

The more accurate expression for J is gotten by defining g,’ and g i -  differently. 
For the purpose of deriving the new expression, assume that the boundary conditions 
at ymin and y,,, are 8, V = 0, making a3, p3, ct4, p4 all zero. Now define the ( N +  1) 
by ( N +  1) symmetric matrices A, and B, so that the Lagrange density integrated over 
the i’th row of elements is $viT Ai vi++vT+ A, v,+ +viT Bi vi+ ,. Define T1 and f, so 
that (3.4b) is given b y ~ v l T T 1 v l - f l T v l .  Similarly define TM and f M + ,  for (3.4a). 
Then Kv = f can be partitioned into M + 1 blocks for vi, i = 1,. . ., M + 1 : 
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One more definition is necessary: 

Mi is ( N +  1) by ( N +  l), symmetric, and tridiagonal. 

to be 
The more accurate formula for J proposed here is (5.3) with gjf and g,- defined 

gi+  = M , - ~ ( A ~ v , + B , v ~ + , )  (5.6a) 

gi- = -MT?1 (Ai-,vi+Bi-ivi-1). (5.6b) 

Consider a 
boundary condition that specifies J on the zmin boundary. Then in (2.3b) p2 is 
simply - J on the boundary and g2 is zero. If g,+ contains the nodal values of 
G = q J  on the boundary, then specifying 8,' is the same as specifying J .  In equation 
(5.4) this boundary condition sets T1 = 0 and f, = Ml.gl+ .  (This can be derived 
from (4.6) and ( 5 . 9 . )  Therefore, the first block of equations in (5.4) becomes 

The motivation for (5.6) comes from the boundary conditions. 

A1 v1+ Bi ~2 = Mi g,'. (5.7) 
So a boundary condition specifying J at z = zmin expresses ( 5 . 6 4  with i = 1. Similarly 
specifying J at z = z,,, is equivalent to specifying g, + 1. In this case fM+ = - MM g$+ 
and the last block of equations in (5.4) states 

B M V M + A M V M + ~  = -'Mg,+l ( 5  * 8) 
which is just (5.6b) with i = M + 1. 

It is easy to show that (5.6) converges to (5.2) as hi and h i - l  approach zero. 
First, notice that Ai and Bi can be decomposed into Ai = (I/hi)Mi+hiAi' and 
B, = -(l/hi)Mi+/ziBj', where Ai' and Bj' are independent of'h,. Then (5.6) can be 
written 

gi+ = (l//Zi) (vi-v,+l)+O(hJ (5.9a) 

gi- = ( l / h i - 1 )  (vi-1-vJ+O(hi-1) (5.9b) 

which give (5.2) in the limit. 
A better feeling for the meaning of (5.6) can be obtained by considering a one- 

dimensional problem where nothing depends on y .  The FE solution is then specified 
by values at a set of vertically arranged nodes. If node 1 is at the Earth's surface 
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and node 2 is the first node below the surface, then from (5.2) and (5.3) J at the 
surface would be 

(5.10) 

This is the standard FE definition of J for the one-dimensional case. The new method, 
(5.6) substituted into (5.3), gives 

(5.11) 

The extra term in (5.1 l), not present in (5. lo), corrects for the curvature of the 
solution field V. As an example of its effectiveness, (5.11) gives apparent con- 
ductivities to better than 0.5 per cent accuracy in one-dimensional problems in 
which (5.10) results in errors on the order of 15 per cent. 

6. Partial derivatives with respect to mesh parameters 

In order to apply linear inverse methods to MT data, partial derivatives of the 
data with respect to model parameters are needed. In FE solutions for the data, a 
model parameter can be any of the mesh parameters q, y,  12, or w. An algorithm for 
computing the exact partial derivative of the FE-computed data with respect to any 
mesh parameter is derived in this section. The algorithm is based upon a technique 
derived by Madden (1972) for computing the sensitivity of voltages to impedances in 
electrical networks. 

