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Inversion of the geomagnetic induction problem

By R. C. BaiLEY
Department of Geodesy and Geophysics, University of Cambridge

(Communicated by Svr Edward Bullard, F.R.S.—Received 26 February 1969)

An algorithm has been found for inverting the problem of geomagnetic induction in a con-
centrically stratified Earth. It determines the (radial) conductivity distribution from the
frequency spectrum of the ratio of internal to external magnetic potentials of any surface
harmonic mode. The derivation combines the magnetic induction equation with the principle
of causality in the form of an integral constraint on the frequency spectrum. This algorithm
generates a single solution for the conductivity. This solution is here proved unique if the
conductivity is a bounded, real analytic function with no zeros. Suggestions are made regard-
ing the numerical application of the algorithm to real data.

1. INTRODUCTION

A number of investigators (Chapman 1919; Lahiri & Price 1939; Rikitake 1950;
Eckhardt, Larner & Madden 1963) have made estimates of the electrical conducti-
vity of the Earth as a function of radius by studying natural geomagnetic variations.
Varying magnetic fields of external origin (i.e. those generated by electric currents
in the ionosphere) induce eddy currents in the conducting Earth, which in turn pro-
duce magnetic fields of internal origin. The magnetic fields observed at the Earth’s
surface can be mathematically separated (Chapman & Bartels 1940) into those of
external origin and those of internal origin. More precisely, one can calculate from
the available experimental observations the ratio of internal and external magnetic
potentials over a range of frequencies for a number of different spatial distributions
of source field.

This observed induction response ratio has been used in an indirect way in the
work mentioned above; the calculated behaviour of different conductivity models
has been compared with the behaviour of the real Earth, and the best fitting model
selected as the solution. This method provides geophysically useful information,
but it lacks the elegance of a direct method. More important, one does not know if
an appreciably different but untried conductivity model also fits the experimental
data well.

Slichter (1933) has developed a direct method for geomagnetic deep sounding.
His method deals with a horizontally stratified plane Earth, but can presumably
be extended to a spherically symmetric Earth. The information required is the mag-
netic induction response to an infinite set of source fields with different spatial
distribution, at a single frequency. This is not a very practical method because
the range of source field geometries available from geomagnetic soundings is not
very large. The data needed by Slichter’s method are just not available.

This paper presents a direct method for determining the radial conductivity
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distribution. It uses the induction ratio of the earth for a single spatial distribution
of sourcefield over an infinite range of frequencies. Its central feature is the use of the
principle of causality. Eckhardt (1963) and others have pointed out that, in a spheric-
ally symmetrical Earth, the magnetic field at any radius inside the Earth can be
separated into internal and external parts. The internal part is always caused by the
eddy currents generated by the external part; changes in the external magnetic
potential must always precede the response in the internal magnetic field. This
causal relationship is included in the mathematics. The result is that only one
conductivity distribution can be chosen to reproduce the surface induction response
and make the induction response causal at all radii. In fact, it is actually the product
of conductivity and permeability which is evaluated. However, there are excellent
physical grounds (Tozer 1959) for assuming unit permeability almost everywhere
in the Earth. With this assumption, the conductivity itself can be evaluated.

2. THEORETICAL BASIS

It is first necessary to review some of the previous work on electromagnetic in-
duction in conducting spheres. These results are taken mainly from papers by Lahiri
& Price (1939) and Eckhardt (1963).

In the free space outside the sphere, any magnetic field can be represented as
— VW where W is a magnetic scalar potential satisfying Laplace’s equation. In
spherical polar coordinates, any solution for W can be expanded as

© +n ] n —n—1
weo.gn= 3 X vlern ;) womo(z) | see.p.

n=1m=—n b b
Here 8™(0, ¢) = P™(cos 0) ei™# is a surface harmonic, b is the radius of the sphere and

tistime.

