
AN APPLICATION OF THE HILBERT TRANSFORM 

TO THE MAGNETOTELL URIC METHOD 

By 

John E. Boehl, Francis X. Bostick, Jr., and Harold W. Smith 

December 15, 1977 

ELECTRICAL GEOPHYSICS RESEARCH LABORATORY 

prepared under 

Contract NOOO 14-76-C-0484 

Office of Naval Research, Washington, D. C. 

and 

GRANT EAR 76-22197 

National Science Foundation 

ELECTRICAL ENGINEERING RESEARCH LABORATORY 

THE UNIVERSITY OF TEXAS AT AUSTIN 



ABSTRACT 

Noise is inevitably encountered when the tensor magneto­

telluric (MT) method is used for geophysical sounding purposes. 

Regardless of the source or nature of the noise, its effect is 

capable of altering the results given by the MT process. The 

tensor MT impedance estimates are affected in various ways de­

pending on the character of the noise, the configuration of the 

source fields, and other factors. 

It is shown that, for many cases, the magnitudes of the 

impedance elements are biased by noise on the MT data channels, 

whereas the phases of these elements are unbiased. A practical 

method for deriving or smoothing the amplitude data by phase 

imformation is presented in this report. The means for accom­

plishing this is based on the Hilbert Transform operation on 

minimum phase MT impedance functions. The formulas for the 

use of this method are developed, and some practical considera­

tions are given for the implementation of the phase smoothing 

process. A theoretical model with and without synthetic noise 

is analyzed through this process to illustrate the validity of the 

technique. Also shown are several examples of results from this 

process as ~pplied to actual tensor magnetotelluric impedance 

data. 
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I. INTRODUCTION 

The magnetotelluric (MT) method has become a valuable tool 

for determining the electrical properties of the subsurface structure 

of the earth. The first practical description of this method was set 

forth by Cagniard (1953). Critical evaluations of the method 

followed by others such as Wait (1954) and Price (1962), and so the 

evolution of the MT process began. 

The Cagniard MT impedance functions are scalar relation­

ships between the orthogonal electric (E) and magnetic (H) fields at 

the surface of the earth. These impedance functions have been 

subsequently modified to include the effects of two dimensional 

earth features. Cantwell (1960) proposed that when lateral inhomo­

geneities exist in the conductivity of the earth the MT impedance 

function should be represented as a rank two tensor. This concept 

has become the basis of the present MT method. Several people 

have studied the effects of various two dimensional models on the 

surface electromagnetic fields. These include d 'Erceville and 

Kunetz (1962), Rankin (1962), Weaver (1963), Mann (1967), 

Geyer (1972), and Fischer (1975). 

1 



The list of people involved in the study of the tensor MT 

impedance method has steadily grown since the method was first 

formulated. Some of the investigations in this area are given by 

Bostick and Smith (1962), Swift (1967), Vozoff (1972), 

Hermance (1973), and several others listed in the next chapter. 

The increase in interest of the Cagniard and tensor MT 

impedance methods for geophysical prospecting has been indicated 

by the large amount of experimental data presented in the literature. 

Several of the earlier reports of results from the MT process include 

those given by Vozoff, tl· tl· (1963) and Hopkins and Smith (1966). 

Among the many others who have reported the results of experimental 

MT surveys are Morrison, et. tl· (1968), Dowling (1970) , Word, tl· 

al. (1970), Reddy and Rankin (1971), and Stanley, tl· tl· (1977). 

The references given here by no means represent a comprehensive 

list. The reader is referred to Hermance (1971) for additional 

information regarding the work done by others in the various areas of 

the magnetotelluric process. 

From its infancy the MT method has presented many problems 

associated with noise. The overall value of results obtained from 

the MT process initially depends upon the quality of the original 

data. This in turn is determined not only by the characteristic noise 

level of the instrumentation system but also by the care with which 
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the data are acquired. Noise may also be introduced into the results 

during the analysis of the MT data (Sims and Bostick, 1969). 

The amplitudes of the electric and magnetic fields which 

exist at the sensors during the course of MT data acquisition are 

normally very small. The E field fluctuations often require voltage 

measurements in the microvolt range while the magnetic field is 

only tens to hundreds of milligamma in magnitude. These low level 

signals require instrumentation (including sensors) which are 

characterized by very low noise levels. 

The tensor MT impedance method as is was first used involved 

-3 -4 
E and H field measurements in the frequency range of 10 or 10 Hz 

to about 10 Hz. Recent developments, however, have permitted the 

use of audio magnetotelluric (AMT) equipment capable of yielding 

tensor data at frequencies up to and above about 1 KHz (Grosskopf, 

§!_ • .91_., 1974). Certain noise related problems exist in various 

segments of this extended frequency range and, therefore, must be 

dealt with if high quality data are to be realized. 

One type of noise introduced by the instrumentation in the 

!owe st portion of the frequency spectrum is a result of thermal 

effects on the magnetic field sensors. Thermal or chemical changes 

of the electric field sensors have also been observed to create noise 

in this frequency band. 



Many problems are encountered when MT measurements are 

attempted throughout the central portion of the frequency spectrum 

(from about 10-l Hz to 10 Hz). A major factor which causes this 

band to be the most difficult in the MT process is the extremely 

low signal level available. The power spectrum of the source 

magnetic field decreases sharply with respect to increasing 

frequency, approaching extremely low levels at about 0. 1 Hz. 

Sources such as wind which cause even slight physical motions of 

low signal level portions of the MT equipment (induction magne­

tometers, cables, etc.) can induce noise in the midband of 

frequencies. This example of a noise source coupled with the 

normally low signal level can result in poor quality data unless low 

noise equipment is carefully used. 

The upper portion of the frequency spectrum also presents 

unique problems when the AMT data acquisition process is attempted. 

A particular problem encountered in the upper band is a result of the 

impulsive nature of the AMT signal. The source field for this 

frequency band is the result of electrical discharges in thunder­

storms. The nature of the signal imposes stringent dynamic range 

requirements on the AMT equipment. Saturations occurring in the 

electronic circuits due to large spikes at the input can result in 

noisy data for this band of frequencies. This non-linear type of 
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noise can severely corrupt the results. 

Early MT equipment was noisy (as well as bulky) primarily 

due to the electronic devices available at the time. A generally 

primitive notion of the MT method also contributed to inconsistencies 

in the early results. Recent advances in semiconductor devices and 

careful design of the equipment cannot only reduce the size of the 

system but also provide lower levels of noise originating in the 

electronic circuits . The design and construction of such systems, 

however, require a familiar understanding of the tensor MT method 

and its associated problems . A knowledge of where noise is most 

likely encountered and the effects of this noise on the results of 

analysis is imperative for the de sign and use of high quality MT 

systems. 

It is thus evident that noise can be introduced into the data 

from many sources and in many ways. In spite of the degree of 

sophistication possessed by the equipment and the care taken 

during the data acquisition and analysis processes, the effects of 

noise are often apparent on MT results. The purpose of this 

report is to describe and evaluate a method which has been 

utilized to extricate useful MT results from data corrupted by noise. 
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II. BASIC TENSOR MT METHODS 

The tensor magnetotelluric impedance method has been 

described by Cantwell (1960), Bostick and Smith (1962), Swift (1967), 

Sims and Bostick (1969), Word,~. al. (1970), and others. A very 

brief summary of some of the fundamentals of the method is given 

here so that notation subsequently used may be clearly defined. 

Details of the tensor method may be found in the references given 

above. 

The tangential electric and magnetic fields at the surface of 

the earth are related by the tensor MT impedance as 

[E] = [Z] [H] (2-1) 

or 

E =Z H +Z H 
x xx xx xy y 

(2-2) 

and 

E =Z H +Z H. 
y yx x yy y 

(2-3) 

An alternate form relating the surface E and H quantities is given by 

the admittance tensor as 

[H] = [Y] [E] (2-4) 

where [Y] is the matrix inverse of [Z]. 
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When MT data indicate that a two dimensional structure is 

present, the data are rotated to give the principal impedance 

functions Z' and Z' . These are computed with axes parallel xy yx 

and perpendicular to the strike direction of the two dimensional 

feature (Word, et. al., 1970). The rotation angle which maximizes 

IZ' 1
2 

+ I Z' 1
2 

or minimizes xy yx 
2 2 I Z' I + I z· I locates the 

xx yy 

principal axes for this case. 

For noise-free data from either a one dimensional earth or 

a two dimensional one with data rotated to the principal axes, the 

main diagonal elements of the impedance tensor theoretically vanish. 

The decoupled tensor equations then become 

E' = Z' H' x xy y 
(2-5) 

and 

E' = Z' H' 
y yx x 

(2-6) 

From these principal impedance values the apparent 

resistivities are calculated as 

Pxy = \Z' \ 2 
wµ xy 
1 

(2-7) 

and 

(2-8) 

where w is the radian frequency and µ is the permeability of free 

space. Associated with the apparent resisitivity values are the 
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phases of the principal impedances 
X' 

co = tan-
1 c~) 

· xy · R' 
xy 

(2-9) 

and 
X' 

rn = tan - l (_.Y2S ) 
,,yx R' 

yx 
(2-10) 

where the R's and X's are the real and imaginary parts, respectively 

of the rotated impedance values. 

The ultimate purpose of the MT process is to provide a 

geological model for the earth in terms of true resistivity at the 

measurement site. The apparent resistivity functions must therefore 

be converted to a true resistivity, spacially varying function for 

each MT site. Some three dimensional modeling schemes may be 

possible if measurements are made at a great number of clos e ly 

spaced sites in a given region. For widely spaced sites, however, 

the only tractable methods which yield interpretable results are 

based on one dimensional inversion techniques. A number of methods 

have been used for one dimensional inversions including those 

given by Wu (1968), Becher and Sharpe (1969), Patrick and 

Bostick (1970), Nebetani and Rankin (1969), Laird and Bostick (1970), 

Johnson and Smylie (1970), and others. 