The datum at a given station on the Earth’s surface is defined as either logl,la~,l 
or ph oA. For the Ex mode oA = - iwp(J /V)’ and 

The data are 
log on = log ( p o / i )  + 2 log J - 2 log v. 

b 1 0  b A l  = (~/hZlO) Re (1% FA) 

ph oA = (1 80/n) Im (log oA). 

(6. la) 

(6.lb) - 

Equations (6.1) also apply to the H, mode with 

log oA = log (pw/i)  + 2 log I/ - 2 log J .  

The FE approximation to the data can be written generally as 

d = Re or Im {k,[log k, + 2 log (aT v) - 2 Iog (bT v)]) (6.21 

where a and b form the proper linear combinations of the solution vector v to give Y 
and J at the station. The partial derivative with respect to a mesh parameter m is 

r7d 1 akl 
= Re or Im k, - 

dm { [ k, din 
-_ 

2 a  (a’ v) - - -- +--- 2 a  
aTv am bTv Srn 

The following derivation shows how to find aQ/dm when Q has the form, Q = aT v. 
Q can be either V or J .  
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First, note that the derivative of a matrix or a vector is gotten from component-by- 
component differentiation. Second, note that the quantities aapm, af/am, and aK/am 
are known since a, f, and K are given. To begin, 

Differentiating (4.8) gives 

Equation (6.5) can be solved for &/dm and substituted into (6.4) to yield 

This can be formulated as the following algorithm: 

1. Solve for v. 

2. For each mesh parameter m, 

(a) Generate x = af/am- (aK/am) v. 

(b) Solve for y in the problem Ky = x. 
(c) For each a, 

ti) Compute (aa/am)T v + a' y. 

This algorithm requires solving a forward problem, Ky = x, for each mesh para- 
meter. So the algorithm is suitable for obtaining the derivatives for the data at several 
stations with respect to a few mesh parameters. 

A more efficient algorithm is available when the derivatives of a few data with 
respect to many mesh parameters are wanted-namely, when the number of m's 
exceeds the number of Q's. In this algorithm one forward problem is done for each 
Q and is defined to be 

Ku = a (6.7) 
which gives u = I(-' a. Since K is symmetric, 

(6.8) aT K-l  x = xT K-' a = xT = uT x. 
Now (6.6) can be rewritten as 

The algorithm is now 

1. Solve for v. 

2. For each a, 

(a) Solve for u in the problem Ku = a. 

(b) For each m, 

(i) Generate x = df/am - (dK/dm) V. 

(ii) Compute (aa/am)T v+ uT x. 
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7. MOM’s method for directly solving for J 

The vector a from the last section is complicated when Q is J and J is defined by 
(5.3) and (5.6). For example, if the Earth‘s surface is the third row of nodes and the 
data station is two-thirds of the way between nodes 4 and 5 in that row, then a can 
be partitioned into 

O I  
B3 M3-I 6, 0, ... 1 

A, M3-l 6, - 
rl3 (4) 

(7.1) 

where 6 is an N + 1 by 1 vector that interpolates between nodes 4 and 5 :  6 = (0, 0, 0, 
3,3,0,. . ., O)T.  * This expression for a is complicated enough to make a and certainly 
dapm hard to program for a computer. 

An alternative algorithm for finding J, referred to here as MOM’s method from 
the appearance of equation (7.4), simplifies the a vector. From (7.1) and (5.6a), 
Q in the example in the last paragraph is recognized to be (1 /~ , (4) )6~g,+ .  MOM’s 
method in this example would add g3+ to the solution vector v in (4.8) so that a 
could take the simpler form 

r 7 

The method is illustrated first for the Ex mode. Assume there are two rows of air 
elements so that J is obtained from either g3+ (like the preceding example) or g3-. 
g3+ is used in the following, but g3+ and g3- are the same in the Ex mode when p is 
constant along the first row of subsurface elements. The Ex mode has J = 1 at 
z = zmin, so the equations in (5.4) become 

B1 

B2 AZ + B3 
1;: A1+A2 B2 

I B3 A3+A4 . 

