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Summary

This paper develops a finite element method which gives accurate
numerical approximations to magnetotelluric data over two-dimensional
conductivity structures. The method employs a simple finite element
technique to find the field component parallel to the strike of the structure
and a new numerical differentiation scheme to find the field component
perpendicular to strike. Examples show that the new numerical
differentiation scheme is a significant improvement over the standard
finite element procedure when meshes of poor quality are used. Algorithms
for incorporating the differentiation scheme into the finite element
matrix equation and for computing partial derivatives of magnetotelluric
data with respect to mesh parameters are derived in order to simplify the
computation needed to do the inverse problem.

1. Introduction

The magnetotelluric (MT) response over an arbitrary two-dimensional con-
ductivity structure can only be solved with numerical methods such as finite element
(FE) and finite difference. In the usual application of these methods, the component
of the electric or magnetic field parallel to the strike of the structure (E, or H,) is
found approximately at a finite number of points (or nodes) that describe a mesh.
Values of this ¢ solution field * between nodes can be estimated by interpolation. The
field components not found directly, ¢ auxiliary fields’, can aiso be estimated—
typically by numerical differentiation of the solution field.

For a given problem and mesh, the degree to which the numerical solution, as
parameterized by the mesh, can describe the spatial variations of the analytical
solution determines the quality of the mesh. In general, mesh quality increases with
the number of nodes used, but considerations of computer time and size of computer
memory place a practical upper limit on this number. Also, the accuracy of the
solution fields is usually greater than the accuracy of the auxiliary fields. One possible
way to handle this problem is to numerically solve the first order Maxwell’s equations
for all the field components directly. This raises the status of the auxiliary fields to
that of solution fields and avoids numerical differentiation. This multi-component
approach, however, is very time and memory demanding. Given the one-component
approach (two-component if E, and H, do not decouple into independent modes), the
accuracy of numerical methods is dictated by the practical limits on mesh quality and
the technique used to compute auxiliary fields.
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In spite of these limitations, several published numerical schemes (for example,
Swift 1967; Coggon 1971; Jones & Pascoe 1971; Pascoe & Jones 1972) give accurate
results for electromagnetic problems provided each mesh used is carefully designed to
suit the conductivity structure and frequency. One important consideration in mesh
design is to avoid very non-uniform node spacing. This was illustrated by Williamson,
Hewlett & Tammemagi (1974) with regard to the Jones & Pascoe (1971), Pascoe &
Jones (1972) finite difference method and confirmed by Jones & Thomson (1974).
Another consideration is the problem of having a too large vertical node spacing
near the Earth’s surface, which results in an inaccurate estimate of the auxiliary
fields E, and H, obtained by differentiating with respect to depth. Pascoe & Jones
(1972) improve the accuracy of E, and H, by assuming that E, and H, have the
analytic one-dimensional functional dependence on depth (exponentials) between
nodes. As pointed out by the authors, it is not clear that this procedure is appropriate
for the general two-dimensional problem.

The purpose of this paper is to present an implementation of the FE method that
gives accurate solution fields and auxiliary fields in situations where good mesh
design is not easy to accomplish. One such situation occurs when there are large
lateral changes in electrical conductivity. For example, if a vertical contact separates
a 100 : 1 conductivity contrast, then a vertical node spacing equal to 0.02 skin depths
(a more than adequate spacing) on the resistive side of the contact is equal to 0.2
skin depths (a marginally adequate spacing) on the conductive side. To get adequate
node spacing everywhere would require either the addition of many nodes to the mesh,
the use of very uneven node spacing, or the use of a general FE mesh that allows
arbitrary placement of nodes.

A second example of mesh design problems occurs in the application of linear
inverse methods to MT data interpretation. The methods of Backus & Gilbert (1967)
and Jordan (1973) for iteratively improving an Earth model require the solution of
many forward problems—one per datum per iteration. Partial derivatives of each
datum with respect to all the model parameters must also be computed for each
iteration. Therefore, two difficulties with numerical methods are aggravated. First,
since so many forward problems are solved and partial derivative calculations are
necessary, limits on the number of nodes used are severe. Second, the mesh cannot
be designed carefully except for the initial guess model. Each change to the con-
ductivity structure makes the mesh less suitable for the next iteration. The mesh
can be changed iteratively, but writing a successful algorithm for improving the mesh
at each step of the iteration would be difficult.

The numerical scheme described in this paper reduces some of the harmful effects
of bad mesh design. This is achieved with a new technique for numerically differentiat-
ing the solution field to get the auxiliary field needed to define MT apparent con-
ductivity. The solution field is obtained with a simple FE scheme that leads to a
matrix equation very similar to the transmission network equations given by Swift
(1967). The equation can be solved by the same upper-triangularization and back-
substitution algorithm used by Swift. More versatile applications of the FE method
to electromagnetic problems, using general mesh geometries and a general para-
meterization of the solution field, are described by Reddy & Rankin (1973), Silvester
& Haslam (1972) and Coggon (1971). The numerical differentiation technique developed
in this paper could also be developed for these or other FE methods. The technique
developed here might also be used as an alternative to more elaborate methods.