The part of the magnetic potential with coefficient £7(¢) is produced by currents
outside the sphere and the part with coefficient #7(t) is produced by currents inside
the sphere. The magnetic field derived from this at the surface of the sphere is

H, = 3 —[né3(t)— (n+ 1) I3(0)] 830, 8),

Hy= 3 ~[600+750)] 1557 0.9) "
Hy = X —[850)+ 0] 555558 0. )

Inside the conducting earth, H can be expressed as V x A where A is the magnetic
vector potential. Lahiri & Price (1939) have shown that where the conductivity is a
function of radius only, A must be of the form

A=rxVU, (2)
where VU = dmuo oU|ot.

These fields are poloidal. There also exist toroidal solutions, but these cannot be
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excited by magnetic fields of external origin and are therefore not involved in the
induction problem. The permeability will henceforth be assumed unity, as noted in
the introduction.

Any solution for U can be written as

© +n
Ur,0,9,t)= X X aFp,t)S7(0, ),

n=lm=-n
0 ory orm
e _ m 2,2 9
where PP (p % ) n(n+ 1) F™ + dra?p?o(p) i (3)
and a is the radius of the Earth, and p = r/a. The magnetic field inside the Earth is
therefore

H= —})n(n+ 1) F2(p, ) S2(0, ),

10 N
H = _—— m %’n 43
10 1 o8

p— m

b= R0 e e

Gauss (1839) showed that the magnetic field on any closed surface can be mean-
ingfully separated into parts of external and internal origin if no current flows
across the surface. Now, in an isotropic conductor, the current, the electric field
(from Ohm’s law) and the time derivative of the magnetic vector potential (from
Maxwell’s equations) lie in the same direction. Inspection of equation (2) above
shows that the magnetic vector potential never has a radial component. Thus, no
radial currents ever flow in a spherically symmetric Earth excited by external fields,
and the Gaussian separation is valid for any (concentric) subsphere of the Earth.
Equations (1) allow us to determine the internal and external coefficients #% and
&M of the field over the surface of such a subsphere, if we are given H (7,0, ¢,t) and
one of Hy(r, 0, $,t) and Hy(r, 0, ¢, ¢). Let us therefore apply equations (1) to the mag-
netic field given by (4) and separate it into internal and external parts at an arbi-
trary radius pa. The result is

2t 1) pn — np— (1) 27,

5 PFR) = En L.
The coefficients 67 and £ are now of course functions of p.

Equations (5) show that an external field in a given surface harmonic excites only
an internal field of the same surface harmonic distribution. That is, for a given
conductivity distribution, #%(¢) is a function only of &7(t). Because of the linearity
of Maxwell’s equations, .#"(t) is linearly related to &7(t). The most general linear

relation is oo
() = f Kn(r)En(t—r)dr, (6)
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where K7(7) = 0 for 7 < 0 to satisfy the principle of causality. K7(r) is the impulse
response of the Harth in a given surface harmonic mode.
The Fourier transform convention that will be used here is
4o
g(w) = G(t)eivt di.
If i(w), ei(w) and ki*(w) denote the Fourier transforms of #7(¢), &7(¢), and K™ (t)
respectively, equation (6) can be written as

in(0) = k7 (0) eg ().
If the separation equations (5) are Fourier transformed in time, equivalent equa-
tions are obtained in f(p, w), t%(p, w) and e(p, w), where f7 is the Fourier transform

of F?. The variables /" and el can then be eliminated by introducing the variable
k7. The result is

LD -

0 1

—Infir(p,0) = —= 14—
s ) = = [
Now equation (3) can be Fourier transformed and transposed to give:

2 02
2p 5% nfi(p, ) +p* [(5% Infp, w)) a0 s w)] = nn+1) —dma*po(p)iv.
(8)

Equations (7) and (8) can be combined to give
okm dmo(p)iwap(n+1) [ n 12 (2n+1)
Do Jom —
op n(2n+1) P

