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Can a 2-D MT frequency response always be interpreted as a 1-D
response?
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S U M M A R Y
Weidelt and Kaikkonen showed that in the transverse magnetic (TM) mode of magnetotellurics
it is not always possible to match exactly the 2-D response at a single site with a 1-D model,
although a good approximation usually seems possible. We give a new elementary example
of this failure. We show for the first time that the transverse electric (TE) mode responses can
also be impossible to match with a 1-D response, and that the deviations can be very large.
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1 I N T RO D U C T I O N

The properties that characterize the magnetotelluric frequency re-
sponse of a perfectly layered, 1-D structure are thoroughly under-
stood. Weidelt (1972) showed that the Schmucker complex admit-
tance function, defined by c(ω) = Ex/i ωBy = −Ey/i ωBx can al-
ways be expressed in terms of non-decreasing spectral function a(λ)
by a Stieltjes integral

c(ω) = a0 +
∫ ∞

0

da(λ)

λ + i ω
, (1)

which leads to a host of conditions (for example, Weidelt 1986; Yee
& Paulson 1988). If the conducting structure has finite vertical ex-
tent and σ (z) has a finite integral (surely a reasonable requirements
for a model of the Earth), this simplifies to

c(ω) = a0 +
∞∑

n=1

an

λn + i ω
(2)

with positive numerators an > 0 and a set of positive λn which
increase without bound. Eq. (2) is a special case of (1) when
the function a(λ) becomes a rising staircase with jumps of an

at λ = λn.
What characterizes a finite set of values drawn from the function

c(ω) at the frequencies ωj, j = 1, 2, . . . N , the kind of collection
made available by actual observation? Parker (1980) gave necessary
and sufficient conditions based on (2), in terms of the feasibility of a
semi-infinite linear program, and Parker & Whaler (1981) extended
the idea to uncertain observations with Gaussian statistics, by means
of a quadratic program. Parker & Booker (1996) gave a treatment
valid when the measurements are represented by apparent resistivity
and phase values, rather than the real and imaginary parts of c(ωj).
With these results we can determine with confidence whether or
not a given finite collection of (noisy or exact) MT observations
is compatible with a 1-D model. The programs for performing the
test are fast and completely reliable. As a preliminary step before

embarking on modelling or drawing inferences about the Earth, this
kind of test is invaluable.

When we turn to 2-D conductivity systems, far less is known.
Suppose the observations can be converted into TM and TE mode
admittances, a first step if a 2-D model is to be possible. If it were
true that the frequency response (TE and TM separately) at each
site could always be matched by a 1-D model under the site, this
would be a very helpful quality control tool, since 1-D testing is
so effective. Parker & Booker (1996) suggested this idea, while
acknowledging that Weidelt & Kaikkonen (1994) had shown that
with TM data such a representation is in fact not always possible.
Indeed, Weidelt & Kaikkonen gave several counterexamples. They
also provided a number of necessary conditions, including that, in
TM mode induction, the phase of c(ω) can never fall outside the
interval (− 1

2 π, 0), consistent with the behaviour of 1-D systems.
That work leaves open the question of whether TE responses can be
tested against the 1-D model.

In this paper, we close the gap by showing that there are indeed
TE responses at a single site incompatible with a 1-D interpretation.
For this purpose we develop a new method, valid at all frequencies,
to solve the TE induction problem in a thin surface layer. We also
describe a very simple counterexample for the TM case. It appears
that TM mode responses at a single site can usually (and perhaps
always) be approximated remarkably well with functions derived
from 1-D conductivities. That is manifestly not the case for the TE
mode problem.

2 A S I M P L E T M R E S P O N S E

The analysis of Weidelt & Kaikkonen (1994) is based on the solution
to the problem of TM mode (also called B-polarization) induction
in which the spectral function a(λ) and (1) are required. We provide
a more elementary example.