2. The magnetotelluric equations

If electrical conductivity ¢, magnetic permeability u, and electric permittivity &
are independent of the x co-ordinate (see Fig. 1), then two uncoupled electro-
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magnetic modes exist when sources and boundary conditions are also independent
of x. The * H,mode’ involves the field components H,, E,, and E,; the ‘ E, mode’
involves E,, H,, and H,. Following Swift (1967), Maxwell’s equations for both
modes can be written (assuming e” " time-dependence and mks units)

8,14+8,J = —yV

o, V=-—-nJ 2.H
o,V =-nl
using the following substitutions:
H, mode E, mode
V = H, E,
J = —E, H,
I= E. —H,
n = o—iwe —iou
vy = —imn o—iwe

The quantities H,, uH,, H,, E,, (c—iwe) E,, and E, are continuous across a
vertical contact that gives a discontinuity in o, u, or e. H,, H, uH,, E,, E,, and
(o —iwe) E, are continuous across a horizontal contact. These continuity conditions
can be summarized with

V, I, nJ continuous across vertical contacts

V, nI, J continuous across horizontal contacts

Z=Zmin

Y =Y¥min O=0 Y=Ymax

/X air
l y earth

O (2Ymin-¥.2) 0 (2Ymax -¥,2)

or 0f(z) o(y,z) or o(z)

Z=Zmax

o(z)

Fi1G. 1. Cross-section of a two-dimensional Earth model. Electrical parameters
g, 1, and ¢ depend on y and z inside the four boundaries. Outside the boundaries the
parameters are either one-dimensional or symmetric about the lines y = ymia and

Y = Ymax-
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One second order equation for V can be obtained from the three first order
equations:

o,((1/m o, V)+0,((/m) 8.V) = yV. 2.2
The MT impedance for the two modes is defined to be
H, mode E, mode
,_~E_J B _V
H, 14 H, J
and the complex apparent conductivity is ¢, = —iwu/Z*>. An MT datum is taken

here to be either log,|o,| or ph o, (in degrees) at the radial frequency w at a station
on the Earth’s surface.

Boundary conditions

The boundary conditions used in this paper simulate a plane wave source having
no x or y dependence radiating above a halfspace which has electrical parameters
a(y,z) and u(y,z)* inside a region 0 €2z € 2,1, VYimin <V < Vmax- 10 air (z <0)
6 =0and pu = 4nx 1077 (the free space value in mks units). Both ¢ and u depend
only ondepthforz > z,,..

The boundary conditions are specified at ¥ = Vouxs ¥V =Vmin» 2 = Zmax» and
z = z_ ;.. The plane wave source is expressed by setting the horizontal magnetic field,
H,or Hj, to 1 at z = z,;,. In the H, mode, z,,;, = 0 because H, is constant in air,
as seen by setting 7 = Oin (2.1). In the E_ mode, z,,;, is negative and chosen such that
the secondary fields induced by lateral changes in ¢ and u are approximately zero at
z =z;.. If the boundary conditions described below are used at y,,;, and y .., then
choosing z,;n < ¥min— Vmax 18 adequate for most realistic-Earth problems.

For both modes, z,,,, must be large enough so that below z,,,, either the secondary
or total E, or H_ field is negligibly small.

The y,,;, and y,,, boundaries can be used to model two situations, which are
illustrated in Fig. 1. First, if ¢ and u depend only on depth outside y;n € ¥ < Vmax
then approximate boundary conditions can be imposed at y = y.;, and y = y..
that express this. The approximation will be accurate if the boundaries are far from
lateral changes in o and u, thus making the fields outside the boundaries essentially
one-dimensional. The second situation permits the statement of exact boundary
conditions. Namely, if ¢ and u are symmetric about the lines y = y, and y = yp..
(and consequently periodic with a period of 2[V . — Vmin)), then imposing 0, E, = 0
or 0, H, = 0 on the boundaries expresses this symmetry. Looking ahead to Section
8, both situations occur in the conductivity structure in Fig. 4. The structure is a
1 km square dyke underlain by an infinite conductor. The right-hand boundary is
placed far from the dyke since the fields are approximately one-dimensional there.
The left-hand boundary is placed at the centre of the dyke because this is a line of
symmetry in the conductivity structure and in the fields.

The four boundary conditions can be expressed in the general form

Z=Zne (AMOV+u V=5 (2.3a)
z=2Zpy /Mo V+aV =24 (2.3b)
Y =Ymax (M0, V+ayV = B; (2.3¢)
Y=Vmin {AM&V+a,V =4, (2.3d)

* Displacement currents are ignored in magnetotellurics due to the low frequencies used. There-
fore, ¢ is assumed to be zero everywhere including in air.
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The boundary conditions discussed above are obtained by setting a; = f; = a, —
Bs = 0and

H, mode E, mode
oy = Zys Zus
B = 0 0
oy = L 0
Br = L -1

where Zy is the MT impedance of the half space z > z,,, and where L is a very large
number.

3. Variational approach

The field V(y,z) satisfying (2.2) and (2.3) can be derived from a variational
principle:* V(y,z) minimizes a functional £ (V, 9, V, 0, V) called the Lagrangian.
The theory behind this is available in many textbooks (see Morse & Feshbach 1953,
Chapter 3, for a complete and original development) so only a brief summary is
presented here.

The Lagrangian is written as an integral of the Lagrange density L:

¥ max 2 max
% =Re J dyf dz L(V,8,V,0,V). 3.1
Ymin Zmin

The real quantity % is minimized when V satisfies the complex Euler-Lagrange
equation

oL oL oL
0 =, .2
Jsan) +o 7,7 = o ¢-2
The Lagrange density for V is given by
1
$=Refdyfdz [—(@,V)2+-l—(ayV)2+—”—V2]. 3.3)
2n 27 2

The Lagrange density in (3.3) inserted into (3.2) gives (2.2). To avoid the use of
complex quantities, one could derive the same result by using the real part of L in two
real Euler-Lagrange equations—one equation for the real part of V and one for the
imaginary part.