" on+1l
Eckhardt derived this equation and used it to compute £7(w) numerically at the
surface of the earth for different conductivity distributions (Eckhardt 1963;
Eckhardt et al. 1963). (The different sign of w in his derivation results from the use
of a different fourier transform convention.)
This equation can be simplified with the following substitutions:

L8 (9)

— " 2n+1
By = P (10a)
_ et ) PP,
S”_4[n(2n+l)]p o, (10b)
m_ N+l m_ M
¢'n - n R’n [kn n+1]’ (IOC)

when, for convenience, we drop the surface harmonic subscripts and superscripts
equation (9) reduces to

1 +£€ (R, w) = —inwS(R) [¢7( R, w)]2 (11)

We can now turn our attention to the constraints imposed by the causal nature of
the induction process.
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3. THE ROLE OF CAUSALITY

As previously noted, the impulse response function K7(7) in equation (6) must be
causal in nature. That is Kmr)=0 (r<0),

for no effect can precede its cause.

The properties of causal response functions are discussed in detail by Landau &
Lifshitz (1958) and only the relevant results will be given here. The most important
result is that the Fourier transform £7(w) of K%(7) must be an analytic and bounded
function of w everywhere in the upper half of the complex w plane. The modified
response function ¢/'(w) must, by definition (10¢), have the same property. It can
also be shown that the real parts of ¥ and ¢/ are even functions of w, and that the
imaginary parts are odd.

Physical arguments can be used here to find the behaviour of these functions at
o = 0 and as || tends to infinity. At zero frequency, k7 must necessarily be zero,
since a static magnetic field cannot induce any magnetic field in a conductor with
vacuum permeability. Equation (10¢) shows that therefore ¢! = — R at w = 0.

As o tends to + oo on the real axis, any conducting sphere tends to behave as a
superconducting sphere for which

kP = nf(n+1).

This is the value of £} required to make H, = 0 in equation (1). It must, of course,
be assumed that the Earth’s conductivity is not zero at the radius where k7 is evalu-
ated.

Therefore, lim ¢» =o0.

W—>00

Furthermore, ¢ must tend to this same limit as |w| tends to infinity anywhere in
the upper half plane because it is analytic and bounded everywhere there. Exactly
how fast ¢ tends to zero as |w| tends to infinity can also be deduced from physical
arguments. As the frequency increases, the skin depth of magnetic field penetration
must eventually become much less than the radius difference in which the con-
ductivity changes appreciably. At frequencies greater than this, ¢” must tend to
that of a uniform sphere whose conductivity equals the surface conductivity of the
actual sphere. The solution for a uniform sphere (Chapman & Price 1930) shows that
¢ tends to zero as (—imwS)~*, where S is the ‘modified conductivity’ defined in
equation (10b).

The properties of 0¢7/oR follow from these results and equation (11). The func-
tion 9¢%/0R is analytic and bounded in the upper half w plane and tends to zero as
|w| tends to infinity in the upper half plane.

The analyticity and boundedness of 8¢7/0R in the upper half & plane permits the
use of Cauchy’s integral formula. That is,

PR, 0) 1 1 ™R, w)

2B " omloo—w  oR 9
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where no part of the contour C lies in the lower half plane and w is inside the contour
C. If w is on the contour C, Cauchy’s integral formula becomes

1 ogp(R,0) -
777777 = . 2
oR ﬂifo w—w oR do (12)

The bar across the integral sign indicates that the Cauchy principle value of the

integral is to be taken.
Equation (12) will be applied to the case where w = 0 and the contour C is as

shown in figure 1. The radius of the semicircle is allowed to tend to infinity.

imaginary axis

---- real axis

Ficure 1

Since 0¢ [0R tends to zero as |w| tends to infinity (Imw > 0), then 9¢"/wdR
tends to zero faster than w—1. The integral over the semi-circular part of the contour

must vanish. Equation (12) reduces to

) L[ LR,

oR |0 7J _wiw OR
However, since by equation (11) d¢/dR)|,_, = — 1, this can be written as an integral
constraint on 9¢™/0R, i.e.
_ [t 1 0R(R, w)

Equation (13) must be satisfied by any physically realistic response function at
any depth. They can be applied to the modified Eckhardt equation (11) to see what
condition the conductivity must satisfy for ¢ to remain causal at all radii.