Consider a uniform conductor, conductivity σ 0, infinite in the y
direction, and confined to the rectangular region � given by

� = 0 ≤ x ≤ a ∩ 0 ≤ z ≤ b, (3)
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Figure 1. A vertical section through the model conducting system.

where z is positive downward, and z = 0 is the Earth’s surface. The
body is bounded on the bottom by perfect a conductor, and on the
sides by perfect insulators; see Fig. 1. Electromagnetic induction
is driven in this system by a uniform, horizontal magnetic field
in the y direction, oscillating as e i ωt. Because the source field is
parallel to the strike of the structure, this is by definition TM mode
induction. Then, as is well known (see, for example, Weaver 1994)
the magnetic field within the body is of the form B = ŷB(x, z)ei ωt

and, since the conductivity is uniform, the complex scalar function
B obeys the partial differential equation

∇2 B = i ωμ0σ0 B. (4)

The boundary conditions for this equation are easily verified to be

B = B0, on z = 0 (5)

B = B0, on x = 0, 0 ≤ z ≤ b (6)

B = B0, on x = a, 0 ≤ z ≤ b (7)

∂ B

∂z
= 0, on z = b. (8)

The choice of domain � and the assumption of constant conductivity
allows us to solve (4) by separation of variables in the classical way
as a product of trigonometric or exponential functions. To satisfy
(6) and (7) we set

B(x, z) = B0 +
∞∑

m=1

Am(z) sin
(mπx

a

)
. (9)

Inserting this expression into (4) gives

∞∑
m=1

(
A′′

m(z) − k2
m Am(z)

)
sin

(mπx

a

)
= i ωμ0σ0 B0, (10)

where ′ = d/dz and

km =
(

m2π 2

a2
+ i ωμ0σ0

) 1
2

. (11)

On each horizontal line (10) is the Fourier sine series for a constant;
evaluating the coefficients in this series, we find

A′′
m(z) − k2

m Am(z) =
⎧⎨
⎩

4i ωμ0σ0 B0

mπ
, m odd

0, m even.

(12)

These differential equations have the general solutions

Am(z) = −4i ωμ0 B0

mπk2
m

εm + αm sinh km z + βm cosh km z, (13)

where εm = m(mod 2), that is, either 1 or 0 as m is odd or even.
Finally, we apply the boundary conditions on the top and bottom
surfaces, (5) and (8), having first substituted (13) into (9). After
straightforward algebra, we obtain

B(x, z) = B0 +
∑

odd m≥1

4i ωμ0 B0

mπk2
m

×
[

cosh km(b − z)

cosh kmb
− 1

]
sin

(mπx

a

)
(14)

which is the solution to the boundary value problem.
Our principal interest is in the frequency response of the TM

mode at the surface, which is

c(ω, x) = Ex

i ωBy
= 1

iωμ0σ0 B0

(
∂ B

∂z

)
z=0

(15)

= 4b

π

∑
odd m≥1

tanh kmb

mkmb
sin

(mπx

a

)
. (16)

To determine for a fixed x whether the function in (16) can be
interpreted as the admittance of a 1-D conductor, we write (16) as a
spectral expansion like (2). First note the Mittag–Leffler expansion
(Gradshteyn & Ryzhik 1965)

tanh z

z
= 8

π 2

∑
odd n≥1

1

n2 + 4z2/π 2
. (17)

Substituting (17) into (16) gives the spectral expansion

c(ω, x) =
∑

odd m≥1

∑
odd n≥1

8(mπμ0σ0b)−1 sin(mπx/a)

i ω + π2

μ0σ0

(
m2

a2 + n2

4b2

) (18)

=
∞∑

k=1

ak

i ω + λk
. (19)

We see immediately from (18) that some of the numerators in the
spectral expansion (19) must be negative for any value of x because
of the sine function. Thus the admittance can never be generated
from a 1-D profile, and exact 1-D interpretation of the responses is
impossible.