For one or even two dimensional situations any of the 

inversion methods may be suitable for the resolution of the final MT 



results. Many of these techniques, however, do require a huge 

amount of computing power. A greatly simplified process has been 

developed which does not require the extensive computing effort as 

do other methods (Bostick, 1977). This method does, however, 

require a smoothly varying (noiseless) apparent resistivity vs. log 

frequency function. The process outlined in this dissertation was 

developed partly to provide this needed function. 

The sensitivities of the various inversion results to noise 

on the original data may vary from method to method. Regardless of 

the -process used, however, the results are affected by noise to 

some degree. The quality of the final MT results can therefore be 

improved if the effects of noise on the tensor impedances can be 

reduced. 
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III. NOISE AND THE TENSOR MT IMPEDANCE 

A. Bias of the Impedance Estimates 

Each of the tensor impedance elements of Equations (2-2) 

and (2-3) may be derived in six ways, as discussed by Sims .§.!_. &. 

(1971). When noise is encountered during the acquisition of MT 

data, it affects the various estimates of the impedance elements in 

different ways. The manner in which the estimates are corrupted by 

noise depends on the many situations which may be encountered. 

Noise may exist on one or more channels of data and may be coherent 

between channels. The earth's structure at the point of measurement 

may be one, two, or three dimensional in nature. In addition to 

these factors, some undesirable features of the source field of the 

MT method may exist. 

The many possible combinations of types of noise, earth 

structure, and incident field property make a detailed study of noise 

effects on the MT impedance difficult. The following discussion 

does not represent a comprehensive or quantitative analysis of these 

effects. It does, however, provide some brief qualitative obser­

vations so as to illustrate these effects on the estimates for a few 

limiting cases. 
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As indicated by Equations ( 2-7) and (2-8) the apparent 

resistivity is given by the square of the impedance magnitudes. Thus 

any noise on the impedance is accentuated on p or p • As will 
xy yx 

be discussed in the next chapter, the apparent resistivity vs. 

frequency function may be derived, under certain assumptions, from 

the phase of the impedance function. The effects of noise on the 

phase of Z as well as on its magnitude will therefore be considered 

for the cases of interest here • 

An insight into the manner in which the complex impedance 

estimates are affected by noise may be gained if certain simplifying 

assumptions are made with regard to the MT environment and the 

type of noise encountered. Although the following discussion is 

applicable to both the Z and Z elements of the tensor impedance 
xy . yx 

(as well as to Y and Y of the tensor admittance), only Z will 
xy yx xy 

be considered for the sake of brevity. 

Three cases are considered here with varying levels or 

degrees of assumptions. Because of an occasional need for 

comparison between the noise sensitivities among the particular 

cases considered, the formulation of the equations for all three 

cases is presented and then following is a consideration of noise 

effects on the estimates of these cases. 



Case 1: The General Z Equations xy 

Of the six expressions which combine the various power 

density spectra to result in the estimates of Z , two tend to be 
xy 

unstable for the noise-free, one dimensional situation (Sims, 1971). 

The remaining four estimates are 

( H E* ) ( E E* ) - ( H E* ) ( E E*) 
z = 

x y x x x x x y 
(3-1) 

xy (H E* ) (HE*) - (HE*) (H E*) 
x y y x x x y y 

(HH*)(EE*) - (H E*) (E H*) 
z x x x x xx x x 

= 
xy (H H*) (H E*) - (H E*) (H H*) (3-2) 

x x y x x x y x 

(H E*) (E H* ) - (H H* ) (E E* ) 
z = 

x y x y x y x y 
(3-3) 

xy (H E*) (H H* ) - (H H*) (H E* ) 
x y y y x y y y 

(H H* ) (E H* ) - ( H H* ) (E H* ) 
z x x x y x y x x 

(3-4) = 
(H H* ) (H H*} - (H H* ) xy (H H*) 

x x y y x y y x 

In these four equations and those to follow in this section the 

symbols ( ) denote the expected value of the auto or cross spectra 

which they enclose while the symbol * indicates the complex 

conjugate of the individual spectrum. 

From this point on in this discussion an assumption is made 

with regard to the type of noise encountered during the data 

acquisition process. Much of the noise introduced into the MT 

data originates in the electronic circuits of the system. Noise on 

the MT results can also be created at the electric or magnetic field 
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sensors. For example, electrochemical changes at the E-field 

electrodes can introduce a wide frequency spectrum of noise into 

the data. These types of noise are generally incoherent between 

any two E and/or H channels. 

It must be noted that, in some cases, coherency can exist 

in the noise between channels. As an example, unwanted coherent 

signals can be created on the electric field data from current 

transients on power lines when MT measurements are made in the 

vicinity of such lines. Nevertheless, observation has indicated that 

noise is incoherent among the channels in most instances. It is 

therefore assumed that any noise encountered is incoherent between 

any two of the MT data channels. This assumption is made for all 

cases considered here. 

Equations (3-1) through (3-4) are the general expressions 

for the estimates of Z but may be simplified if certain assumptions 
xy 

are made as follows. 

Case 2: Unpolarized Magnetic Field 

A high degree of polarization of the source magnetic field 

presents some severe problems for the tensor MT method. Each of 

the impedance estimates given by Equations (3-1) through (3-4) is 

in essence an analytic solution of a pair of equations from a set of 

four containing the unknowns Z and Z (Sims, 1971), for xx xy 

13 



instance). If the magnetic field is strictly polarized, the orthogonal 

components H and H are perfectly correlated (Spitznogle, 1966). x y 

When this occurs, one or more pairs of the four equations from which 

the impedance estimates are derived are no longer independent. The 

general expressions for the impedance Z given previously are 
xy 

therefore not valid. In general, the lower the coherency between 

H and H , the more reliable are the impedance estimates, all other 
x y 

things being equal. 

An additional assumption is therefore made for this and the 

following case. For the purpose of this discussion the vector 

magnetic field is assumed to be virtually unpolarized. 

Experimental evidence has indicated that the measured 

coherency between H and H is relatively low in many instances. 
x y 

This is observed particularly throughout the lower portion of the 

frequency spectrum where the source fields originate at the earth's 

magnetosphere. It should be pointed out, however, that this 

unpolarized feature is sometimes only approximately true and 

occasionally may not be observed for some real conditions. 

Specifically, the upper portion of the MT frequency spectrum may 

pre sent some problems related to the validity of unpolarized 

magnetic field. The source for this part of the MT and AMT spectrum 

originates from electrical discharges of atmospheric thunderstorms. 
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In some instances the energy from a local condition coupled with a 

lack of energy from more generally distributed sources may result 

in a polarization of the magnetic field. 

For incoherent random noise and essentially unpolarized 

magnetic field, the expected or average value ( H H* ) is 
x y 

comparatively small. The four estimates of Z for this case 
xy 

become 

(H E*) ( E E* ) - (HE*) (EE*) 
z x y xx x x x y 

= 
xy (H E*) (H E*) - (HE*) (HE*) 

xy y x xx y y 

( H H*) (E E*) - (H E*) (E H*'> 
z x x x x xx x x 

= 
(H H*)(H E*) xy 

x x y x 

(H E*) (E H*) (E H*) 
z = 

x 1:'. x y_ = 
x y_ 

xy (HE*) (H H*) (H H*) x y y y y y 

(H H*) (E H*) (E H*) 
z x x x y_ x y_ 

= <Ff H*) (H H*) 
= 

(H H*) xy 
x x y y y y 

Case 3: One or Two Dimensional Earth Models 

(3-5) 

(3-6) 

(3-7) 

(3-8) 

If, in addition to incoherent noise and an unpolarized magnetic 

field, the earth's structure approaches a one dimensional case, the 

expressions (3-5) through (3-8) for Z may be further simplified. 
xy 

This is also possible for two dimensional situations if the data have 

been rotated to the principal axes as described in Chapter 2. 
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For these cases the non-orthogonal cross power terms such 

as (E H*) are small in magnitude with respect to auto power terms 
x x . 

and to orthogonal E-H pairs such as (EH*). The first two estimates 
x y 

of Equations (3-5) and (3-6) are then approximately reduced to 

z = xy 

(E E*) 
xx 

(H E*) 
y x 

while the last two of Equations (3-7) and (3-8) are 

z = xy 

(E H*) 
x y 

(H H*) 
y y 

(3-9) 

(3-10) 

The effects of incoherent noise on the estimates of Z are 
xy 

most easily determined for a one dimensional earth with unpolarized 

magnetic field. Let the spectra needed for the estimates given in 

Equations (3-9) and (3-10) be 

E = E + E x xs xn 
(3-11) 

E = E + E y ys yn 
(3-12) 

H = H +H y ys yn 
(3-13) 

where E , E and H represent the true signal portion of the 
xs ys ys 

spectra, and E , E , and H are the random noise components 
xn yn yn 

of the spectra. If it is assumed that the noise is incoherent between 

channels and independent of signal, then terms such as (ExsE~n) 

16 



and ( H E* ) are zero so that the estimate of Z for the one 
yn xn xy 

dimensional case given by Equation (3-9) becomes 

z = xy 

(E E* ) + (E E* ) 
xs xs xn xn 

(H E* ) 
ys XS 

while the estimate of Equation (3-10) is 

z = xy tu H* ) + ( H H* ) 
¥

1 ys ys yn yn 

(E H* ) 
XS ys 

(3-14) 

(3-15) 

It can be seen that the magnitude of Z of the first expression is 
xy 

biased upward from its true value by random noise on E while the 
x 

magnitude of the second estimate in Equation ( 3-17) decreases in 

value when noise is present on H (Sims, et. al., 1971). 
y --

The numerator of Equation (3-14) is a real quantity as is the 

denominator of Equation (3-15). The phase of the first estimate is 

thus determined by the complex denominator while that of the second 

is given by the complex numerator. In each instance the complex 

quantities which determine the phase contain no noise terms, so 

that the phase of Z in Equations (3-14) and (3-15) is unaffected by 
xy 

random noise on E and H . Therefore, for unpolarized magnetic 
x y 

field and a one dimensional earth, the magnitude of every estimate 

of Z is biased in some way by noisy data whereas the phase of 
xy 

each retains its true value. The phase information is thus of . 

considerable importance for this case. 
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For the second case under consideration when the magnetic 

field is unpolarized, the effect of incoherent noise on the magnitudes 

and phases of the estimates given by (3-7) and (3-8) are the same 

as for the corresponding estimates in the one dimensional case. 