M11 
0 
0 1 (7.3) 

0 1  

where 1 is a vector of all ones. MOM’s method adds g3+ and an extra v3 to the solution 
vector resulting in 

(7.3) and (7.4) are equivalent. The fifth block in (7.4) defines 8,’ in agreement with 
(5.6a). The fourth block is used to keep K symmetric. 

The additional unknowns actually make MOM’s method a little less efficient in 
terms of computer time, but the easier programming makes up for this. The changes 

* It ought to be pointed out that a 6 p t n  is not always zero. 6 depends on some of the w, because 
if the element widths change, the nodes move while the station remains fixed. 
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to the stiffness matrix required by MOM’s method are easy to handle-one simply 
inserts two fictitious rows of elements in the mesh: one has Ai = 0, Bi = Mi and the 
other has Ai = 0, Bi = - Mi.  The algorithms for generating K and lJK/lJm and for 
solving KY = fare unchanged by MOM’s method. 

The H ,  mode is treated in a similar way. The Earth‘s surface is the zmin boundary 
on which V is set equal to 1. For a given station on the surface, V and J are computed 
from v, and g, +. The original set of equations is 

T, is M, multiplied by a huge number, so the first block of (7.5) essentially states 
MI v1 = M, 1. MOM’s method adds g,+ as an unknown in a new set of equations: 

0 -MI +- -MI 1 1 Ig;; = [ k 1 (7.6) 
-M1 A1 Bl 

B, A , + &  B2 
B, A,+-& B3 

B3 

The first block in (7.6) expresses the boundary condition. The second block defines 
g,’. Since the data stations are on the mesh boundary, the H ,  mode requires only 
one extra vector of unknowns and one row of fictitious elements. 

8. Examples 

The examples in this section compare the accuracies of MT data computed two 
ways. The first way uses (5.2) and (5.3) to estimate J and is referred to as the ‘ stan- 
dard ’ method. The second way uses MOM’s method* for computing J based on the 
definitions in (5.6) and (5.3). 

Three problems are solved: the H ,  and Ex modes over the conductjvjty structure 
shown jn Fig. 3 at a period of 100 s and the H, mode over the conductivity structure 
in Fig. 4 with a period of 78 s. Both structures have E = 0 and ,u = 4 n x  lo-’ 
everywhere. 

The following discussion examines the contribution MOM’s method makes to the 
accuracy of FE solutions. To properly compare MOM’s method to other published 
numerical results would require the addition of many examples to this section, so 
this comparison is not made. However, it is possible to state that for the vertical 
contact problem, the MOM data in Examples 1 and 3 compare favourably, allowing 
for differences in meshes, to the numerical results given in Tables 2 and 3 of Jones & 
Thomson (1974). 

Example 1 : H, mode ooer t:erticaE contact 
The H, mode response over a vertical contact with a conductivity contrast of 

100 : 1 was solved using two FE meshes whose element dimensions are given in Table 
1 .  Both meshes have 18 rows and 24 columns of elements, but Mesh 1.1 has grossly 
uneven node spacing. In both meshes the high conductivity region was terminated 

* In this section and the next section the term MOM’s method will, for convenience, be used to 
refer to both the algorithm derived in Section 7 and the new definition of Jderived in Section 5 for 
which the algorithm is used. 
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c3 = 2TT/100 

FIG. 3. Conductivity structure (not to scale) and frequency used for Examples 1 
and 3.  The thin lines indicate the mesh boundaries used for the FE solutions with 
the exception that z,tn = 0 in Example 1 .  Conductivities are in mho m- I ,  distances 

in kni, and frequcncy in md s-I .  

at z = 428 kni in order to accommodate the zmaX boundary condition, but this differs 
insignificantly from a semi-infinite vertical contact. 