Boundary conditions

The boundary conditions in (2.3) can also be incorporated into the variational
approach by adding an integral over each boundary to the Lagrangian. For each
of the four boundaries the following integrals are added:

z=12,, &, =Re]dy [";—‘VZ-/JI V] (3.4a)
2=z, &= -Refdy [522— vi_g, V] (3.4b)
Y= o 23 =Re[dz | 2vi-py v] (3.40

* The variational principle used is an extension of Hamilton’s principle from time-dependent
conservative systems to dissipative systems described in the frequency domain.
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V= L= —Rejdz [321‘— vi-p, V]. (3.4d)

Minimizing £ +.%,+%,+%3+ %, is equivalent to solving equations (2.2) and
(2.3). This is proved in Appendix 6 of Zienkiewicz (1971).

4. Finite element solution

The FE method finds the function ¥ (y, z), chosen from a restricted set of functions,
that minimizes the Lagrangian. The method is described in detail in Zienkiewicz
(1971) and is described here only for the particular implementation used in this paper.

The regionz,,;n € Z < Zmaxs Ymin S V < Vmax 18 divided up into rectangular elements,
each having uniform # and y. A node is defined at the corner of each rectangle.
{nside a given element having width w and height 4, V(y, z) is assumed to be of the
form

V(y,z) = co+c;y+cyz+c3pz. 4.1

The constants ¢; are uniquely determined by the values of ¥ at the four nodes of the
element. Therefore, for all the elements in a mesh having M rows of elements and

W; W Wi W W
v, 1 W i Win N
h,
Vv, h,
V3
Vi hi_y
i~
M | | d
t
Visy
Vm
hm
W+
V'(’) Vi(j+1)

Vi) ' V,,((+)

FiG. 2. Schematic diagram of a rectangular mesh. The vector v, contains N--1
values of V along a row of nodes. The (7, /)th element, shaded and enlarged below,
has mesh parameters A, w;, 7:(7), and y,(j).
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N columns of elements, the (M+1) (N+1) values of V' at the nodes determine
V (y, z) everywhere. This defines the set of functions from which the FE method chooses
the one with the smallest Lagrangian. The parameterization of V (y,z) with (M +1)
(N +1) values based on the functional form in (4.1) is the only approximation made
in the FE method when the boundary conditions are exact.

The following notation, illustrated in Fig. 2, will be used to label the mesh para-
meters #, ¥, 1, w and the solution V. The values of V at the nodes immediately above
the i’th row of elements are denoted Vi(j), j = 1, ..., N+1. In vector notation these
values will be written as the N+ 1 by 1 column vector v;. Therefore v; and v, are
the vectors of values along the z,;, and z,,, boundaries respectively. The entire set
of nodal values of V' will be denoted by the (M+1) (N+1) by 1 vector v which
consists of the v; placed end to end: v = (v;,V,,..., Vpr,.y). The element in the i'th
row and j’th column of elements, the (i, j)’'th element, has parameters denoted #,(}),
7:(j), h; and w;. Using these definitions, V (y, z) inside element (i, j) can be written

: . y _Z ¥z
] ), . = V 1—" _ - T
(.}J +,V, Zl+z) i(]) [ wj hi + Wj hi ]

'z
+nu+n[3i— ) ]
w; w; hy

NER _ yz
) |5 = [ [5] @

where (y;, z;) is the location of the upper-left corner of the element.

The integrals in (3.3) and (3.4) can be expressed in terms of these quantities.
& in (3.3) is the sum of integrals over each element. The integral over element
(i, ) is4v,TK_v, where v, is the 4 by 1 vector

Yo = [Vi(.’)’ va(.]""l)’ Vi+l(j)’ Vi+1(j_"'1)]T (43)
and K, is the 4 by 4 symmetric (but not Hermitian) matrix
K, K, K; K,
K, = | X2 K Ko K 4.4)
K; K, K; K,
K4 K3 KZ K]

whose four independent components are

yilJ) by w; h; i
K= + — + ;
! 9 3wind) 3k
yil ) by w; Ay Wi
K. = — -+ -
2 18 3win(j) 6
Vil i w; hi Wi
K, = + ~ 5
3 18 6w;n(j)  3hin())
K, = viDhiw;, A SR/ N
36 6w, ni(j)  6hn())

K, will be referred to as an element ° stiffness * matrix, a term borrowed from stress-
strain analysis.
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The integral of L over all of the elements can be assembled into one quadratic
form involving all of the nodes: £ = Re4vT Kyv. Kisthe (M+1) (N+1) by (M+1)
(N+1) symmetric ‘ global stiffness > matrix whose components have contributions
from each of the MN element stiffness matrices.

Boundary conditions

Adding the integrals in (3.4) to the Lagrangian expresses the boundary conditions.
To derive the FE representation of .%,, assume the shaded element in Fig. 2 is on the
Zmas Doundary. If ¢, and f, are assumed to vary linearly along the bottom of the
element, then they can be parameterized in terms of the node point values o, (j),
o, (G+1), B1(j), and f,(j+1). Then (3.4a) integrated over the boundary of this one
element contributes 4v,” T, v,—v,”f, to the Lagrangian where

00 0 0
00 0 0
T, = 4,
c=10 0 wlu()+auG+D]  wika()+baG+]| O
0 0 wylhe(D+dsaaGi+1)]  wyldse G+ G D]

and

fez[o,oswj(ﬁlam 4 BuED ),wj(ﬂls(j) LA )] “.6

It should be pointed out that the functions «; and f, are not necessarily continuous
along the boundary. A discontinuity in 5 causes a discontinuity in «, and f,.
Therefore, at each node on the boundary, two values of «, and 3, are needed—one
each for the elements to the left and right of the node. Thus in general, 2N nodal
values of « and § are needed along the z,,;, and z,,,,, boundaries.