Thus, for these two estimates, the magnitudes are biased by noise 

while the phases are unbiased. 

The estimate for Case 2 given by Equation (3-6) contains auto 

power terms of both E and H . As noise increases on both of these x y 

channels, the magnitude of this estimate is more strongly influenced 

by noise on E and is biased upward in this case. Since 
x 

(HE*) (EH*)= \H E*i
2 

xx xx xx 
(3-16) 

the numerator of the second estimate of this set is real and thus the 

phase of this estimate is solely determined by the term ( H E*) . It 
y x 

can then be seen that the phase of (3-6) is not biased by incoherent 

noise on the E and H data. 

Since the only auto spectra term present in Equation (3-5) is 

(E E*), the magnitude of this estimate is biased upward by random 
xx 

noise on E . But, because this auto spectra quantity exists in the 
x 

complex numerator of this estimate, no specific statement can be 

made as to how noise effects the phase of this estimate. As the 

form of this estimate was not simplified through the assumptions 

made for this case, it is identical to the same estimate of the general 
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case. Some general observations will be developed for this estimate 

during the discussion of Case 1. 

It can therefore be seen that for an unpolarized magnetic 

field the amplitudes of all four estimates under consideration are 

biased by noise on E and H • However, the phases of three of 
x y 

these estimates are unaffected by random noise. For this case, 

then, the phase is a valuable function if the amplitude can be derived 

from it. 

Returning to the general case as given by Equations (3"."'l) 

through (3-4), we may make comments about the effects of noise on 

these estimates. It might be informative to examine the manner in 

which extreme amounts of noise affect the amplitude and phase of 

these expressions. As incoherent noise increases on the electric 

or magnetic field channels, products involving auto power terms 

become dominant over other products of the equations. It can then 

be seen that, in this case, the estimates given by (3-2) and (3-4) 

approach the one dimensional estimate of (3-9). Although the 

amplitudes of these two estimates are severely corrupted by a large 

amount of noise, the phase of each theoretically limits to that of 

E H*. 
x y 
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It is also interesting to note that, regardless of the level of 

incoherent noise on E or H, the phases of the estimates given by 

(3-2) and (3-4) are identically equal whereas the amplitudes diverge 

as noise increases. This, coupled with the observation that both 

phases tend toward the one dimensional case for large amounts of 

incoherent noise, might well indicate a priority use of these two 

estimates if the phase information is considered valuable. 

It is thus evident that in some cases the magnitudes and 

phases of the various MT impedance estimates behave differently 

with respect to random noise. One may sometimes intuitively feel 

that, as more and more data are accumulated at a specific frequency, 

the effects of noise will eventually average out. Such is not the 

case for the amplitude of the tensor impedance (or admittance) 

estimates . The auto power density spectra for channels on which 

noise is pre sent do not ultimately converge to their noise-free values. 

The estimates containing these terms are therefore biased by noise. 

As has been seen, however, the phases of some of the Z estimates 
xy 

in some instances do converge to their noise-free values if sufficient 

data are available. 

As is shown in a subsequent chapter, it is possible under 

certain assumptions to derive the apparent resistivity function . 

primarily from the phase of Z. From Equations (2-7) and (2-8) the 
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apparent resistivities as derived from the magnitude of Z involves 

squaring I Z I· This process accentuates any inaccuracies of IZ I due 

to noise and thus results in even more scatter on pA. If the conditions 

are such that the phase is less biased than is IZ j, and if pA can be 

derived from it, then the value of the phase information becomes 

apparent. 

B. Measurement Statistics 

In the preceding discussion it was assumed that an unlimited 

amount of data was acquired so that the measured or estimated 

values of lz I and cp converged to their biased or unbiased expected 

values. Such is not the case for practical MT surveys, however. 

The accumulation of a large number of independent samples at the 

lower frequencies requires a great amount of data acquisition time. 

The length of time for which each MT site is occupied becomes an 

important consideration for these surveys if measurements at a number 

of sites are to be made. 

The following discussion is given to illustrate the effects of a 

limited number of data samples upon the measured values of the appar-

ent resistivity (pl\ ) and the phase of impedance (cp ) in the presence 
~m m 

of noise. From Equation (2-7) the estimated apparent resistivity is 

1 =-- 2 
l2 m I · (3-17) 
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The statistical variances of PA and cp about their expected m m 

values are determined not only as a function of the noise levels 

present, but also in terms of the number of independent samples 

obtained. For the purpose of this study a strictly one dimensional 

earth is assumed so that the scalar (or Cagniard) impedance 

=-- (3-18) 

is representative of the earth's impedance. From this point on the 

x and y subscripts will be omitted. It is understood that these two 

field components are orthogonal. 

Let the sampled field quantities be given as 

(3-19) 

and 

(3-20) 

where E and H represent the true values of each sample while En and 

Hn are the noise components of the sample. The expected values of 

the auto power spectra terms are defined by 

E{EE*}=P 
E 

E {HH*} = PH 

(3-21) 

(3-22) 
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E {E E*} = P 
n n En 

(3-2 3) 

E{H H*} = P 
n n Hn 

(3-24) 

In this discussion E { ] designates the expected value of the 

quantity enclosed by the braces. Since noise is assumed to be 

incoherent between channels and independent of signal, the expected 

values of the cross power terms involving noise spectra are zero 

so that 

E{EH*)=E{HE*}=E{E H*}=O 
n n n n 

(3-25) 

and 

E {EE* } = E { HH * } = 0 
n n 

(3-26) 

One measure of the degree of noise present on the data is 

the coherency between :the measured E and H field spectra. This 

parameter may be defined as 

C= 
\E{E H*} I m m 

JE[E E*} E{H H*} 
mm mm 

From the definitions of Equations (3-19) and (3-20), 

E { E H * J = E {EH* } + E {EH* } + E { E H * } + E { E H * } 
m m n n n n 

which, with Equations (3-25) and (3-26), becomes 

E { E H * } = E {EH* } • 
m m 

(3-2 7) 

(3-28) 

(3-29) 
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But the actual impedance Z is defined by 

E = ZH. (3-30) 

When Equations (3-22), (3-29) .and (3-30) are combined, it is found 

that 

l E [ E H * } I = IZ I PH . m m (3-31) 

In a similar manner it can be shown that 

E [E E* } = PE + PE mm . n 
(3-32) 

and 

E [H H*} = PH + PH mm n 
(3-33) 

so that the coherency is given in terms of the signal and noise 

power of E and H as m m 

(3-34) 

Since 

E[EE*} = PE 
E[HH*} PH 

(3-35) 

the coherency function is then defined as 

C= 
1 

(3-36) 
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It can be seen that the coherence has a value of unity for no 

noise on the E and H channels. As noise increases on either E 

or H (or both), C decreases in value and approaches zero for the 

completely noisy situation. If both of the electric and magnetic 

field channels are noisy to an extent that the measured spectra 

are combinations of equal noise and signal power, the coherency 

is 0. 5. On the other hand if noise exists on only one of the channels, 

an equal amount of noise power and signal power on the noisy 

channel results in a coherency value of about 0. 7. 

For a one dimensional earth model considered in this 

discussion the measured apparent resistivity can be expressed 

as 

l =- (3-37) 
wµ. 

where the symbols ( ) indicate an average of M independent 

samples. Equation (3-3 7) may be rewritten as 

l =- (3-38) 

Noise on either the E or the H channels affects the 

estimation of pAni. First consider the case of E noise only. 



In this ca_se 

( (E + E ) (E* + E*)) 
n n 

PAm = wµ. ( HH*) 

which is 

(EE*) + 2 Re (EE*) + ( E E*) 
n n n 

'Am= w µ. (HH*) 

where Re { ) means the "real part of". The ratio between the 

noiseless auto power averages of E and H is 

(EE*) 
(HH*) 

so that Equation (3-40) may be expressed as 

1 + 
2 Re ( EE* ) + ( E E*) 

n n n 

I Z !2 
(HH*) 

(3-39) 

(3-40) 

(3-41) 

(3-42) 

The variation of the estimated apparent resistivity about its expected 

value may be expressed as the statistical variance of Equation (3-42). 

This is defined as 

pA 2 Re (EE*)+ (E E*) 
cr2 -v{_!E_}-v{ n n n } 

p A p A l Z l 2 (HH*) 
(3-43) 

where V ( } is the standard definition of the variance. 

At this point it is assumed that the average ( HH*) is very 

nearly equal to PH as in Equation (3-22) and that the term Re (EE~) 

dominates the variance given by Equation (3-43) so that for 
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averages consisting of M samples, 

4 
V [ Re(EE*)} • 

MP~ I Zl4 n 
(3-44) 

But 

Re (EE*) = Re (E) Re (E ) + Im (E) Im (E ) 
n n n 

(3-45) 

where Im () denotes the imaginary part of the complex quantity 

within the parentheses. If the real and imaginary parts of E and E 
n 

are independent random variables with zero means, 

V [Re (EE~ ) } = E [Re 
2 

(E) } E [Re 
2 

(En) } 

+ E[Im
2 

(E)} E[I~ (E ) } 
n 

(3-46) 

where again E [ } means the expected value of the enclosed random 

variable. If Re (E) and Im (E) are independent random variables 

having the same statistics, and since 

2 2 
E [Re (E) + Im (E) } = PE (3-47) 

then 

E[Re
2

(E)} = E [Iaf (E)} = _:E (3-48) 

and also 

p 
2 2 En 

E [Re (E ) } = E [Im (E ) } = -
2
- • 

n n 
(3-49) 
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The combination of Equations (3-35) , (3-44), (3-46), (3-48) and 

(3-49) results in the variance of the apparent resistivity error as a 

function of the E field signal and noise power as 

2PEn 

M PE 

For noise only on the E channel the coherency as defined by 

Equation (3-36) combined with Equation (3-50) results in 

a2 :::.. 2 ( 1 - 1) • 
M --=zC PA 

(3-50) 

(3-51) 

For noise on the magnetic field channel a development similar 

to the one given above may be used to determine the statistical 

variance in the PA estimation. For noise present on the H data the 

measured apparent resistivity is 

which may be written as 

= 

where 

(EE*) 
( (H + H ) (H* + H*) ) 

n n 

1 
NH 

l+--­
(HH*) 

NH= 2 Re(HH*) + (H H*) • n n n 

(3-52) 

(3-53) 

(3-54) 
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If the first terms of a power series expansion of Equation (3-53) are 

assumed to be the major contribution to the series, then 

1 -
N 

H 
(HH*) 

(3-55) 

If the variance of this equation is determined in the same manner as 

that for the E noise case given previously, one finds that CJ
2 

is the 
PA 

same as that given by Equation (3-51). The standard deviation (or 

variance) of the error involved in the apparent resistivity measure-

ment is affected not only by the noise level encountered but also by 

the number of independent samples accumulated in the measurements. 