Table 2 compares five sets of MT data (log,, ]aAl and ph aa4) at selected points 
along the Earth’s surface. The first column contains the analytic results of d’Erceville 
& Kunetz (1962) at the points where they tabulated the electric field. The remaining 
four columns of data were computed by the standard and MOM’s methods using 
Meshes 1. I and 1.2.  

Inspection of Table 2 shows that for both meshes MOM’s method is significantly 
more accurate than the standard method, especially on the conductive side of the 
contact where the skin depth is only 5 times h,. Also, it is apparent from comparing 
the Mesh 1.1 data to the Mesh 1.2 data that very irregular node spacing does not 
severely hamper either the standard or MOM implementation of the FE method. 

Table 3 compares the standard and MOMS methods in a different way. The partial 
derivatives of each amplitude datum with respect to some element heights and widths 
are tabulated for the Mesh 1.1 solutions. Analytically these derivatives are zero 
since changing element dimensions does not move the position of the vertical contact. 

In the FE solutions the partial derivatives will be non-zero for two reasons. First, 
changing element heights moves the conductivity contrast at z = 428 km and changing 
element widths moves the ymin and y,,, boundaries (which changes the periodic 
conductivity structure). However, the mesh is so large, such perturbations of the 
conductivity model would have a slight effect on the data. Second, and most import- 
ant, changing the hi and w, affect the data because of the FE approximation; moving 
nodes reparameterizes the solution field. This artificial dependence of the data on the 
mesh parameters results in the non-zero partial derivatives in Table 3. Comparison 
of the derivatives for the two methods shows that MOM’s method does not reduce 
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Table 1 

Element heights (hi) and widths (w,) in km for Meshes 1 . 1  and 1.2 used in Example 1. 
The word ‘ contact’ appears when rows or columns of elements are separated by a 

conductivity contrast. 

Mesh 1 . 1 
i Ill i hr i h, i h, 
1 1.0 6 2.0 11 16.0 16 128.0 
2 2.0 7 4-0 12 8.0 17 128.0 
3 1.0 8 8.0 13 16.0 contact 
4 2-0 9 4.0 14 32-0 18 128.0 
5 4-0  10 8.0 15 64.0 

i WJ j WJ i WJ i WJ 

1 160.0 8 5 - 0  13 0 .5  19 2.0 
2 80-0 9 10.0 14 1.0 20 4.0 
3 40.0 10 5 .0  15 0 .5  21 8.0 
4 20.0 11 10.0 16 1.0 22 16.0 
5 10.0 12 5 .0  17 2.0 23 32.0 
6 20.0 contact 18 1.0 24 64.0 
7 10.0 

i hi 
1 1.0 
2 1.3 
3 1.7 
4 2.0 
5 2.6 

i JVJ 

1 160.0 
2 80.0 
3 40.0 
4 28-0 
5 20.0 
6 15.0 
7 11.0 

Mesh 1.2 
i / I l  i hr 
6 3.4 11 10.4 
7 4.0 12 13.6 
8 5.2 13 16.0 
9 6.8 14 32.0 

10 8-0 15 64.0 

i WJ i WJ 

8 8.0 13 0.3 
9 6.0 14 0.4 

10 4.0 15 0.6 
11 3.0 16 0.8 
contact 17 1 -2  
12 0.2 18 1.8 

i hi 
16 128.0 
17 128.0 
contact 
18 128.0 

i WJ 

19 2.7 
20 4.0 
21 8 - 0  
22 16.0 
23 32.0 
24 64.0 

20 
(T.10 

W-2lT/78 

FIG. 4. Conductivity structure used in Example 2. The thin lines indicate mesh 
boundaries. Conductivities are in mho rn-l, distances in km, and frequency in 

rad s-l. 
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the artificial dependence on the element widths, but does greatly reduce the dependence 
on hl .  This is because the standard method makes J a constant with depth inside 
each element while MOM’S method allows a linear variation of J with depth. 