4. THE CONDUCTIVITY INTEGRAL

Equation (11) can be written as

8 m 1
N = m\2
oR (ia)) +ia) mS(GR)*-
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Integration of this equation with respect to w over the range — oo to + co yields

]CM L a¢”d fm Uo_ Sfj:(qs;g")Zdw. (14)

The second term on the left-hand side is zero.
When we apply (13), equation (14) becomes

1= SJ[M (¢™)2 do. (15)

This becomes S(R) = [2 f ” Re (¢7(R, ) dwr, (16)
0

by utilizing the symmetry and boundedness of (¢7?)2. Since S is, in effect, the conduct-
ivity (from (105)), the local conductivity has been evaluated in terms of the magnetic
response function ¢. Specifically, the conductivity is

AT ]

Strictly speaking, the o given by (17)isnot o(p); itis the conductivity immediately
below p. Mathematically speaking, it is lim (¢ — 0) o(p —¢€). Thus if ¢ is known at
a discontinuity in o (e.g. at the surface of the Earth), the formula (17) evaluates the
conductivity on the lower side of the discontinuity. A divergent integral in (17)
corresponds to zero conductivity.

5. THE FINAL EQUATION FOR ¢

Equation (16) can be used to eliminate the modified conductivity S from equation
(11), giving 3¢n a
+1 = —inw(Pm)? Re (¢m)32dw| . (18)

This is a single nonlinear partial integrodifferential equation (first order in the in-
dependent variable R) in one unknown, ¢ (R, w). This is the equation from which
a complete solution for the problem can be obtained from the boundary condition
that ¢7(R, w) is specified for all w at some R (i.e. the surface of the Earth). Unfort-
unately there are no general mathematical methods for dealing with this type of
equation. However, it does lend itself to numerical iteration in R. Once a solution
for ¢™(R, w) has been obtained numerically, the conductivity function can be ob-
obtained from it by using equation (17).

It must still be proved, however, that knowledge of ¢'( R, w) for all v at some E
is enough to determine a unique solution ¢?(R, w) for all w, and all £,

0< R <nf(n+1).

This is done in the next section.
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6. UNIQUENESS
A proof of the uniqueness of solutions generated from completely arbitrary
surface functions of ¢(R,w)|z, has not been obtained. The uniqueness theorem
given here restricts itself to the set of all ¢7(R, w)| z, generated by conductivities for
which the conductivity integral

+-c0
I=81= f (@2 dw,

is a non zero real analytic function. That is, we must be able to write

I=73% a,(R—Ry)" (0 <R<Ry= »—),
n=0 /
where I has no zeros in the interval 0 < R < R,,. In effect, only non-zero bounded
conductivity functions that are infinitely differentiable are considered.
With this sort of conductivity function, equation (11) must generate a ¢™ that
is continuous in R and all of whose derivatives are continuous in R. Thus [¢p™(R, w)]?
can be expanded in a Taylor series in R about R, and integrated over w. That is

I(R) = f j: (7)? |p,do+ (B ~Ro)fj: a(%)z
gy

+%(R—RO)2f_ 8R2

dw

do+....
Ry

Now each of the derivatives of (¢)% with respect to B can be evaluated in terms
of ¢i(w, R)|, by means of repeated applications of the recursion relation

opy _ | _imo(gn)
P i

derived from the differential equation (11). For example, the first few terms in the
Taylor series for (¢™)? are evaluated as follows:

(P7)? = (P2)%

a%%gz__)z ~agm [2i7r;)¢§’; (1 +im(1¢m2) _imgsg)z % J o [ . +w]2.