This result is shown graphically in the upper portion of Figure 3-1. 

A method similar lo that outlined above may be used to yield 

the approximate standard deviation of the error involved in the 

measured MT phase information. Let this phase for a one dimensional 

earth be defined as 

-l [ Im(EmH~) 
~ = tan Re (E H* ) 

rn m 
J . (3-56) 

Utilizing the definitions of Equations (3-19) and (3-20) in Equation 

(3-56) and expanding the resulting expression for cp m about 

q:> = tan -le 
Im(Z) 

Re(Z) ] (3-57) 
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One may ultimately derive the standard deviation of the measured 

phase error as 

(j = j ]_ ( ~ - 1) 
cpm 2M c (3-58) 

where as before M is the number of independent samples obtained, 

C is the coherency measure of the data as defined by Equation (3-36), 

and the standard deviation formula for the phase has units of 

radians. The results of Equation (3-58) are plotted in Figure 3-1. 

It can be seen from the curves of Figure 3-1 that the data 

coherency must be high if the standard deviation of measured PA and 

cp is to be kept small for a reasonable number of sample points. This 

is particularly true at the lowest frequencies of the MT data as few 

independent samples are available without a lengthy occupation of 

the MT sites. 

The phase smoothing procedure outlined here does not 

completely eliminate the need for I Z I data. It is important that 

any noise effects present on the amplitude function be minimized. 

The corruption of I Z I due to noise can be reduced in several ways. 

Some obvious methods present themselves when an examination of 

the various estimates is made. The choice of estimates used in the 

MT analysis should depend upon the particular situation encountered. 

For instance, it is sometimes evident that a greater proportion of 
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noise is present on either the E data or the H data in some range of 

the frequency spectrum. In this case it is obviously desirable to 

utilize only a single estimate which is insensitive to this noise. At 

other times field tests may indicate noise on all channels at some 

frequencies, and so a geometric mean of the various biased 

estimates may be used. 

One method which may be used to estimate the noise levels 

encountered in the MT measurement process is to run a parallel 

sensor test. This is done by aligning both the H and H magne-. x y 

tometers parallel to each other and arranging the electrode pairs of 

E and E in a parallel fashion. For the noise-free case the outputs x y . 

of the two E field MT channels should be identical as should the H 

field outputs. If these parallel measurements are made throughout 

the MT frequency spectrum and coherencies are computed for the 

two E channels and for the two H channels, one can determine which 

channels contain noise. Thus a decision may be made regarding 

the selection of estimate or estimates based on these noise measure-

ments. 



IV. THE PHASE SMOOTHING EQUATIONS 

Many of the situations encountered in MT prospecting involve 

data which is one or two dimensional in nature. In these situations 

it is the common current practice to utilize the one dimensional 

inversion techniques as indicated in Chapter 2. When three 

dimensional data are encountered, however, little can be done other 

than performing a best fit one dimensional model to the data. In 

other words, regardless of the actual subsurface structure, the normal 

practice is to use the various inversion methods to derive a layered 

model for the MT sites. 

It can be shown that the surface MT tensor impedance of a 

horizontally stratified earth with homogeneous layers is a minimum 

phase function (Kunetz, 1972). This ·means that the complex transfer 

function Z(w) contains no poles or zeros in the right half of the 

complex plane. The purpose of this section is to utilize the minimum 

phase property in the development of formulas which are useful in 

the MT data analysis procedure. The application of these relations 

are referred to as the "phase smoothing" process. 

For the sake of completeness the development of the phase 

smoothing equations will begin with the Hilbert Transform pair. For 

a discussion of this transform and some of the following expressions 
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see Bode (1945), Guillemin (1951), Oppenheim and Schafer (1975), 

and others. 

If the complex variable Z(w) represents a real, causal system, 

it has no poles in the right half of the complex plane. The real and 

imaginary parts defined as 

Z(w) = R(w) + jQ(w) (4-1) 

are related through the Hilbert Transform pair at radian frequency 

UJ 0 by 

o:> 

1 

~ 
Q(w) 

R(w 0 ) = - dw 
TI Wo-w 

(4-2) 

- Q) 

and 

o:> 
R (w) 1 

~ Q(u.o) = - - dw • 
TI wo- w 

(4-3) 
-o:> 

An alternate way of expressing the complex Z(w) is in amplitude/ 

phase form as 

Z(w) = lz(w) !ejcp • (4-4) 

Now consider the complex variable given by the natural logarithm 

of Z(w) 

l n Z (w) = l n I Z (w) I + j cp (w) • (4-5) 
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If the Hilbert Transform pair is to be applied to the real and 

imaginary parts of ln Z(w), then this variable must represent a real, 

causal system. In other words it must be analytic in the right half 

of the complex plane. Since both the poles and zeros of Z(w ) 

become the poles ln Z(w), the requirement of causality for ln Z(w) 

is equivalent to Z(w) not having any poles or zeros in the right half 

plane. Thus, if the Hilbert Transform is to be applied to ln Z(w), 

the complex variable Z (w) must be a minimum phase function. In 

this case 

ln l Z(wo) 
co 

l = ~ ~ ~ {w} 
wo- (j) 

dw (4-6) 
- co 

and 

co 
ln IZ{w} I 

cp(w 0 ) = - ~ _ ~ dw . 
Wo- W 

(4-7) 

Any function f(x) may be expressed as the sum of an even function 

and odd function of x as 

f (x) = f (x) + f (x) 
e o 

(4-8) 

where 

f e (x) = ~ [f (x) + f (-x) ] (4-9) 
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and 

1 
f 0 (x) = 2 [f (x) - f (x)]. (4-10) 

Applying Equations (4-8) through (4-10) to the integrand of Equation 

(4-7) gives 

00 

cp(w ) = _ 1.. J [ ln jz (w)I + ln jZ(-w) I 
0 Zn w0 - Ul Ul 0 + Ul 

-oo 

(4-11) 

_ 1.. 
00J [ ln I Z (w) l 

Zn Ob - w 
-oo 

_ ·. ln I Z(-w) I J dw 
Ulo + w 

where the expression enclosed by the brackets in the first integral 

is an even function of w and the term in the brackets of the second 

integral is an odd function of w • 

Since the integral of an odd function of w throughout the range 

- oo ~ w ~ oo is identically zero, the second integral of Equation (4-11) 

vanishes, resulting in 

00 

cp(Qlo) = _ 1.. J [ ln IZ(w) \ + 
Zn w0 - Ul 

ln \Z(-w) l 
w 0 +w 

(4-lZ) 
- 00 

Noting that the limits of integration may be changed to o ~ w~oo for 

integration of the even function of w given by Equation (4-lZ) and 

rearranging the integrand of this expression gives 

cp(wo) = _ ~ j (wa + w) ln I Z(w) I+ {Ula- w) ln I Z(-w) I 
0 Ul2 - Ul2 

0 

dw 
(4-13) 



or 

( ) __ l JP{ w0 [ln I Z(w) I+ ln \Z(-w) IJ 
cp Ulo - 2 2 · n Ula - (1) 

0 

+ wiln \Z(w) I - ln \Z (-w) \] }ct 
.. 2 w . 
UTo - UJ a 

If ln Z(w) is to be physically realizable, then 

ln I Z{w) I= ln jz(-w) l 

so that Equation (4-1~ becomes 

( ) = -~ coJ UJo ln \Z(w)\ 
cp Ula · a 2 n UJ 0 - UJ 

dw . 
0 

The form of this expression may be modified as 

co 

cp{wc) = ~ j ln l Z(w) I 
0 

If a change of variables is used such that 

or 

and 

(1) u 
- =e 
Ulo 

u = ln UJ - ln UJ 0 

dw 
du= d(ln w) = 

(1) 

Equation (4-17) then becomes 

dw 
(1) 
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(4-14) 

(4-15) 

(4-16) 

(4-17) 

(4-18a) 

(4-18b) 

(4-19) 
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00 

ln jZ(w) l 1 s cp (wo) = - du 
TT 1 ( u -u) - e - e -oo 2 

(4-20) 

or 

00 

1 J ln l Z(w) J 
du • cp(w o) = -

TT sinh (u) 
(4-21) 

-oo 

Equation (4...,21) may now be integrated by parts. In the formula for 

integration by parts 

s pdq = pq - s qdp (4-22) 

let 

p = ln \Z(w) \, dp = d(ln d~(w) j) du (4-23a) 

then 

dq = si~~ (u) , q = ln tanh ( ~) = - ln coth l~ l . 
(4-2 3b) 

When Equation (4-21) is integrated as in (4-22) with the definitions 

given by Equations (4-23), the result is 

1 M 00 

cp (w0 ) = TT ln \Z(w) \ ln tanh ( ~ ) I 
-oo 

00 

_!_ J d(ln jZ(w) I) 1 th (-hl) d + TT du n co 2 u. 

(4-24) 

-oo 

The ln tanh function vanishes at both limits. Although \Z(w) \ may 

approach zero at one or both of the limits, the manner in which 



ln !Z(w) l increases in value is such that the ln tanh term dominates. 