We illustrate the behaviour of a(λ) by constructing the spectral
function equivalent of (19) for a particular set of parameters. To find
the values in (19) we sort the set of numbers {(m2/a2 + n2/4b2)
π 2/μ0σ 0} into a non-decreasing sequence, and assign λk to the kth
member, and ak to the associated numerator; if there are repeated
values of λk , we sum the associated numerators to form ak . Then we
construct the spectral function as the piecewise constant function
with steps of ak at λk . In the numerical example we take a = 2b
and evaluate the response at x = 1

2 a. As noted in the introduction,
spectral functions based on 1-D systems resemble a rising staircase;
Fig. 2 shows how far (18) departs from that paradigm.

While this example vividly demonstrates that c cannot be repro-
duced exactly, we might wonder how well it can be approximated.
Fig. 3 shows the error in a 1-D response approximation obtained
by the D+ method (Parker & Whaler 1981), based on a sampling
of the admittance at 50 frequencies, spaced logarithmically. The
D+ model comprises a set of delta functions in conductivities, and
gives the best (weighted) 2-norm fit to the admittance in the class of
1-D profiles. The discrepancy is tiny, undetectable by observation.
Equally remarkable, in view the complicated form of the true spec-
tral function, is the fact that a(λ) for the 1-D model has only seven
steps.
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2-D MT frequency responses 271

Figure 2. The spectral function derived from (18) for a = 2b and evaluated
at x = 1

2 a. The variables plotted are dimensionless.

Figure 3. Admittance of the model at x = 1
2 a with a = 2b, and error in a

1-D response fitted to the true admittance at 50 frequencies in the interval
shown. All values scaled by 1/b.

3 A N I N C O M PAT I B L E T E R E S P O N S E

The comparative simplicity of the response (16) and the subsequent
analysis owes much to the presence of the perfectly conducting base
in the model. Weidelt showed (1972) that a spherically symmetric
conducting system can be exactly represented by an equivalent 1-D
layered model terminated by a perfect conductor, which suggests
that such systems are natural even in flat-Earth approximations. If
we confine ourselves to systems of this kind, there is an intuitively
appealing test for one-dimensionality of the admittance: every ad-
mittance value must fall within a semicircular region in the complex
plane:

c(ω) ∈ Z where Z = Im z ≤ 0 ∩
∣∣∣∣z − 1

2
b

∣∣∣∣ ≤ 1

2
b. (20)

As before b is the depth to the base. If an entire 1-D response
function is plotted in the complex c plane, a simple curve results
that starts at c(0) = b, the low frequency limit and, provided the
conductivity at the surface does not vanish, arrives at c(∞) = 0; the
curve remains insideZ for all ω; see Fig. 4. If an admittance function

Figure 4. The zone Z in the complex c plane. The smooth curve is the
locus of the complete admittance function for a uniformly conducting, 1-D
layer.

strays outside the zone, it is incompatible with the assumptions.
The test is only a necessary condition. Many TE and TM responses
remain inside of course, including the TM response derived in the
previous section. A proof that c(ω) ∈ Z for 1-D structures is given
in the Appendix.

We come finally to a TE mode system that violates (20) at al-
most every frequency. It consists of a variable conductivity, thin
sheet at the surface, over an insulating layer, terminated by a perfect
conductor. The driving magnetic field is in the x direction, peri-
odic in time as before. Currents j(x) flowing in the sheet in the y
direction generate a magnetic field; the perfect conductor at z =
b does not allow vertical magnetic fields there, and can thus be
simulated by image currents − j(x) confined to the depth z = 2b.
The conductivity is concentrated into a thin layer in such away that
the conductivity-thickness product, the conductance, τ is finite. We
write

τ (x) = τ0 + �τ (x), (21)

where τ 0 is constant. Let the electric field in the sheet be e(x) =
Ey(x , 0). It too is split into a constant and a variable part

e(x) = e0 + �e(x). (22)