Example 2 :  H ,  mode over conductive dyke 
The H ,  mode over the conductivity model in Fig. 4 was solved analytically by 

Rankin (1962). These analytic results were not used in this example due to difficulties 
in tabulating the graphical presentation of the solution, but Rankin’s solution does 
show that the problem is a challenging one. Instead, numerical solutions were com- 
puted for three meshes (see Table 4). Mesh 2.1 is very detailed and its data were 
taken to be very close to the true data; the value computed from Mesh 2.1  at y = 34 km, 
where the fields are one-dimensional, agrees well with the analytic value: log,, lo,l = 

Table 4 

Element dimensions for. Meshes 2 . 1 ,  2 . 2 ,  and 2 . 3  used in Example 2.  
Mesh 2.1 

i hi 
1 0.01 
2 0.01 
3 0.015 
4 0.015 
5 0.02 
6 0.03 
7 0.03 

i WI 
1 0.04 
2 0.03 
3 0.03 
4 0.025 
5 0.025 
6 0.025 
7 0.025 
8 0.025 
9 0.025 

10 0.025 
11 0.025 
12 0.02 

i hl 
1 0-05 
2 0.1 
3 0.1 

i wf 
1 0.1 
2 0.1 
3 0.08 
4 0.07 
5 0.05 
6 0.04 

i hl 

1 0.2 
2 0.2 
3 0.2 

j w, 

i hl 
8 0.03 
9 0.05 

10 0.05 
11 0.06 
12 0.08 
13 0.1 
14 0-1 

i WJ 
13 0.02 
14 0.02 
15 0.02 
16 0.02 
17 0.02 
18 0.02 
19 0.015 
20 0.015 
21 0.01 
22 0.008 
23 0-006 
24 0.004 

i h,  
15 0.1 
16 0.1 
17 0.08 
18 0.07 
19 0.05 
contact 

i WJ 
25 0.002 
contact 
26 0.01 
27 0.02 
28 0.03 
29 0.04 
30 0.05 
31 0.07 
32 0.08 
33 0.1 
34 0.1 
35 0.13 

Mesh 2.2 
i hl i hl 
4 0.15 7 0-2 
5 0.2 contact 
6 0.2  8 0.005 

j w, i WJ 
7 0.03 12 0.15 
8 0.02 13 0.2 
9 0.01 14 0.3 

contact 15 0.4 
10 0.05 16 0.55 
11 0.1 17 0.75 

Mesh 2.3 
i hl i hi 
4 0.2 contact 
5 0.2 6 0.005 

j W J  i W J  
same as Mesh 2.2 

i hi 

20 0.002 
21 0.003 
22 0.004 
23 0.006 
24 0.008 
25 0.012 

i hl 
36 0.17 
37 0.2 
38 0.2 
39 0.3 
40 0.5 
41 0.5 
42 1.0 
43 2.0 
44 4.0 
45 8.0 
46 16.0 

i hr 
9 0.01 

10 0.02 

i WJ 
18 1.0 
19 2.0 
20 4.0 
21 8.0 
22 16-0 

i Al 
7 0.01 
8 0.02 

i )vl 
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Table 6 

Element dimensions for Meshes 3.1 and 3.2 used in Example 3. 

503 

i hl 
1 256.0 
2 128.0 
3 64.0 
4 32-0 
5 16.0 
6 8.0 
7 4.0 
8 2.0 
9 1.0 

i WJ 
1 160.0 
2 80.0 
3 40.0 
4 26.0 
5 18.0 
6 14.0 
7 11.0 

i hi 
1 258.5 
2 128.0 
3 64.0 
4 32.0 
5 16.0 
6 8.0 

i WJ 
1 160.0 
2 80.0 
3 40.0 
4 30.0 
5 20.0 

Mesh 3.1 
i hl i 

10 0.7 18 
11 0.5 19 
12 0.3 20 
contact 21 
13 0-3 22 
14 0 .5  23 
15 0.7 24 
16 1.0 25 
17 1.3 26 