The first term of Equation (4-24) therefore vanishes. The phase of a 

minimum phase function is thus related to the amplitude at radian 

frequency w0 by 

1 
rn (w ) = -
T 0 TI 

00 

S 
d (ln !Z(w) I 

du ln coth (~)du. (4-25) 
- 00 

In order to simplify the notation of the following equations, let 

and 

y = ln w, y 0 = ln w0 

u = Y - Yo 

() _d(ln jZ(w)j) 
s Y - d(ln w) 

f(y 0 - y) = ln coth ( \Y; Ya I )· 

(4-2 6a) 

(4-2 6b) 

(4-2 7) 

(4-28) 

If Z(w) represents the MT impedance, then s(y) is the slope of the 

magnitude of this function on a natural log scale of \Z I vs. w. With 

the notation given above, Equation (4-25) is written as 

00 

cp (y 0 ) = ~ J s(y) f(y 0 - y)dy. (4-29) 

-co 

The phase of Z(w) is thus given by the convolution of the derivative 

or slope of ln I Z \ with f(y) where both are functions of ln w. The 

Fourier transform of this convolution is 
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1 IP (x) = - S (x) F (x) 
TT 

(4-30) 

where IP (x) , S (x) and F (x) re pre sent the Fourier transforms of cp(y) , 

s (y) and f(y), respectively. The variable s {y) may then be expressed 

as 

_ ""1.. -1 { ~ (x) 
s(y) - TT J F(x) } (4-31) 

where :}"
1 

{ } denotes the inverse Fourier transform of the quantity 

within the braces. It can be shown that the Fourier transform of f{y) 

defined by Equation (4-28) is 

TT a 
F(x) = -

2 

TTX tanh (-) 
2 

(~) 
2 

(4-32) 

If the integral suggested by Equation (4-27) is evaluated, 

then the impedance magnitude l Z I is derived entirely from the phase 

of Z (less a constant of integration which will be considered later) . 

One means of evaluating Equation (4-31) for real data would 

involve the utilization of interpolation and Fast Fourier transform (FFT) 

routines on a digital computer. An approximation was desired by 

this laboratory for s (y) which could be evaluated even with small 

computing devices such as a handheld calculator. For this reason 

an alternate expression for s(y)· is developed which gives s(y) as 
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a first order (or approximate) term and a second order (or correction) 

term. 

Equation (4-29) may be written as 

co co 

cp(yo) - ~ s(yo) sf(yo- y)dy + ~ J [s(y) - s(yo)] f(yo- y)dy. 
- co -co 

(4-33) 

From a table of integrals (Dwight, 1964) it is found that 

co co hl J f(yo- y)dy = J ln coth ( ~ ) du= ~
2 

(4-34) 
-co -co 

so that the expression for the phase of Equation (4-33) becomes 

(4-35) 
- co 

or 

(4-36) 
-co 

The shape of the convolution function f(y 0 - y) is shown in 

Figure 4-1. As can be seen from this figure, the value of f(y 0-y) 

decreases rapidly as the variable y diverges from the point y 0 . 

Thus the major contribution of the integral portion of Equation (4-36) 

is determined in the vicinity of y = Yo . It is also noted that the 

function s(y) - s.(y0) vanishes at the pointy= Yo where a 

singularity exists for f(y 0- y) • 
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If the slope of I Z(w) I vs. frequency on a log basis is 

constant or varies slowly enough primarily in the vicinity of y =y0 , 

the slope at this point is very nearly defined by 

(4-37) 

In these situations the magnitude of the MT impedance function may 

be derived from the phase as 

ln \z I ""' ; J qi {y)dy + c (4-38) 

where c is a constant of integration to be considered later. 

The situations encountered when applying the MT method are 

often such that ln \Z I does not vary slowly enough with respect to 

ln (w) to permit the use of the approximation given by Equation (4-38). 

In these cases the entire expression of Equation (4-36) must be 

utilized when deriving the amplitude of Z(w) from its phase. 

Let the second order term of Equation (4-36) be denoted as 

co 

$ (Yo) = ~2 J [s(y0 ) - s{y)] f(yo - y)dy (4-39) 
-co 

or using Equation (4-34) 

(4-39a) 

where the symbol (*) represents the convolution process. The 

Fourier Transform of this second order term is then 



2 'l' (x) = S (x) [ 1 - - 2 F (x) ] 
TT 

where 'l'{x) is the Fourier transform of ~ (y) , etc. 

Equations (4-30) and (4-40) may be combined to give 

'1'(x) = n ~ (x) [;(x) - ~2 J. 

(4-40) 

(4-41) 

In the ln radian frequency domain the second order term is 

(4-42) 

The second order term of the derivative of ln I Z \ with respect to 

ln (w) may finally be written using Equation (4-32) as 

(4-43) 

whe.re the Fourier transform of the new convolver, T (x), is defined 

as 

T(x) = 
TIX 

2 
TIX tanh--
2 

- 1. (4-44) 

The derivative or slope of ln \ Z I with respect to ln (w) may thus be 

expressed through the combination of Equations (4-27), (4-36), 

(4-39), and (4-43) as 

d(1n ! z D = 
d(ln w) 

2 
q> (ln w) + 1 J. -i [ T (x) Hx) } 

TT TT 
(4-45) 
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which may in turn be integrated with respect to ln (w) to yield the 

phase derived MT impedance magnitude function as 

ln l Z (w) I = ~ ~ ~ (ln w) d (ln w) + ~ ~ 'J -l [T ( x) ) d (ln w) + c 

(4-46) 

where c is the constant of integration. This is the basic formula 

for the phase smoothing process but may be slightly modified for 

practical reasons. 

During the MT analysis process it is often more convenient 

to think in terms of the apparent resistivity function p A rather than 

in terms of l Z I· The phase smoothing formula of Equation (4-46) 

may be defined for p A through a simple substitution of variables. 

Since the MT apparent resistivity is given by 

P =-1 1z12 
A wµ, 

then 

In PA= 2 ln IZI - ln w+ constant 

If the derivative of Equation (4-48) is taken with respect to the 

variable In w, then 

d (In j Z j) 
d (In w ) 

1 d(ln pA) 

= 2 [ d (ln w) + 1 J · 

(4-47) 

(4-48) 

(4-49) 
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Substitution of Equation (4-49) into (4-45) yields 

d (ln 'A) 

d (ln w) [ 
4 J 4 '""i-1 = TT cp (ln w ) - 1 + TT v ( T (x) ~ ( x) } (4-50) 

where the expression within the brackets is the first order term and 

T (x) in the remaining term is defined as in Equation (4-44). 

In order to provide the final formula for the phase smoothing 

process, Equation (4-50) is integrated with respect to ln (w). The 

result, with the notation given by Equation (4-43), is then 

ln PA=~ [ ! cp(ln w) - l] d(ln w) + 2 ~ iV (ln w) d(ln w) + c 

(4-51) 

where again c is the constant of integration. 

An intuitive feeling for the shape of the apparent resistivity 

function as derived from the phase of the impedance may be obtained 

by examining the first order term of Equation (4-50). The function 

defining the slope of ln ( 11:\) vs. ln (w) for this first order term is 

depicted in Figure 4-2. 

For cases when the phase of the impedance lies between 0 

and TT/2 radians, the slope of the ln PA vs. ln w curve is constrained 

between -1 and + 1. The use of the information contained in Figure 4-2 

is sometimes useful in evaluating the data as they are acquired. The 

basic shape of the apparent resistivity function for given phase 
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information is easily visualized from the first order term. As data at 

a sequence of frequencies unfold in the field, one can often utilize 

the first order relationship to pinpoint noisy data bands or to 

recognize non-minimum phase situations. 

The shape of the ln PA vs. ln w function may be entirely 

determined from the phase of the impedance by the integral portion 

of Equation (4-51). The question remains as to how the constant of 

integration in this expression (or in Equation (4-46)) is to be 

evaluated. This constant represents the quantity which must be 

added to the integration results of Equation (4-51) in order to 

completely define the ln p A function. The constant is essentially 

determined by adjusting the "de level" of the phase derived in PA 

until it agrees with the ln PA function as derived from \Z l · Both 

the amplitude and phase of the tensor MT impedance are therefore 

utilized in the phase smoothing process. For real data some scatter 

will exist on the amplitude points so that the constant is actually 

determined by adjusting the level of the phase derived curve until a 

minimum mean square error is achieved with the amplitude data. In 

practice the least square fit procedure is actually modified to a 

degree by the coherency of the data points. This will be outlined in 

Chapter 6. 
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V. THE INVERSE FILTER AND NOISE 

A. Signal and Noise Spectra 

When the forward going problem of deriving pA (w) from the 

true resistivity vs. depth function is considered, it is found that the 

relationship between these two functions is in effect a low pass 

filter operation (Sims and Bostick, 1969). Although the actual re sis-

tivity for a layered earth model may be represented by a series of 

step functions of different amplitudes, the resulting apparent re sis-

tivity will appear to be rather smoothly varying as a function of 

ln w. This is not to say that there is no information in the upper 

portion of the PA spectra which is related to fine earth structure. 

However, it does mean that this information is given by rapid changes 

in PA (w) which are extremely small. When the variations in the PA 

data fall below the existing noise level of the MT system, little 

information about the fine structure of the earth is available for 

analysis. 