We will assume that ‖�τ‖2 is finite and then we can find e0 from
the 1-D theory

e0 = i ωbB0

1 + i ωμ0τ0b
, (23)

where B0 is the magnitude of the source field. From the induction
Maxwell equation on z = 0 we have

ẑ · ∇ × E = −i ωẑ · (x̂B0 + BJ ) = −i ωẑ · BJ , (24)

where BJ is the part of the magnetic field due to induced currents.
Applying the Biot–Savart law to (24) we find that

d�e

dx
= −i ω

∫ ∞

−∞
G(x − x ′) j(x ′) dx ′, (25)

where G includes the fields from the image currents

G(x) = − μ0

2π

(
1

x
− x

4b2 + x2

)
. (26)

The integrals here are understood to be principal part integrals. By
Ohm’s law j(x) = τ (x)e(x); inserting this and breaking τ (x) and
e(x) apart with (21) and (22), we find

d�e

dx
= −i ωe0

∫ ∞

−∞
G(x − x ′)�τ (x ′) dx ′

− i ω
∫ ∞

−∞
G(x − x ′)τ (x ′)�e(x ′) dx ′ (27)
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since
∫

G(x) dx = 0. We will assume that �e vanishes at infinity,
and then we can integrate (27) over (−∞, x) to obtain a Fredholm
integral equation of the second kind for the electric field perturbation

�e(x) = g(x) + i ω
∫ ∞

−∞
F(x − x ′)τ (x ′)�e(x ′) dx ′ (28)

with

F(x) = μ0

4π
ln

x2

4b2 + x2
(29)

and

g(x) = i ωe0

∫ ∞

−∞
F(x − x ′)�τ (x ′) dx ′. (30)

We will solve (28) iteratively in the Fourier domain because nu-
merical Fourier transforms are so efficient, and also because the
convolution operation is mapped into a simple multiplication. De-
fine

f̂ (k) = F [ f ] =
∫ ∞

−∞
f (x)e−2π ikx dx . (31)

Then (28) is transformed into

�̂e(k) = ĝ(k) + i ωF̂(k)F [τ�e], (32)

where

F̂(k) = −μ0
1 − e−4π |k|b

4π |k| ; ĝ(k) = i ωe0 F̂(k)�̂τ (k). (33)

A standard technique for (28) is the Neumann series (Porter &
Stirling 1990), which is equivalent to a fixed point iteration; its
Fourier counterpart is the scheme

�̂en+1 = ĝ + i ωF̂F
[
τF−1[�̂en]

]
, n = 0, 1, 2, . . . (34)

with an initialization �̂e0 = 0. However, it is well known that the
convergence of the Neumann series is limited to |ω| < ω∗, a critical
value, and we would like to examine solutions at any real frequency.
Therefore, we modify the scheme as follows: in (32) we expand τ

with (21) and rearrange

�̂e = ĝ

1 − i ωτ0 F̂
+ i ωF̂

1 − i ωτ0 F̂
F [�τ�e]. (35)

A fixed-point iteration based on this equation converges for every
ω provided certain conditions obtain on τ as we will now prove.

We make use of two norms, the 2-norm which we write ‖·‖ and
the sup norm ‖·‖∞. Then it is elementary that ‖F [ f ]‖ = ‖ f ‖ and
‖g· f ‖ ≤ ‖g‖∞·‖ f ‖. Abbreviate (35) as

�̂e = ĝ1 + F̂1F [�τ�e] (36)

and then a step in the fixed point iterative procedure is

�̂en+1 = ĝ1 + F̂1F
[
�τF−1[�̂en]

]
. (37)

Thus

‖�̂en+1 − �̂en‖ = ∥∥F̂1F
[
�τF−1[�̂en − �̂en−1]

]∥∥ (38)

≤ ‖F̂1‖∞ · ‖�τF−1[�̂en − �̂en−1]‖ (39)

≤ ‖F̂1‖∞ · ‖�τ‖∞ · ‖�̂en − �̂en−1‖. (40)