The total integral in (3.4a) can be assembled from the element contributions.
Similar contributions to (3.4b) through (3.4d) can be assembled from the other
boundary elements. The total Lagrangian can then be written

L+ L+ L+ L3+ L, = Re3vT Kv—v' f} 4.7
where K includes the contributions from the T, and K., and f includes contributions
from the f,. (4.7) is minimized when v satisfies the complex matrix equation

Kv=f1 4.8
To avoid complex numbers, one could minimize (4.7) with respect to the real and

imaginary parts of v and derive a set of matrix equations which are just the real and
imaginary parts of (4.8).

5. Computing J from V

In order to compute the MT impedance, V and J are needed at the Earth’s
surface. V can be interpolated from the solution to (4.8) using (4.2). The standard
FE procedure for computing J (defined to be — (1/4)3,V) is to take the derivative of
(4.2) and divide by 5. Therefore, inside element (7, j) J has the form

Vi) =Vi+1()) y Vi+ D)=V G+ T y
——— ]~ = — 1.
hini()) [ w; ] * hini(J) [ Wy ]

This formula is not very accurate unless /; is very small. Computed this way, J is
independent of z inside the element and is most accurate atz = A,/2 and least accurate
at the top and bottom of the element.

J(yyty,zi+2) = (5.1)
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A more accurate method for computing J is described in this section. First some
definitions are needed. In the last section v; was defined to be the values of V along
the i’th row of nodes. Now define g;* and g;~ to be the nodal values of the con-
tinuous (in the y direction) function G = #J along the same row of nodes. g;* and
g,” use the parameters y;(j) and #,_,(j), respectively. G is assumed to vary linearly
between nodes; inside elements, G is assumed to have the same functional dependence
onyand z as V does in (4.1). Since G is not continuous across horizontal contacts
(J is), g;" and g,” are not equal in general. Also, if the N ratios n,.,(j)/n;(j) are
not all equal, then it is impossible to define J so that G is continuous in the y direction
and J is continuous in the z direction. The method described below forces G to be
continuous across vertical contacts but does not guarantee that J be continuous
across horizontal contacts. The standard definition of J in (5.1) has this same
property.

With this notation it is easy to see that (5.1) is equivalent to defining

g = (/") (Vi—=Visy) (5.2a)

g = (/A ) (Vie—V) (5.2b)
and then setting

J(yj+y’ Z,-+Z) =

G ()) [1__y___2_ yz ]

p +
111(.]) wj hi Wj hi

L GG+ [_y_ __yi]

m(y) wy w; h;
Gii1()) [i )z ] Gz (G+1) [ yz ] 5.3
* () hy thi () thi (-3

where G;*(j) and G, ,(j) are the components of the vectors g;* and g; ;. It is clear
from (5.2) that the standard method for computing J hasg;* = g7 ;.

The more accurate expression for J is gotten by defining g,* and g, differently.
For the purpose of deriving the new expression, assume that the boundary conditions
at Yiia and Yo, are 0, V = 0, making a3, B3, oy, B4 all zero. Now define the (N +1)
by (N + 1) symmetric matrices A; and B, so that the Lagrange density integrated over
the i’th row of elements is v,” A, v;+34vl, { A;v;.  +V," B;v;,,. Define T, and f; so
that (3.4b) is given by 3v,T T, v, —f,Tv,. Similarly define T, and f;,.,.; for (3.4a).
Then Kv = f can be partitioned into M +1 blocks forv;, i = 1,..., M +1:

[ A+ T, B, 17 v 1 [ ]
B, A +A, B, \f) 0
B, A, +A, B, A 0
B, - Vs = 0
Ay-z2+Ay—4 By-4 Varo 1 0
By Ay-1+Ay By A\ 0
| By Ay+Ty 1 L Vagey S iYFRN

(5.4)
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One more definition is necessary:

wy Wy
3n(1) 6 1,(1)
wy Wi W wy
6n:(1) 3n.1) 3n:(2) 61,(2)
w, Wa W
61:(2) 3n(2) 3143)

W -1 + Wn Wn
3ndN-1) ~ 3n(N) 6 1:(N)

_ Wy Wn
61:(N) 3n(N) |
(5.5

M, is (N + 1) by (N + 1), symmetric, and tridiagonal.
The more accurate formula for J proposed here is (5.3) with g,* and g;,~ defined

to be
g7 =M, AV +B;viy ) (5.6a)

g = -M (AL vi+B Vi) (5.6b)

The motivation for (5.6) comes from the boundary conditions. Consider a
boundary condition that specifies J on the z,;, boundary. Then in (2.3b) §, is
simply —J on the boundary and «, is zero. 1f g;* contains the nodal values of
G = nJ on the boundary, then specifying g, * is the same as specifying J. In equation
(5.4) this boundary condition sets T, = 0 and f; = M, g,”. (This can be derived
from (4.6) and (5.5).) Therefore, the first block of equations in (5.4) becomes

A1V1+BIVZ=M1g1+. (5.7)

So a boundary condition specifying J atz = z_;, expresses (5.6a) withi = 1. Similarly

specifying J atz = z,,,_ is equivalent to specifying gy, ;. Inthiscasefy,, ; = — My, 837 +1
and the last block of equations in (5.4) states

By Vit Ay Ve = —My8u+s (5.8)

which is just (5.6b) withi = M +1.

It is easy to show that (5.6) converges to (5.2) as 4; and A;_, approach zero.
First, notice that A; and B; can be decomposed into A; = (1/A)M;+#4; A;/ and
B, = —(1/A)M,+h; B/, where A; and B;’ are independent of #;. Then (5.6) can be
written

g = (1/h) (vi=vi )+ O(hy) (5.92)

g = /h_ ) (Vie —V)+O(h;_y) (5.9b)

which give (5.2) in the limit.