If RA (x) and R(x) are the Fourier transforms of the apparent 

resistivity and true resistivity, respectively, let the function relating 

these two quantities be defined as D(x) such that 

(5-1) 
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Work currently in progress in this laboratory has resulted in an 

approximate expression for the function D (x). If a one dimensional 

earth model is considered and certain equations are linearized, it 

is found that the magnitude of D(x) is given by 

TIX 
(TT x) cosh2 ( ---zc) 

sinh (Tix) 
(5-2) 

If the true resistivity function is thought of as a random variable 

with a flat spectrum then the ln p A transform has the form of 

1 TIX 
(TI x) 2 co sh 

1
( --zr-) 

[sinh (TI x)] 2 
(5-3) 

As given by Equation (4-28) the transfer function relating the 

transform of the slope of ln IZ I vs. ln wand the phase is 

- JJ& S (x) - TI F (x) • 

The derivative of ln p A with respect to ln w is then given by 

and since 

Hx) 
S p (x) = 2 TI F {x) 

Sp (x) = xRA (x) 

the transform of ln p A is 

(5-4) 

(5-5) 

(5-6) 

(5-7) 
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To simplify the notation, let 

[ 
2n J-1 

G(x) = XF(x) (5-8) 

so that 

-1 
RA (x) = [G(x)] <P (x) (5-9) 

or 

~ (x) = G(x) RA (x) (5-10) 

When Equation (4-32) defining F(x) is substituted into Equation (5-8), 

it is found that 

( 
.J. (TIX G x) = 2 tanh - 2- ) (5-11) 

Figure 5-1 shows the filter function D(x) as defined by 

Equation (5-1) as well as the transfer function G(x). For large x 

D (x) dies off in proportion to x e -x. This observation confirms the 

statement made previously that this function is in effect a low pass 
------------ --

filter operation. As the value of x decreases the function G(x) 

becomes very nearly proportional to x so that in the region defined 

by the derivative of the apparent resistivity. Thus in the lower 

portion of the phase transform an integration process on the phase 

provides the apparent re si sti vity function. For large x the ln p A and 

phase transforms are directly related as shown in Figure 5-1. The 

process involved in deriving ln p A from th~_pha se, both as a function 
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of ln ru, is depicted in Figure 5-2. 

The form of the phase transform is given by the combination 

of Equations (5-3), (5-10) and (5-11) as 

TIX TIX 

~ (x) = ~ . cosh (-zr) tanh (Z-) 
2 Jsinh (n x) 

(5-12) 

The power spectra I RA (x) I 2 and \ Hx) I 2 of the theoretical ln PA and 
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qi signals given by Equations (5-3) and (5-12) are shown in Figure 5-3. 

In this figure \ i (x) I 2 has been normalized so that the peak power of 

this function is unity. 

Noise is inevitably encountered in the MT data acquisition 

process. Let us now assume that white noise exists on the apparent 

resistivity and phase data as depicted by the dashed lines in 

Figure 5-3. The transform of both ln PA and qi decrease in an inverse 

exponential manner with respect to the transform variable x for large 

values of x. Thus there exist points of the MT spectrum above which 

the noise power exceeds the signal power for ln p A and qi • 

Wben the signal level of the phase data falls below that of 

the noise as shown by the point xpin Figure 5-3 the phase data is 

for all practical purposes lost and so interpretation of data beyond this 

-1 
point should be curtailed. The function [G(x)] of Equation (5-9) 

used in shaping the apparent resistivity function by the phase 

information should therefore be modified above the point x p to include 
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the effects of noise. This concept is confirmed if we consider an 

inverse filter as outlined next . 

B. Optimum Inverse Filtering 

Figure 5-4 illustrates the filtering operation which leads to 

the estimation of the MT apparent resistivity transform RAe (x) from 

the phase when noise is added to the measurements. In this figure 

the true apparent resistivity transform RA (x) is assumed to be that 

given by Equation (5-3) and G(x) is defined by Equation (5-11) so 

that the phase transform is given by Equation (5-12). We now wish 

to determine an inverse filter H (x) such that the error \RA (x) - RAJx) l 2 

is minimized for all x. As is shown in Figure 5-4 the measured phase 

transform is composed of signal and noise components as 

<P m (x) = Hx) + N (x) . 
qi 

The optimum (Wiener) filter is then 

H ( ) [G ( ) ] -
1 [ l ifi(x) l 2 J i 

x = x \~m(x) 12 

or 

- -1 [ l ~ (x) 12 
H (x) - [ G (x)] \ ~ (x) 12 + \ N qi (x) 12 

where from Equation (5-12), 

-1 (TIX ) [G(x)] = 2 coth -2- . 

(5-13) 

(5-14) 

(5-15) 

(5-16) 
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An alternate form of H (x) is 

(5-17) 

For the noise-free case the optimum filter is the reciprocal of 

the transfer function G(x). When noise is present on the phase data 

-1 
the optimum filter is a modified version of [G(x)] . As the ,signal to 

noise power ratio decreases an additional filter is applied to [G(x)]-1 

such that the inverse filter decreases in magnitude from its noise-free 

form. 

As was previously noted, the function I <P (x) 12 as shown in 

Figure 5-3 was normalized so that the peak power of the phase is 

unity. Figure 5-5 illustrates the optimum filter H (x) for several values 

of noise power on the normalized I~ (x) I 2 basis. The roll-off in the 

inverse filter response indicated when noise is present is done as 

outlined in the next chapter. 
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VI. PRACTICAL CONSIDERATIONS AND IMPLEMENTATION 

The implementation of the phase smoothing technique requires 

consideration of several practical elements of the process. The 

following discussion includes some of these details used in the 

digital implementation of smoothing the MT apparent resistivity data 

via the phase information from Equation (4-51) . The same consid­

erations are needed if, rather than separating the computational 

process into the first and second order calculations, we evaluate 

and integrate Equation (4-31). The Appendix includes more specific 

details regarding a computer program which may be utilized to 

implement the process as given by Equation (4-51). 

A. Finite Data Length 

In the previous discussions involving convolutions and Fourier 

transforms it was implicitly assumed that an infinite length of 

continuous MT data was available for analysis. In this case the 

spectra of the phase and apparent resistivity are known for all x. In 

practice, however, the MT data cp (ln m) and pA(ln w) are band limited 

because of the length of time for which the data are acquired. In 

addition to this apparent resistivity and phase are normally given at 

sampled intervals of the variable ln w. The procedure used in 

calculating the spectra of the MT signals is to utilize a Fast Fourier 
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Transform (FFT) computer routine. This type of computation results 

in the spectra represented at a series of discrete values of the 

transform variable x. In order that the FFT may be used, the phase 

data must be provided at equally spaced ln w points. An interpolation 

routine is used for this purpose as outlined in the appendix. 

B. Spectral Content of the Phase 

As a consequence of the discussion of Chapter 5, the phase 

cp (w) should be well behaved with respect to frequency. That is, any 

high spectral content in the Fourier transform of r.p (w) are more likely 

related to noise rather than to the true impedance function. To reduce 

the effect of this noise, a low pass filtering operation may be applied 

to the original phase vs. log frequency data. As was pointed out in 

Chapter 3, if sufficient data are accumulated, the phase of Z is not 

biased by random noise on the data channels for many cases. The 

low pass filtering process should result in a curve of cp vs. ln m 

which is still unbiased but a smoother version of the original data. 

For cases · in which only the first order term is to be used to 

determine the apparent resistivity function, the low pass filter 

operation is the primary means of reducing the effects of phase noise 

on the results. Additional modifications to the phase smoothing 

formulas may be made if the second order term is included. 
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G. Convolver Width 

Even though the convolution indicated in Equations (4-45) or 

(4-50) is a second order term in these expressions, its contribution 

to the final resistivity results can be substantial in some instances. 

This is particularly true if noise is present on the phase data in the 

upper portion of the spectrum. As was pointed out in the previous 

chapter there is some point in the spectrum above which the level 

of the noise power exceeds that of the phase signal (see Figure 5-3). 

The method currently used to approximate the low pass filter 

characteristic of the optimum inverse filter is to modify the shape of 

the convolver used in the evaluation of the second order term. 

The Fourier transform T(x) of the convolver function given by 

Equation (4-44) is shown in Figure 6-1 by the solid curve labeled 

"A". The low pass function selected to modify T(x) is defined by 

W (x) = i + i 
TTX 

cos ( Xf ) I l x l ~ Xf 

(6-1) 
W (x) = 0 

The resultant convolver transform actually used in Equation (4-50) is 

shown in Figure 6-1 by the curve labeled "B". The effective width 

of the convolver may be set in the phase smoothing program by the 

input parameter Xf (see Appendix for details). 
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D. Convolution End Effects 

The phase data cp (ui) is naturally band limited by the sample 

rate of the data and the number of data points acquired. The need 

for a convolution with the finite length of cp (ui) obviously raises a 

question as to what must be done to control the end effects of the 

convolution. Unless one is willing to reduce the analysis frequency 

range from that which is available from the actual measurements, 

some type of extrapolation of cp (ui) is needed at each end of the data 

range. This must be done in order to accommodate the width of the 

convolver at each extreme of the available frequency range. 
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Several alternatives exist as to how the phase vs. log frequency 

data may be extrapolated at the frequency extremes. Since there is 

no way of knowing how the phase behaves outside of the data range, 

one cannot state with authority that one method of extrapolation is 

superior over any other. It is not claimed that the method used for 

the examples given subsequently is necessarily the best. 

The method used to extrapolate the phase is to extend cp (ui) at 

each frequency extreme in a linear fashion. In other words the phase 

in each extended region is assumed to retain the value it had adjacent 

to these regions as shown in Figure 6-2. One disadvantage of this 

method is that higher harmonics of pha.se are introduced into the 
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extended cp (w) data. Since the cp (w) vs. ln w function is to be low 

pass filtered in the phase smoothing process, the effects of this 

disadvantage can be reduced. 

Other methods of extrapolation might include extending the 

phase based on the slope of cp (w) vs. ln w at each extremity of the 

frequency range. Extension may also be accomplished on the basis 

of a polynomial or a Fourier series fit to the existing data. These 

methods in some cases can result in extrapolated phases which lie 

outside of the range o~ cp ~n/2. For one dimensional situations 

the phase is constrained between these limits (Kunetz, 1972), 

and so any values assigned to the extended cp (w) outside of this 

range are unrealistic. 

E. Coherency in the Integration Process 

Throughout a typical set of data there may exist points which 

exhibit low coherencies as compared to the majority of the data. 

This is often caused by peaks in the system noise characteristics or 

a lack of signal in some portion of the frequency spectrum. In such 

instances it may be desirable to exclude these low coherency points 

from the integration of Equations (4-46) and (4-50). A feature 

included in the actual implementation of the smoothing process allows 

bypassing these points as the integration is done. The shape of the 

phase derived apparent resistivity curve is therefore not affected by 
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the phase at frequencies of low coherency data. The minimum 

coherency included in the actual implementation of the smoothing 

process allows bypassing these points as the integration is done. 

The shape of the phase derived apparent resistivity curve is there-

fore not affected by the phase at frequencies of low coherency data. 