Therefore, the process is convergent provided that

‖F̂1‖∞ · ‖�τ‖∞ =
∥∥∥∥∥

i ωF̂

1 − i ωτ0 F̂

∥∥∥∥∥
∞

· ‖�τ‖∞ < 1. (41)

A short calculation shows that∥∥∥∥∥
i ωF̂

1 − i ωτ0 F̂

∥∥∥∥∥
∞

= ωμ0b

(1 + ω2μ2
0b2τ 2

0 )
1
2

(42)

from which it follows that convergence of (37) is assured at all real
frequencies when ‖�τ‖∞/τ 0 < 1. [Q.E.D.]

To evaluate the admittance we need the x component of the mag-
netic field which, unlike the surface field in TM induction, varies
with x. Above the sheet the electric field Ey is harmonic, and hence
the spatially variable part can be found from the surface electric
field by upward continuation

�Ey(x, z) =
∫ ∞

−∞
e+2π |k|ze2π ikx�̂e(k) dk, (43)

where the perhaps surprising sign of z in the exponent is the result
of the convention that z increases downward, and z < 0 above the
sheet. Hence(

∂�Ey

∂z

)
z↑0

=
∫ ∞

−∞
2π |k|e2π ikx�̂e(k) dk = F−1[2π |k|�̂e]. (44)

The x component of ∇ × E = −i ωB gives us Bx = (i ω)−1∂ Ey/∂ z
and together with (44), this provides us with the convenient expres-
sion

Bx (x, 0) = B0 + 1

i ω
F−1[2π |k|�̂e]. (45)

To demonstrate the failure of the 1-D representation of c numer-
ically, we must choose a particular functional form; most functions
with a simple maximum at x = 0 behave in a similar manner. We
set

�τ (x) = γ τ0 exp(−β|x |/b). (46)

If γ < 1 this function satisfies ‖�τ‖∞/τ 0 < 1, when the iterative
scheme must converge. In fact it converges for values greater than
unity, because the estimates in the convergence analysis are conser-
vative. In the following discussion we examine a model in which
γ = 1 and β = 1

2 ; we solve the integral equation as explained and
evaluate c(ω) at x = 0. The locus of admittance is plotted in Fig. 5,
where we see that the entire response lies outside the zone Z . Thus
the response cannot be matched by a 1-D model confined to a layer
of thickness b at any frequency. Even if we lift the restriction to
finite-thickness layers, the response remains incompatible with 1-D
interpretation, because the phase of c is less than − 1

2 π for the high
frequency range.

Next we fit c(ω) with a model in D+ based on 50 samples, as
we did in the previous section on the TM analysis. Fig. 6 shows the

Figure 5. Locus of c (ω) at x = 0 for a sheet with conductance given by
(46), and γ = 1, β = 1

2 .
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2-D MT frequency responses 273

Figure 6. Admittance at x = 0 of the thin sheet model described by (46)
with γ = 1, β = 1

2 b, together with the error of the best 1-D response fitted
at 50 frequencies in the interval shown. Admittance values scaled by 1/b.

response and the error in the best-fitting model, calculated without
the constraint of a perfectly conducting base at z = b. The contrast
with Fig. 3 is striking: the error here is four orders of magnitude
larger.

4 C O N C LU S I O N S

We have shown by a counterexample that the MT response in the TE
mode at a single site cannot always be interpreted in terms of a 1-D
model under the site. Weidelt & Kaikkonen (1994) have shown this
to be the case for TM induction, but the question for the TE mode
has been open until now. The 1-D approximation of TM responses
appears to be remarkably good in every case the author is aware
of, but the example considered in this paper shows that the TE
responses may be very poorly represented in this way, and therefore
a quality control technique based on that approximation should be
used with extreme caution, or perhaps best avoided completely.
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A P P E N D I X A : T H E Z O N E Z

We wish to prove the condition (20). In a 1-D system of thickness
b, terminated by a perfect conductor, we can write the expression
for the admittance in the form of eq. (2), which we repeat for
convenience

c = a0 +
∞∑

n=1

an

λn + i ω
. (A1)

Consider (A1) written in terms of its real and imaginary parts

c = a0 +
∞∑

n=1

λnan

λ2
n + ω2

− i
∞∑

n=1

ωan

λ2
n + ω2

. (A2)

Because an ≥ 0 it is clear Im c ≤ 0, which establishes the first part
of (20).