It can be seen that the only terms appearing in the formulae for the derivatives of
($7)? are ¢ and a set I, dIJOR, 9% |0R?, etec. Any such term 9%I/0R* first occurs in
the formula for a¢+1(¢m)2/aR*+1, which means that 0%(¢7)2/o0R* has already been
evaluated and that 0I/0R* is already known as
v (g2
[
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Thus all the terms of the power series expansion for I can be calculated from
$n(w, R)|g,, and because two different functions cannot have the same power
series, it follows that the solution for I and thus for the conductivity, is unique.

A generalization of this proof to less restricted conductivity functions may be
possible. One restriction that cannot be removed, however, is that the conductivity
has a bounded integral. It is a physical fact that any distribution of conductivity
inside a shell of infinite integrated conductivity may be taken as a solution without
conflicting with the surface boundary condition of specified ¢(w). Essentially the
same uniqueness theorem may also be proved using the theory of inverse Sturm-
Liouville problems as developed by Borg (1945) and others.

It is interesting to note that knowledge of ¢7(w) at the surface of the earth in a
single surface harmonic mode is enough to give a unique solution for the conductivity.

7. CONCLUSIONS

There is no reason for believing that this algorithm can, from real data, evaluate
the Earth’s conductivity more accurately than trial and error methods have already
done. Its real significance to geophysics is that it generates unique solutions (sub-
ject to certain restrictions). It shows for the first time that surface geomagnetic
measurements are, in fact, sufficient in principle to determine the real conductivity
distribution.

The basic method is equally applicable to a number of related problems. The
corresponding problem for a plane stratified earth, for example, may be solved.
In this case the first order equation equivalent to equation (9) is (using analogous
notation): o, 4

==~ h—i0do(2) [k~ 172, (19)

and the conductivity formula equivalent to equation (17) is

472

c=% [2[(:0 Re (ky — l)zdw]_l. (20)

Here A is the horizontal wavelength of the (sinusoidal) exciting field.

This sort of problem requires, however, that the surface of the conducting body
define a suitable orthogonal coordinate system, and that the conductivity be a func-
tion only of the coordinate normal to the surface of the body. These conditions are
necessary for the derivation of the analogues of Eckhardt’s equation (9). These
points are discussed in more detail by Eckhardt (1968).

Price (1962) and Watanabe (1964) have shown that the geomagnetic deepsounding
and magnetotelluric problems are mathematically equivalent. If one can beinverted,
the other can. Therefore the magnetotelluric method can produce unique solutions
in principle. The algorithm of this paper may be applied to a magnetotelluric prob-
lem by converting it to the corresponding geomagnetic one.

Tt is hoped to apply this algorithm to real Earth data. The conductivity of the
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Earth is probably finite, non-zero and more or less continuous. In principle, therefore,
it is uniquely recoverable from surface measurements. A major obstacle is the im-
possible requirement that ¢(w, R)| 5, be known over an infinite frequency range.
If ¢ is known (for some »,m) over a fairly wide frequency range, however, reason-
ably accurate extrapolation functions can be fitted to the high and low frequency
limits of the data. These extrapolation functions must, of course, have the theoretic-
ally required asymptotic behaviour and symmetry properties. It is then fairly
straightforward to evaluate numerically the conductivity integral in equation (18)
and integrate this equation downwards into the earth from the surface, again
numerically. The conductivity integral must of course be re-evaluated continually
in this process.

There is another problem to solve in treating real data. The conductivity of the
Earth is not radially symmetric. There are large horizontal inhomogeneities at the
surface in the form of oceans and continental structures. In principle, the effects
of these could be computed and removed from the data. In practice, it is much
easier to settle for an approximate solution and throw away the data at frequencies
above, say, a few cycles per day. The data at frequencies below this are not signifi-
cantly affected by the surface inhomogeneities; the data at frequencies above this
can be filled in by the extrapolation procedure described above.

I wish to thank Professor Sir Edward Bullard, F.R.S. and Dr F. Bretherton for
valuable criticism, and the National Research Council of Canada for their financial
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