A better feeling for the meaning of (5.6) can be obtained by considering a one-
dimensional problem where nothing depends on y. The FE solution is then specified
by values V] at a set of vertically arranged nodes. If node 1 is at the Earth’s surface
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and node 2 is the first node below the surface, then from (5.2) and (5.3) J at the
surface would be

V=1,

J, =
! hymy

(5.10)

This is the standard FE definition of J for the one-dimensional case. The new method,
(5.6) substituted into (5.3), gives
V,—V.
Jy= =21 7, GV, +iVs). (5.11)
hyny

The extra term in (5.11), not present in (5.10), corrects for the curvature of the
solution field V. As an example of its effectiveness, (5.11) gives apparent con-
ductivities to better than 0-5 per cent accuracy in one-dimensional problems in
which (5. 10) results in errors on the order of 15 per cent.

6. Partial derivatives with respect to mesh parameters

In order to apply linear inverse methods to MT data, partial derivatives of the
data with respect to model parameters are needed. In FE solutions for the data, a
model parameter can be any of the mesh parameters #n, y, A, or w. An algorithm for
computing the exact partial derivative of the FE-computed data with respect to any
mesh parameter is derived in this section. The algorithm is based upon a technique
derived by Madden (1972) for computing the sensitivity of voltages to impedances in
electrical networks.

The datum at a given station on the Earth’s surface is defined as either log,,lo 4|
orpho,. Forthe E,modeos, = — iou(J /V)?and

logo, = log (uw/i)+-2log J—2log V.
The data are
logiolo4l = (1/logye) Re (log o) (6.1a)

- pho, = (180/%) Im (log s ,). (6.1b)
Equations (6. 1) also apply to the H, mode with
logo, = log (uw/i)+2log V —2log J.
The FE approximation to the data can be written generally as
d = Re or Im {k,[log k; +2log (a” v)—2log (b" V}} (6.2)

where a and b form the proper linear combinations of the solution vector v to give V'
and J at the station. The partial derivative with respect to a mesh parameter m is

ad

om

2 0. 2
a’v m @ - bTv

—;n—{ (bTv)]}. (6.3)

The following derivation shows how to find 6Q/dm when Q has the form, Q = av.
Q can be either V or J.
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First, note that the derivative of a matrix or a vector is gotten from component-by-
component differentiation. Second, note that the quantities 0a/om, of/0m, and 0K/om
are known since a, f, and K are given. To begin,

a0 Ja \T rf OV
om (Om ) vta ( om ) ©.4
Differentiating (4.8) gives
K ov of
am v+K = am (6.5)

Equation (6.5) can be solved for dv/dm and substituted into (6.4) to yield

of dK
Tw-1 _
v+a' K (6m o v).

o9  oa”
om  om

(6.6)

This can be formulated as the following algorithm:
1. Solve for v.
2. For each mesh parameter m,
(a) Generate x = of/om— (0K/0m) v.
(b) Solve for y in the problem Ky = x.
(c) For each a,
(i) Compute (da/ém)T v+a’y.

This algorithm requires solving a forward problem, Ky = x, for each mesh para-
meter. So the algorithm is suitable for obtaining the derivatives for the data at several
stations with respect to a few mesh parameters.

A more efficient algorithm is available when the derivatives of a few data with
respect to many mesh parameters are wanted—namely, when the number of m’s
exceeds the number of Q’s. In this algorithm one forward problem is done for each
Q and is defined to be

Ku=a2a 6.7)
which gives u = K™ ! a. Since K is symmetric,
aTK 1x=xTK'a=xTu=u"x. (6.8)
Now (6.6) can be rewritten as
0 T (o K
am  om " (6m " om v). 6.9)

The algorithm is now
1. Solve for v.
2. For each a,
(a) Solve for u in the problem Ku = a.
(b) For each m,
(i) Generate x == of/om— (0K/0m) v.
(ii) Compute (fa/om)T v+u” x.
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7. MOM’s method for directly solving for J

The vector a from the last section is complicated when Q is J and J is defined by
(5.3) and (5.6). For example, if the Earth’s surface is the third row of nodes and the
data station is two-thirds of the way between nodes 4 and 5 in that row, then a can
be partitioned into

—_ -1 -1
a—[0,0 @AM 3(4) ——B,M,"15,0, . ] 7.1

where & is an N+1 by 1 vector that interpolates between nodes 4 and 5: 8 = (0,0, 0,
%, %,0....,0)7.* This expression for a is complicated enough to make a and certainly
0a/0m hard to program for a computer.

An alternative algorithm for finding J, referred to here as MOM’s method from
the appearance of equation (7.4), simplifies the a vector. From (7.1) and (5.6a),
Q in the example in the last paragraph is recognized to be (1/5(4)) 8T g;*. MOM’s
method in this example would add g,* to the solution vector v in (4.8) so that a
could take the simpler form

1

0,0,0, —-
[ n3(4)

o, O,...,O]. (7.2)

The method is illustrated first for the E, mode. Assume there are two rows of air
elements so that J is obtained from either g3* (like the preceding example) or g; ™.
g3 " is used in the following, but g;* and g, ~ are the same in the E, mode when y is
constant along the first row of subsurface elements. The E, mode has J =1 at
Z = Zia, 80 the equations in (5.4) become

A, B, v, M1

[Bl A +A, B, ] \f) 0 ]
B, A,+A; B, V3 0

[ B, As+A, J Ve 0 J

where 1is a vector of all ones. MOM’s method adds g;* and an extra v, to the solution
vector resulting in

(7.3)

"A, B, 1T v ] C M, 1
B, A,+A, B, Vs 0
B, A, M, Vs 0
M, 0 -M, gt | = 0
M, A, B, Vs 0
B, A;+A, Vs 0

(7.4)

(7.3) and (7.4) are equivalent. The fifth block in (7.4) defines g, in agreement with
(5.6a). The fourth block is used to keep K symmetric.