Also from (A2) Re c ≥ 0, so that we may write c = |c| e−iφ , where
0 ≤ φ ≤ 1

2 π . We will prove the second half of (20) by discovering,
for a specified value of φ, the largest value of |c| satisfying (A1),
subject to the conditions that an ≥ 0 and

a0 +
∞∑

n=1

an

λn
= b. (A3)

This equation is a statement that c(0) = b, under the assumption
there is no perfect conductor within the layer.

We begin by assuming that, in addition to φ and ω, the λn are
also known, but the an, which are non-negative, are otherwise free
to be chosen to maximize the magnitude |c|. The fact that arg c =
−φ can be expressed as Re c + Im c cot φ = 0 which, in view of
(A2), provides a condition on the an

a0 +
∞∑

n=1

λn − ω cot φ

λ2
n + ω2

an = 0. (A4)

The quantity we wish to maximize can be written as |c| =
Re c sec φ, also a linear combination of the an

|c| = a0 sec φ +
∞∑

n=1

λn sec φ

λ2
n + ω2

an . (A5)

In this way we have set up a semi-infinite linear program to minimize
a linear functional, namely, − |c| subject to two linear constraints
(A3) and (A4) over the non-negative vector [ a0, a1, a2, a3 ... ]T .

In the terminology of classical linear programming (Gill et al.
1981) we know that there is a minimizing solution in the form of
a basic vector, that is, one in which at most two elements are non-
zero because there are two constraint equations. Let us assume for

C© 2010 The Author, GJI, 181, 269–274

Journal compilation C© 2010 RAS



274 R. L. Parker

the moment that the two non-vanishing components are a0 and one
other, which will be a1. Then the linear eqs (A3) and (A4) can be
solved

a0 = bλ1

ω

ω cot φ − λ1

ω + λ1 cot φ
(A6)

a1 = bλ1

ω

ω2 + λ2
1

ω + λ1 cot φ
. (A7)

Upon substituting into (A5) we find after some light algebra that

|c| = bλ1 cosec φ

ω + λ1 cot φ
. (A8)

Of all the possible values of λ1 we can now choose the one that
makes |c| in (A8) as large as possible: the expression on the right is
a monotone increasing function of λ1, but because a0 ≥ 0, from (A6)
λ1 cannot be greater that ω cot φ. So we must choose λ1 = ω cot φ
to maximize |c|; this reduces (A8) to

|c|max = b cos φ. (A9)

Contrary to our initial assumption, the solution vector has only one
positive component, but that is also permitted. If we look at the
alternative type of basic solution, where a0 = 0, and two other
elements of the vector are non-zero, we find the maximum |c| when
λ1 coalesces with λ2, thus generating (A9) again; we omit the rather
tedious algebra for this result.

Eq. (A9) is the polar equation for a circle, with diameter b, passing
through the origin and the point c = b, in other words, the boundary
of the region given by |z − 1

2 b| ≤ 1
2 b, the second part of (20).

[Q.E.D.]
What layered structure gives rise to a point on the curved bound-

ary of Z? Its admittance is in the form

c(ω) = a1

λ1 + i ω
. (A10)

As Parker (1980) shows, this response results from a single thin
sheet of conductor at the surface. If the conductance (integrated
conductivity) of the sheet is τ 0, then λ1 = (μ0τ 0b)−1, and a1 =
(μ0τ 0)−1. Not coincidentally, this is the unperturbed state of the
models studied in Section 3.
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