The minimum coherency level acceptable for the integration process 

is often variable among different sets of data and so is adjusted 

according to the overall quality of the particular data set being 

considered. 

F. Evaluation of the Integration Constant 

As has been indicated previously, the constant of integration 

in Equation (4-51) is evaluated by a minimum mean square fit bet:ween 

the phase generated apparent resistivity curve and the original p A (w) 

data. This is accomplished on a log PA basis. The normal least 

square criterion is modified by the coherency of the data points in 
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this implementation of the phase smoothing process. A brief develop-

ment of the formula used for this purpose is therefore included here. 

The following notation is used in the formulation of the mean 

square fit for a set of M data points: 

R. = value of ith apparent resistivity point (from measured 
i \z !) 



A 1 f . th h d . d t . t. . t . t . = va ue o i p ase enve apparen res1s· iv1· y po1n 
l 

given by Equation (4-51) (less the constant of 

integration) 

C. = coherency of ith data point (as defined in Chapter 3) 
l 

L = factor by which each A. must be multiplied in order 
l 

to minimize the error 

e: = mean square error. 

The standard definition for the mean square error between R. 
l 

and A. on a log basis for N points is 
l 

1 N 
e: = N L: [log (A.) - log (R.) ]2 • 

i=l l l 
(6-2) 

Since each A. point is to be multiplied by the factor L to yield the 
l 

minimum mean square error. 

1 N 
e: = N L: [log (LR.) - log (R.) ]2. 

i= 1 r l l 
(6-3) 

It is now desirable to include the effects of coherency in the 

mean square fit. When noise is present on the ith data point, the 

amplitude R. is likely to deviate from its true value. This situation 
l 

in turn is indicated by a low coherency value C .• In general, the 
l 

higher the coherency, the more reliable is the data point R.. If some 
l 

points in the data set are of higher quality than others, it is 

reasonable to attach more importance to the high coherency points 

when evaluating the constant of integration. For this purpose let the 

mean square error of Equation (6-3) be redefined as 
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1 N 
e = L: [ C~ [log (L) + log (A.) - log (R.)]2} . (6-4) 

N i=l 1 i i 

It can be seen from Equation (6-4) that the error from the difference 

in the logarithms of A. and R. is weighted more heavily for the higher 
1 1 . 

coherency points. Likewise as the value of C. decreases, less 
1 

emphasis is given to the error. 

The error is then minimum with respect to log (L) when 

o (log L) 
2 N 

= N L: [C~ [log (L) + log (A.) - log (R.)]] = 0 
. 1 1 1 1 
l= 

(6-5) 

or 

N N 
log (L) L: C? = L: [[log (R.) - log (A.)] C~ } 

. 11. 1 ' 1 1 1 
!= != 

(6-6) 

so that the constant of integration of Equation (4-51) is equivalent 

to multiplying each A. by the factor L as given by 
1 

L =log 

N 
.L: 1 -1 != 

(log (R.) - log (A.)]C~} 
1 1 1 

N 
L: (C.) a 

. 1 1 != 

(6-7) 

69 



VII. EXAMPLES OF RESULTS 

The phase smoothing process has been used for several years 

by this laboratory. Included in this chapter are a few examples of 

the results obtained from this process. These examples include some 

results of the smoothing technique as applied to synthetic data for a 

theoretical earth model. Also included are some results from field 

data. 

A. A Model Study 

In order to verify that the phase smoothing process may be 

used in a practical manner, model data with and without noise were 

utilized in the computer smoothing program. The procedure followed 

in arriving at the results presented here is as follows. 

1. The resistivity vs. depth parameters for a one dimensional 

earth model were selected. For the example which is shown here a 

four layered model was used. The constants associated with the 

layers for this model are listed in Table 7-1 where p is the resistivity 

and T is the thickness of each layer. 
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Layer p(ohm-m) T(km) 

1 360 0.42 

2 17 2. 40 

3 600 11. 80 

4 5.7 c.o 

Table 7-1. Model Parameters 

2. Having selected a model, the next step was to generate 

the synthetic data to be used during the analysis. The complex H 
x 

and H source field spectra were defined by a sequence of random 
y 

numbers generated by a computer routine. This was done for a 

series of frequencies equally spaced in a linear fashion as if the 

spectral quantities were output from a Fast Fourier Transform (FFT) 

routine. The amplitudes of the magnetic field spectra were then 

additionally shaped to provide data which have the nature of that 

encountered in the field. 

3. The electric field spectra were computed from artificial 

H data and the model parameters. This was accomplished by applying 

the forward going problem of a magnetic field plane wave incident on 

a one dimensional earth with the homogeneous layers as tabulated 

above. As the propagation characteristics and reflection coefficients 

are progressively computed from the lowest layer to the top, the 

surface E field may be determined. 

71 



4. The E and H spectra were used in a rather standard Mt 

analysis process. This procedure has been used in the past by this 

laboratory (Word, et. al., 1970). The various auto and cross 

spectra terms needed for the computation of the tensor impedance 

estimates were calculated for each frequency used. These terms 

were then averaged over a series of constant Q frequency bands to 

yield the estimated value of each product at the center frequencies 

of each band. The 25. 9% bandwidth used results in 10 data points 

per decade of frequency equally spaced on a logarithmic scale. The 

four estimates of Z as given in Chapter 3 were then computed as a 
xy 

function of frequency. The geometric mean of the amplitudes I Z I and 

the average of the phases c.p of the estimates were next used to define 

the complex mean Z vs. frequency function. xy 

5. The first example considered in the model exercise was 

the application of the phase smoothing process to noise free data. 

For this case the I Z I and c.p functions derived in step 4 above were 

used as inputs to the smoothing program. The results of this example 

are given in Figure 7-1. The continuous line curve in this figure 

represents the apparent resistivity function as computed from the 

model parameters. The points plotted as circles show the phase 

derived p A function. As can be seen there is very little difference 
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between these two curves although slight end effects can be per­

ceived at each extreme of the frequency range. 

For the purpose of comparison an additional curve is plotted 

in Figure 7-1. The set of data given by the square symbols is the pA 

function as derived from the first order term of the phase smoothing 

process (given by the first term in Equation 4-51) . It can be seen 

that in this instance the inclusion of the higher order or convolution 

term in that equation is necessary if an accurate definition of the 

true p A function is to be accomplished via the phase information. 

6. The next step in the model study was to examine the 

effects of theoretical noise on the phase smoothing process. As 

outlined in steps 1 through 3 above, a set of data was defined for 
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the four layered one dimensional model . Random noise was then 

added to the E and H data. For this example noise was added to the 

magnetic field data throughout the lower range of frequencies (. 001 Hz 

to about 0 .1 Hz). Noise was also included on the electric field data 

for the upper range of frequencies (O .1 Hz to about 10 Hz). 

The auto and cross spectra were then constructed and constant 

percentage bandwidth averaging was done as before. The mean 

estimates of \z\ and cp in the presence of noise were used as inputs 

to the phase smoothing routine to produce the results shown in 

Figure 7-2. The solid line plot in this figure once again represents 
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the true PA vs. frequency function for the assumed model. The 

apparent resistivity points as conventionally defined by the noisy 
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I Z I data (see Equation 2-7) are shown by the "X" symbol on this plot. 

The circular symbols present the p A function as derived from the 

phase data. 

Some deviation of the phase derived data from the true 

apparent resistivity function is evident. Much of this is most likely 

due to end effects and to the lack of sample points at the lower end 

of each of the data frequency bands. However, it is obvious from 

Figure 7-2 that PA as primarily derived from phase gives a much better 

estimate of the true p A than does the noisy 1 Z I data. 

Although this section does not represent a comprehensive 

model noise study of the phase smoothing process, it does indicate 

how valuable this method can be. It is felt, based on the synthetic 

data as well as real data, that the phase smoothing technique is a 

useful tool for the tensor MT process. 

B. Results from Field Data 

In order to illustrate the practical use of the phase smoothing 

process, a few examples of results from actual data are included in 

this section. The first two examples are given for data which were 

acquired during an MT survey made in the Snake River Plain of Idaho 
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(Stanley, tl· tl-, 1977). The broadband MT data shown in Figure 7-3 

for site ,SR-7 represents points of generally high coherency. The data 

for site SR-22 in Figure 7-4 show the results from one of the noisier 

data sets used in this survey. In both figures the symbols which are 

plotted represent the rotated apparent resistivities p and p as 
xy yx 

given by Equations (2-7) and (2-8). The solid line curves drawn in 

these examples are the phase smoothed functions of these resistivities. 

Although the results of only two sites from the Snake River Plain 

survey are given here, all the data assembled during this project 

were processed in the same manner. 

During several months of 1974 this laboratory made a series 

of MT sites in northern Wisconsin and upper Michigan (Bostick, et. 

tl·, 1977). Some prototype equipment was used for this project. 

A tuneable, phase sensitive Audio Magnetotelluric receiver system 

had been designed, constructed, and used in this survey. Because 

of the time requirements, little field testing of this equipment was 

accomplished before actual measurements were made. Certain un-

anticipated factors encountered through the use of this prototype 

equipment resulted in a great deal of noisy data. Some frustration 

evolved as the raw apparent resistivity results unfolded throughout 

the conventional analyses procedures. It was apparent that these 
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results were basically unusable for inversion and interpretation 

purposes. The development of the phase smoothing process was 

thus motivated. 

As a sidelight it is noted that since the time of the initial 

design, construction, and use of the first tensor AMT equipment, 

this system has evolved to the point at which it is capable of con­

sistently yielding high quality results. 
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The conventional apparent resistivities and phase smoothed 

results for two of the Wisconsin sites (Bear Lake and Elton) are shown 

in Figures 7-5 and 7-6, respectively. The Bear Lake site probably 

presents the lowest quality of pA data acquired throughout the project. 

For this reason the results of the phase smoothing process are given 

for this site in Figure 7-5. Once again the plotted symbols indicate 

the PA function as derived from \Z \ while the continuous curve gives 

the phase derived PA function. In Figure 7-6 the same quantities are 

plotted as a function of frequency for the site named Elton. 