The additional unknowns actually make MOM’s method a little less efficient in
terms of computer time, but the easier programming makes up for this. The changes

* It ought to be pointed out that ¢ 8 /0m is not always zero. 8 depends on some of the w; because
if the element widths change, the nodes move while the station remains fixed.
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to the stiffness matrix required by MOM’s method are easy to handle—one simply
inserts two fictitious rows of elements in the mesh: one has A; = 0, B; = M, and the
other has A; = 0, B; = — M,. The algorithms for generating K and dK/dm and for
solving Kv = fare unchanged by MOM’s method.

The H, mode is treated in a similar way. The Earth’s surface is the z_;, boundary
on which V is set equal to 1. For a given station on the surface, VV and J are computed
fromv, and g, *. The original set of equations is

A+T, B, vy T,1
Bz A2+A3 B3 V3 0
B3 .. . .

T, is M, multiplied by a huge number, so the first block of (7.5) essentially states
M, v, = M, 1. MOM’s method adds g, ¥ as an unknown in a new set of equations:

0 -M, g." -M; 1
-M, A B, v, 0
B, A+A, B, \£) = 0 (7.6)
B, A,+A; B, \f) 0
B, . : :

The first block in (7.6) expresses the boundary condition. The second block defines
g,*. Since the data stations are on the mesh boundary, the H, mode requires only
one extra vector of unknowns and one row of fictitious elements.

8. Examples

The examples in this section compare the accuracies of MT data computed two
ways. The first way uses (5.2) and (5.3) to estimate J and is referred to as the ¢ stan-
dard * method. The second way uses MOM’s method* for computing J based on the
definitions in (5.6) and (5.3).

Three problems are solved: the H, and E, modes over the conductivity structure
shown in Fig. 3 at a period of 100's and the H, mode over the conductivity structure
in Fig. 4 with a period of 78s. Both structures have ¢ =0 and u=4nx10"7
everywhere.

The following discussion examines the contribution MOM’s method makes to the
accuracy of FE solutions. To properly compare MOM’s method to other published
numerical results would require the addition of many examples to this section, so
this comparison is not made. However, it is possible to state that for the vertical
contact problem, the MOM data in Examples 1 and 3 compare favourably, allowing
for differences in meshes, to the numerical results given in Tables 2 and 3 of Jones &
Thomson (1974).

Example 1: H, mode over vertical contact

The H, mode response over a vertical contact with a conductivity contrast of
100 : 1 was solved using two FE meshes whose element dimensions are given in Table
1. Both meshes have 18 rows and 24 columns of elements, but Mesh 1.1 has grossly
uneven node spacing. In both meshes the high conductivity region was terminated

* In this section and the next section the term MOM’s method will, for convenience, be used to
refer to both the algorithm derived in Section 7 and the new definition of J derived in Section 5 for
which the algorithm is used.
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Zmin =-512.5
Yemin=-375 Ymax =132
U- 0
_Y
|
Z
O=.01 O=1
Z=428

Zmax = 556

=277/ 100

Fic. 3. Conductivity structure (not to scale) and frequency used for Examples 1

and 3. The thin lines indicate the mesh boundaries used for the FE solutions with

the exception that 2, = 0in Example 1. Conductivities are in mho m™*, distances
in km, and frequency in rad s~!.

at z = 428 km in order to accommodate the z,,,, boundary condition, but this differs
insignificantly from a semi-infinite vertical contact.

Table 2 compares five sets of MT data (log, |0,] and pho,) at selected points
along the Earth’s surface. The first column contains the analytic results of d’Erceville
& Kunetz (1962) at the points where they tabulated the electric field. The remaining
four columns of data were computed by the standard and MOM’s methods using
Meshes1.1and 1.2,

Inspection of Table 2 shows that for both meshes MOM’s method is significantly
more accurate than the standard method, especially on the conductive side of the
contact where the skin depth is only 5 times k,. Also, it is apparent from comparing
the Mesh 1.1 data to the Mesh 1.2 data that very irregular node spacing does not
severely hamper either the standard or MOM implementation of the FE method.

Table 3 compares the standard and MOM’s methods in a different way. The partial
derivatives of each amplitude datum with respect to some element heights and widths
are tabulated for the Mesh 1.1 solutions. Analytically these derivatives are zero
since changing element dimensions does not move the position of the vertical contact.

In the FE solutions the partial derivatives will be non-zero for two reasons. First,
changing element heights moves the conductivity contrast at z = 428 km and changing
element widths moves the y.;, and y.., boundaries (which changes the periodic
conductivity structure). However, the mesh is so large, such perturbations of the
conductivity model would have a slight effect on the data. Second, and most import-
ant, changing the #; and w; affect the data because of the FE approximation; moving
nodes reparameterizes the solution field. This artificial dependence of the data on the
mesh parameters results in the non-zero partial derivatives in Table 3. Comparison
of the derivatives for the two methods shows that MOM’s method does not reduce
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Table 1

Element heights (h;) and widths (w;) in km for Meshes 1.1 and 1.2 used in Example 1.
The word * contact® appears when rows or columns of elements are separated by a
conductivity contrast.