hr 
1.6 
2.0 
2.6 
3.2 
4.0 
5.2 
6.4 
8.0 

10.4 

i WJ 
8 8.0 
9 6.0 

10 4.0 
11 3.0 
12 2.5 
13 1.5 
14 1.0 

i WJ 
contact 
15 0.3 
16 0.4 
17 0.6 
18 0.9 
19 1.4 
20 1.8 

Mesh 3.2 
i hr i hl 
7 4.0 12 4.0 
8 2.0 13 8.0 
contact 14 8-0 

9 2.0 15 16.0 
10 2.0 16 16.0 
11 4.0 17 16.0 

i WJ i WJ 
6 20.0 10 1.0 
7 10.0 11 2.0 
8 10.0 12 2.0 
9 5 .0  13 3-0 
contact 14 4.0 

i hl 
27 12.8 
28 16.0 
29 32.0 
30 64-0 
31 128.0 
32 128.0 
contact 
33 128.0 

j WJ 
21 2.6 
22 4.0 
23 8.0 
24 16.0 
25 32.0 
26 64.0 

i hl 
18 32.0 
19 64.0 
20 128.0 
21 128.0 
contact 
22 128.0 

i WJ 
15 8.0 
16 16.0 
17 32.0 
18 64.0 

0.9947. Meshes 2.2 and 2.3, which differ only in their vertical node spacings, are 
considerably less detailed. Phase data were not used in this example. 

Table 5 shows that MOM’s method produces consistently better results than the 
standard method. The errors using MOM’s method are large only over the dyke 
near y = 0.5 km. In this region the element widths of Meshes 2.2 and 2.3 are too 
large to represent the rapidly varying Ey field caused by the large conductivity con- 
trast of 1600 : 1. 

Example 3: Ex mode over vertical contact 
Meshes 3.1 and 3.2, described in Table 6 ,  were used-to solve the Ex mode over the 

vertical contact in Fig. 3. Mesh 3.1 is more detailed and its data were taken to be 
very accurate. Therefore, the errors in the Mesh 3.2 results are with respect to the 
Mesh 3.1 data. 

The standard method results were obtained using g,- rather than 8,’; the 
numerical differentiation was done using the surface nodes and the first row of nodes 
above the surface. In MOMS method, g9+ = g9-. 

Table 7 shows that MOM’s method again is more accurate (with exceptions) 
than the standard method, but not dramatically as in Example 1. One reason for this 
is that the Ex mode over a structure with lateral conductivity, but no lateral per- 
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Table 7 

Conparison of amplitude andphase data for Example 3. Wifererices between Mesh 3 . 2  
data and Mesh 3 . 1  data are in parentheses. 

y (km) Mesh 3.1 
- 100 
- 50 
- 40 
- 30 - 20 
- 15 - 10 
-5 
-2 

0 
1 
2 
3 
5 

10 
15 
20 
30 
40 
50 

Y (W 
- 100 
- 50 
- 40 
- 30 
- 20 
- 15 
- 10 

- 5  
-2 

0 
1 
2 
3 
5 

10 
15 
20 
30 
40 
50 

-2.013 
- 1 *970 
- 1.930 
-1.861 
-1.733 
-1.621 
-1.453 
-1.176 
-0.885 
- 0.563 
-0.377 
-0.276 
-0.205 
-0.102 

0.005 
0.019 
0.008 
0.004 
0.001 
0.002 

Mesh 3.1 
3.9 

15.7 
20.6 
26.8 
34.1 
37.7 
40.1 
37.3 
25.1 
1.0 

- 12.4 
-16.4 
-17.5 
-17.1 
-9.0 
-3.2 

0.3 
-0.1 
-0.4 
-0.3 

Log,, Amplitude 
Mesh3.2 MOM 
-2.013 (0.0) 
- 1 a968 (0.002) 
-1.925 (0.005) 
-1.855 (0.006) 
- 1.730 (0.003) 
-1.635 (-0.014) 
-1.431 (0.022) 
-1-204 (-0.028) 
-0.836 (0.049) 
-0.602 (-0,039) 
-0.358 (0.019) 
-0.281 (-0.005) 