In both of the examples given for the Wisconsin data it is 

observed that the phase derived p A curve is much more smoothly 

varying as a function of frequency than is the conventional p A curve. 

The purpose of these MT measurements was to ultimately produce 

one dimensional models at each site. For one dimensional models in 

the face of levels of noise encountered on this project the apparent 
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resistivity function should vary smoothly with frequency, and so the 

phase derived curve would seem to be a more reasonable represen­

tation for p A than that given entirely by the I Z I data. 
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VIII. CONCLUSIONS 

A. General 

This laboratory has acquired much MT data throughout the 

past years. During this time a great deal of effort has been expended 

in attempting to understand some of the subtle causes of noise on 

the data. Even with the use of the latest generation of MT equipment 

some scatter is still evident in the raw apparent resistivity results. 

Of the data accumulated recently much appear to indicate minimum 

phase conditions for Z(w). The phase smoothing has therefore been 

utilized during the past few years in the MT analysis process . 

In some instances when the noise is severe (such as shown 

in the examples of the preceding chapter), the p A function as given 

by the measured \ Z l data can be essentially uninterpretable. In 

these cases the phase smoothing technique can prove to be an 

invaluable aid. Even for non-minimum phase data, however, the 

technique is useful in providing one dimensional model fits to apparent 

three dimensional situations. It is therefore felt that the phase 

smoothing process is a useful tool for the MT analysis method. 

Presently the interpretation of MT data is at be st a difficult 

problem. The various inversion techniques are often arbitrarily 

applied to MT data without an adequate understanding of how noise 
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can influence these results. Although detailed structure is 

theoretically available from noise-free data, even a relatively small 

amount of noise can greatly alter these details when many inversion 

methods are used. This in turn can result in a false representation 

of the actual profile encountered. It is therefore felt that, until the 

noise levels are drastically reduced, apparent subtilties in the raw 

PA data whould not be interpreted as representing details in the 

earth's structure. 

B. Future Studies Needed 

The problem of noise on MT data is an ever present one and 

de serves a great deal of future consideration. Much needs to be 

done in the area of understanding to a higher degree the causes and 

effects of noise on the tensor MT method. Only when all of the 

mechanisms of noise are comprehended can appropriate steps be 

taken to minimize their effects. 

An efficient means of accurately establishing the character 

and level of noise present in the measurements at each Mt site would 

prove very useful. This type of information could be utilized in 

directly reducing the effects of noise on the data. A knowledge of 

the noise characteristics can allow the proper selection of one or more 

estimates for minimum sensitivity to the particular noise. Also, if 

the noise levels are accurately defined, the expected auto spectra 
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terms as computed could be modified to reflect the known amount of 

noise present in the measurements. 
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A few practical considerations for the use of the phase smooth­

ing process were given in Chapter 6. The details given at that point 

by no means represent the optimum ways of implementing the process. 

It may be possible to formulate more efficient methods, and so this 

could form the basis of future efforts. 
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APPENDIX 

DETAILS OF IMPLEMENTATION 

Figure A-1 illustrates the basic block diagram of the digital 

computer program which may be used to implement the phase smoothing 

process. 

The input data arrays and program constants are defined as 

follows: 

NPTS - The number of points of the measured apparent 

resistivity vs. frequency data. 

NFREQ - The number of points of data equally spaced on 

a ln w scale to be used in the FFT routine in 

the convolution process. This parameter must 

be greater than NPTS and must be equal to an 

integer power of two. 

F - The measured data frequency array. 

R(f) - The measured apparent resistivity vs. frequency array. 

P (f) - The measured phase data array. 

C(f) - The coherency array of the tensor impedance data as 

a function of frequency. 

CMIN - The minimum coherency for which the amplitude data 

is to be used in the minimum mean square fit process. 

U - The constant used in the low pass filtering of the phase 

data. 
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Read input data - NPTS , NFREQ, 

F, R(f), P(f), C(f), CMIN, U ~ 

l 
Extend F and p ( f) arrays at 

both extremes of data range 

i 
Create an equally spaced ln w 

array over extended range 
with NFREQ points 

~ 
Interpolate P(f) data to P (.ln w ) 

i 
Compute first and second order 

terms p' ( £ n w) and Q' Un w ) 

i 
S(logw) =~ [ P'(.tn w) +Q'(fn w)]-1 

11' 

l 
Integrate S ( log w ) to obtain the 
shape of the phase - derived 
apparent resistivity , Y ( log w ) 

i 
Interpolate y ( log w ) to 
original dot a frequencies, A { f ) 

i 
Compute constant of integration 
and add to A ( f) 

Fig. A-1 • PROGRAM BLOCK DIAGRAM 



After the data and program constants have been determined, 

the phase data is extrapolated at both extremes of the original 

frequency array as described in Chapter 6. 

The derivative of ln p A as a function of ln w given by 

Equation (4-50) may be written as 

d(ln p A) 

d (ln w) 
4 "'1-1 = - [cp (ln w) + u (T(x) <Ji {x)}] - 1 
TI 

(A-1) 

This is the form of the formula which has been implemented via the 

digital computer program outlined here. For discrete data Equation 

(A-1) is 

t:. ln PA 4 r-t -1 

t:. ln w = ~ [cp(ln w) +v (T(x) <Ji (x) }] - 1 (A-2) 

where the forward and inverse Fourier transforms are computed by an 

FFT routine. 

The MT apparent resistivity function is normally displayed on 

a log-log scale rather than in terms of the natural logarithm. Since 
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the slope of a function is identical between the two logarithmic bases, 

Equation (A-2) may be written as 

where 

S (log w) = _1 [ P (ln w) + Q (ln w)] - 1 
TI 

(A-3) 



tdog p A 
S (log w) = 

1 6 og w 
(A-4) 

P (ln w) = cp (ln w) (A-5) 

and 

-1 
Q (ln w) = 3- (T(x) ~ (x)} (A-6) 

Since the transform iR (x) in Equation .(A-6) is to be computed 

via an FFT routine, the cp(ln OJ) data must be provided for equally 

spaced in w points. The next step in the program then is to create 

the equally spaced ln w array over the extended frequency range. 

The interval between adjacent points is 

t>.lnOJ = 
ln OJ NFREQ - ln w1 

NFREQ - 1 
(A-7) 

where w NFREQ and w1 are the upper and lower radian frequency 

limits, respectively, of the extended range. The number of ln OJ 

points (NFREQ) must be an integer power of two for the FFT routine 

used. 

Once the equally spaced ln w array is created, the extended 

phase array may be interpolated to these points. An existing 

interpolation routine based on the cubic spline technique was 

utilized for this process. 

As has been discussed, the convolver function T (x) of 

Equation (4-44)is modified by a low pass filter function. In this 
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example of the implementation details the phase utilized in the first 

order term is also low pass filtered to reduce the effect of higher 

harmonic noise on the phase smoothing results. For purposes of 

notation let these modifications be denoted in Equation (A-3) as 

4 
S (log (J) ) = - [P' (ln (J)) + Q' {ln (J))] - 1 

TI 

The first and second order terms P' (ln (J)) and Q' (ln (J)) of this 

equation are computed as outlined in Figure A-2. 

The values of x for which the FFT routines converts the 

transform is 

where 

x. = ib.x, i = o to NFREQ -1 
1 

6,X = Zn 
ln (J) NFREQ - ln (J)1 

(A-8) 

(A-9) 

(A-1 O) 

The low pass filter operation illustrated in Figure 6-1 and 

referred to in the block diagram of Figure A-2 is given by 

{ ) 1 1 { TIX ) w X = z + 2 COS I X s; Xf 
xf 

{A-11) 

W{x) = 0 

and is shown in Figure A-3. The relationship between xf of this 

equation and the input parameter U is as follows. 
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<P(xi) = Fourier Transform 
of P (In w ) 

~ 
Low p 0 SS f i It er <P(xj) to 
create 8 ( x i ) array 

~ 
Apply convolver T (Xi ) to 
B ( Xj) to give D(xj) array 

~ 
P' (In w ) = Inverse FFT 

of B (xi ) 

i 
Q'(lnw) = Inverse FFT 

of D ( Xj ) 

w ( x) 

x 

Fig. A-3. W(x) FILTER 



Given the phase data at the equally spaced ln w points we 

find that the Nyquist point in the x domain is 

TT 
(A-12) x = N t::. ln w • 

This point is indicated in Figure A-3. The parameter U is defined 

as the point on the x axis of this figure given by the fractional part 

of xN at which W(x) goes to zero. That is, 

The low pass filter function is then 

W(x.) = 1 + .1 cos 1 2 :?. 

W(x.) = 0 
1 

x. t::.ln w 
1 

u 

The transform of the modified phase is then defined as 

B (x.) = q? (x.) W(x.) 
1 1 1 

while the transform of the second order term actually used is 

D (x.) = T (x.) B (x.) , 
1 1 1 

where T (x) is defined by Equation (4-44). 

(A-13) 

(A-14) 

(A-15) 

(A-16) 

After the inverse transforms of B(x.) and D(x.) are determined, 
1 1 

S (log w) is computed from Equation (A-8) • This step in the program 

as well as the following are included in the block diagram of Figure 

A-1. 
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The next step in the phase smoothing program is to integrate 

S(log w) to obtain the shape of the apparent resistivity function. The 

formula used for this purpose is 

(s . 
1 

+ s.) tdog w 
l+ 1 

2 
(A-17) 

where Y. is the log of the ith phase derived apparent resistivity point 
l , 

and the integer i ranges from 1 to NFREQ-1. This iterative process 

of deriving Y. 
1 

is initiated by assuming any value (0 for instance) 
l+ 

There remains the task of evaluating the constant of 

integration as outlined in Chapter 6. Since the coherencies 

associated with the original data points are to be used in the 

evaluation of this constant, the Y. array derived by Equation (A-17) 
1 

is interpolated back to the original measurement frequencies. Let 

this · interpolated array be defined as A., i = 1, 2, 3, •.• , NPTS. The 
1 

final phase smoothed apparent resistivity array is then given by 

A.= A.+ log L 
1 1 

where Lis defined by Equation (6-13) . 

(A-18) 
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