Mesh 1.1
i h i h i hy i hy
1 1-0 6 2:0 11 16-0 16 128-0
2 20 7 4-0 12 8-0 17 128-0
3 1-0 8 8:0 13 160 contact
4 2-0 9 4-0 14 32-0 18 128-0
5 4-0 10 8-0 15 64:0
J Wy i wy J Wy J Wy
1 160-0 8 50 13 0-5 19 20
2 80-0 9 10-0 14 1-0 20 4-0
3 400 10 50 15 0-5 21 80
4 200 i1 10-0 16 1-0 22 16-0
5 10-0 12 50 17 2-0 23 32:0
6 200 contact 18 1-0 24 64-0
7 100
Mesh 1.2
i h, i 111 7 /l[ i h‘
1 1-0 6 3-4 11 10-4 16 128-0
2 1-3 7 4-0 12 136 17 128-0
3 1-7 8 5-2 13 16-0 contact
4 2-0 9 6-8 14 32-0 18 128-0
5 2'6 10 8-0 15 64-0
J Wy J Wy J Wy J wy
1 160-0 8 8-0 13 0-3 19 2-7
2 80-0 9 6-0 14 0-4 20 4-0
3 400 10 4-0 15 0-6 21 8:0
4 28-0 11 3.0 16 0-8 22 160
5 200 contact 17 1-2 23 32-0
6 15-0 12 0-2 18 1-8 24 640
7 11-0
y=-.5 Y Yy=.5 Zmin=0 Iy
rr
§
r
O=1/160 T=10 O =1/160
Ymin=| Ymax =
0 34
_'f_l'
Zmax=1.035 B e~
G’nﬂoze
W=2Tr/78

F1G. 4. Conductivity structure used in Example 2. The thin lines indicate mesh
boundaries. Conductivities are in mho m~*, distances in km, and frequency in
rads~*,
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the artificial dependence on the element widths, but does greatly reduce the dependence
on h,. This is because the standard method makes J a constant with depth inside
each element while MOM’s method allows a linear variation of J with depth.

Example 2: H, mode over conductive dyke

The H, mode over the conductivity model in Fig. 4 was solved analytically by
Rankin (1962). These analytic results were not used in this example due to difficulties
in tabulating the graphical presentation of the solution, but Rankin’s solution does
show that the problem is a challenging one. Instead, numerical solutions were com-
puted for three meshes (see Table 4). Mesh 2.1 is very detailed and its data were
taken to be very close to the true data; the value computed from Mesh 2.1 at y = 34 km,
where the fields are one-dimensional, agrees well with the analytic value: log,, lo,| =

Element dimensions for Meshes 2.1, 2.2, and 2.3 used in Example 2.

Ili
0-01
0-01
0-015
0-015
0-02
0-03
0-03

NN R W N e T

Wy
0:04
0-03
0-03
0-025
0-025
0-025
0-025
0-025
0:025
0-025
0-025
0-02

— [
= OV TAWNRWN

(SR SH
coo

AL bW =
e

WA =
o090

Table 4
Mesh 2.1
i h( i Il;
8 0-03 15 0-1
9 0-05 16 0-1
10 0-05 17 0-08
11 0-06 18 0-07
12 0-08 19 0-05
13 01 contact
14 0-1
o owy Jjoow
13 0-02 25 0-002
14 0-02 contact
15 0-02 26 0-01
16 0-02 27 0-02
17 0-02 28 0-03
18 0-02 29 0-04
19 0-015 30 0-05
20 0-015 31 0-07
21 0-01 32 0-08
22 0-008 33 0-1
23 0-006 34 01
24 0-004 35 0-13
Mesh 2.2
1 h( H h,
4 0-15 7 0-2
5 02 contact
6 02 8 0-005
J Wy J Wi
7 0-03 12 0-15
8§ 0-02 13 0-2
9 0-01 14 0-3
contact 15 04
10 0-05 16 0-55
11 0-1 17 0-75
Mesh 2.3
i ]1‘ I h(
4 0-2 contact
5 02 6 0-005
Jjooow Joow

J
same as Mesh 2.2

20
21
22
23

25

J

36
37
38
39

41
42
43

45
46
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J
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0-003
0-004
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Table 6
Element dimensions for Meshes 3.1 and 3.2 used in Example 3.

Mesh 3.1
i hy i hy i hy i hy
1 256-0 10 07 18 16 27 12-8
2 128-0 11 05 19 2-0 28 160
3 64-0 12 0-3 20 2-6 29 32-0
4 32-0 contact 21 3-2 30 640
5 16-0 13 0-3 22 4-0 31 128-0
6 8-0 14 0-5 23 5-2 32 128-0
7 4-0 15 0-7 24 6-4 contact
8 2-0 16 1-0 25 8-0 33 128-0
9 1-0 17 1-3 26 10-4
i w j Wy j Wy J Wy
1 160-0 8 8-0 contact 21 2:6
2 800 9 6-0 15 0-3 22 4-0
3 40-0 10 4-0 16 0-4 23 8-0
4 260 11 3-0 17 0-6 24  16-0
5 18:0 12 2-5 18 0-9 25 32-0
6 14-0 13 1-5 19 1-4 26 64-0
7 110 14 1-0 20 i-8

Mesh 3.2
l h; i h( i h( i h[
1 258-5 7 4:0 12 40 18  32-0
2 128-0 8 2:0 13 8-0 19 64-0
3 64-0 contact 14 8-0 20 128-0
4 32-0 9 2-0 15 16-0 21 128-0
5 160 10 20 16 16:0 contact
6 8-0 11 4-0 17  16-0 22 128-0
J Wy J Wy J w; J Wy
1 160-0 6 200 10 10 15 8-0
2 80-0 7 10-0 11 2-0 16 16-0
3 40-0 g8 10-0 12 2-0 17 32:0
4 300 9 50 13 30 18 64:0
5 200 contact 14 4-0

0-9947. Meshes 2.2 and 2.3, which differ only in their vertical node spacings, are
considerably less detailed. Phase data were not used in this example.

Table 5 shows that MOM’s method produces consistently better results than the
standard method. The errors using MOM’s method are large only over the dyke
near y = 0-5km. In this region the element widths of Meshes 2.2 and 2.3 are too
large to represent the rapidly varying E, field caused by the large conductivity con-
trast of 1600 : 1.