-0.095 (0.007) 
0.008 (0.003) 
0.023 (0.004) 
0.011 (0.003) 
0.008 (0.004) 
0.005 (0.004) 
0.006 (0.004) 

-0.201 (0.004) 

Phase (degrees) 
Mesh 3.2 MOM 

3.7 (-0.2) 
15.7 (0.0) 
20.6 (0.0) 
26.8 (0.0) 
33.9 (-0.2) 
37.6 (-0.1) 
39.7 (-0.4) 
39.6 (2.3) 
19.3 (-5.8) 

-15.9 (-3.5) 
-17.0 (-0.6) 
- 19.0 (-1.5) 
-18.7 (-1.6) 
-10.3 (-1.3) 
-4.6 (-1.4) 
-1*0(-1.3) 
-1*4(-1*3) 
-1*7(-1.3) 
-1.6 (-1.3) 

4.5 (3.5) 

Mesh 3.2 Std 
-2.012 (0.001) 
-1.964 (0.006) 
-1.918 (0.012) 
-1.845 (0.016) 
-1.716 (0.017) 
-1.618 (0.003) 
-1.403 (0.050) 
-1.166 (0.010) 
-0.817 (0.068) 
-0.593 (-0.030) 
-0.443 (-0.066) 
-0.349 (-0.073) 
-0.254 (-0.049) 
-0.137 (-0.035) 
-0.009 (-0.014) 

0.017 (-0-002) 
0.012 (0-004) 
0.008 (0.004) 
0.005 (0.004) 
0.006 (0.004) 

Mesh 3.2 Std 
3.8 (-0.1) 

16.0 (0.3) 
20.9 (0.3) 
27.1 (0.3) 
34.1 (0.0) 
37.7 (0.0) 
38.5 (-1.6) 
37.2 (-0.1) 
17.8 (-7.3) 

-8.7 (3.7) 
-12.7 (3.7) 
-17.6 (-0.1) 
-18.6 (-1.5) 
-11.6 (-2.6) 
-5.6 (-2.4) 
-1.4 (-1.7) 
- I * 6  (- 1 *7) 
-1.7 (-1.3) 
-1.6 (-1.3) 

3.3 (2.3) 

meability, changes is an easier problem to solve than the H, mode. Another reason 
is that using the air layer to numerically differentiate removes part of the need for 
MOM’S method. This is easily seen in the one-dimensional case, where in (5.11) 
y = 0 in air for the Ex mode. In the two-dimensional case, (2.1) implies 

MOM’S method adds in a z dependence for J .  When y = 0, the z dependence is 
caused only by a second derivative of V. So MOMS method and the standard 
method are less different in the Ex mode than in the H, mode, where y # 0. 
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9. Conclusions 

The definition of J in (5.3) and (5.6) and MOM’s algorithm for computing J 
comprise a straightforward extension of a basically simple FE method and signi- 
ficantly enhance the accuracy of the method in MT modelling. This is particularly 
valuable in implementing lipear inverse methods, where efficiency is important and 
meshes of marginal quality are likely to be encountered. 

The primary accomplishment of MOM’s method is that it allows the auxiliary 
field J to have the same functional dependence on y and z as the solution field V. 
It does this in a way that is consistent with the FE procedure for incorporating 
boundary conditions into the Lagrangian. 

The method corrects mainly for insufficient vertical node spacing and has less 
effect on insufficient horizontal node spacing. However, this does not mean that 
MOMS method is only appropriate for regions where the solution field is one- 
dimensional. It is most accurate in one-dimensional regions simply because horizontal 
node spacing has no effect when the solutioii depends only on depth. 

Finally, MOM’s method is more helpful in the H, mode than the Ex mode because 
in the Ex mode the combined effects of cr = 0 in air and ,u = 4n x lo-’ everywhere 
result in a relatively slow variation of H,, withz in air. 
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