Example 3: E, mode over vertical contact

Meshes 3.1 and 3.2, described in Table 6, were used to solve the E, mode over the
vertical contact in Fig. 3. Mesh 3.1 is more detailed and its data were taken to be
very accurate. Therefore, the errors in the Mesh 3.2 results are with respect to the
Mesh 3.1 data.

The standard method results were obtained using gy~ rather than g,*; the
numerical differentiation was done using the surface nodes and the first row of nodes
above the surface. In MOM’s method, go* = g,

Table 7 shows that MOM’s method again is more accurate (with exceptions)
than the standard method, but not dramatically as in Example 1. One reason for this
is that the E, mode over a structure with lateral conductivity, but no lateral per-
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Table 7

Comparison of amplitude and phase data for Example 3. Differences between Mesh 3.2
data and Mesh 3.1 data are in parentheses.

Log.o Amplitude

y{km) Mesh3.1 Mesh 3.2 MOM Mesh 3.2 Std
- 100 —2-013 —-2:013 (0-0) —2-012  (0-001)
—50 -1-970 ~1-968 (0-002) —1-964 (0-006)
—40 —-1-930 —1:925 (0-005) —~1-918 (0-012)
-30 —1-861 —1-855 (0-006) —1-845 (0-016)
—20 —-1-733 -1-730 (0-003) —-1-716 (0-017)
—15 —-1-621 —~1:635(—0-014) —1-618 (0-003)
-10 —1-453 ~1-431  (0-022) —-1-403 (0-050)
-5 —1-176 —1-204 (—0-028) —1-166 (0-010)
-2 ~0-885 —-0-836 (0-049) —0-817 (0-068)
0 —0-563 —0-602 (—~0:039) —-0-593 (—0-030)
1 ~0-377 —-0-358 (0-019) —0-443 (—0-066)
2 —~0-276 —0-281 (—0-005) ~0-349 (—0-073)
3 —0-205 —~0-201  (0-004) —0-254 (—0-049)
5 —0-102 —0-095 (0-007) —0-137 (—0-035)
10 0-005 0-008 (0-003) —0-009 (—0-014)
15 0-019 0:023 (0-004) 0-017 (—0-002)
20 0-008 0-011  (0-003) 0-012 (0-004)
30 0-004 0-008 (0-004) 0-008 (0-004)
40 0-001 0-005 (0-004) 0-005 (0-004)
50 0-002 0-006 (0-004) 0-006 (0-004)
Phase (degrees)
y(km) Mesh3.1 Mesh 3.2 MOM Mesh 3.2 Std
—100 3-9 3-7(~0-2) 3-8(—=0'1)
—50 15-7 15-7 (0-0) 160 (0-3)
—40 206 20:6 (0-0) 209 (0-3)
-30 26-8 26-8 (0-0) 27-1 (03
—-20 34-1 33-9(-0-2) 341 (0-0)
—-15 377 37-6 (—0-1) 37-7 (0-0)
—-10 40-1 39-7(~0-4) 38:5(—1-6)
-5 37-3 39:6 (2-3) 37-:2(—0-1)
-2 25-1 19:3 (—5-8) 17-8(~7-3)
0 1-0 4-5 (3-5) 3-3 (2-3)
1 —12-4 —-15:9(-3-%) —-87 (37
2 —16-4 —17:0(-0-6) -12:7 (37
3 —17-5 —19:0(—1-5) ~17-6 (—0-1)
5 —17-1 —18:-7(—1-6) ~18:6 (—1-5)
10 -9-0 -10-3(-1-3) —11:6 (—2-6)
15 —-3-2 —~4:6(—1-4) —5-6(—-2-4)
20 0-3 —1-0(~1-3) —1-4(-1-7)
30 —-0-1 ~1:4(~1-3) -1-6(-1:7)
40 —0-4 —-1-7(-1-3) -1-7(-1-3)
50 —-0-3 —-1:6(—1-3) —1-6(—1-3)

meability, changes is an easier problem to solve than the H, mode. Another reason
is that using the air layer to numerically differentiate removes part of the need for
MOM’s method. This is easily seen in the one-dimensional case, where in (5.11)
y = 0 1in air for the E, mode. In the two-dimensional case, (2.1) implies

3, J = —yV+3,(1/n)d, V). (8.1)

MOM’s method adds in a z dependence for J. When y = 0, the z dependence is
caused only by a second derivative of V. So MOM'’s method and the standard
method are less different in the E, mode than in the H, mode, where y # 0.
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9. Conclusions

The definition of J in (5.3) and (5.6) and MOM'’s algorithm for computing J
comprise a straightforward extension of a basically simple FE method and signi-
ficantly enhance the accuracy of the method in MT modelling. This is particularly
valuable in implementing linear inverse methods, where efficiency is important and
meshes of marginal quality are likely to be encountered.

The primary accomplishment of MOM’s method is that it allows the auxiliary
field J to have the same functional dependence on y and z as the solution field V.
It does this in a way that is consistent with the FE procedure for incorporating
boundary conditions into the Lagrangian.

The method corrects mainly for insufficient vertical node spacing and has less
effect on insufficient horizontal node spacing. However, this does not mean that
MOM'’s method is only appropriate for regions where the solution field is one-
dimensional. Itis most accurate in one-dimensional regions simply because horizontal
node spacing has no effect when the solution depends only on depth.

Finally, MOM’s method is more helpful in the H, mode than the E, mode because
in the E, mode the combined effects of ¢ = 0 in air and p = 47 x 10”7 everywhere
result in a relatively slow variation of H, with z in air.
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