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Abstract The robust statistical model of a Gaussian core contaminated by outlying data in

use since the 1980s, and which underlies modern estimation of the magnetotelluric (MT)

response function, is re-examined from first principles. The residuals from robust esti-

mators applied to MT data are shown to be systematically long-tailed compared to a

distribution based on the Gaussian and hence inconsistent with the robust model. Instead,

MT data are pervasively described by the stable distribution family for which the Gaussian

is an end member, but whose remaining distributions have algebraic rather than expo-

nential tails. The validity of the stable model is rigorously demonstrated using a permu-

tation test. A maximum likelihood estimator (MLE), including the use of a remote

reference, that exploits the stable nature of MT data is formulated, and its two-stage

implementation, in which stable parameters are first fit to the residuals, and then the MT

responses are solved for, with iteration between them, is described. The MLE is inherently

robust, but differs from a conventional robust estimator because it is based on a statistical

model derived from the data rather than being ad hoc. Finally, the covariance matrices

obtained from MT data are pervasively improper as a result of weak non-stationarity, and

the Cramér–Rao lower bound for the improper covariance matrix is derived, resulting in

reliable second-order statistics for MT responses. The stable MLE was applied to an

exemplar broadband data set from northwest Namibia. The stable MLE is shown to be

consistent with the statistical model underlying linear regression and hence is uncondi-

tionally unbiased, in contrast to the robust model. The MLE is compared to conventional

robust remote reference and two-stage estimators, establishing that the standard errors of

the former are systematically smaller than for either of the latter, and that the standardized

differences between them exhibit excursions that are both too frequent and too large to be

described by Gaussian statistics. These excursions are more prevalent when the tail

thickness parameter of the stable distribution is small, and are attributed to rising bias in
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the robust estimator that is also consistent with the Berry–Esséen theorem that defines the

rate of convergence to the central limit theorem value. An explanation for weak non-

stationarity of MT data is proposed, and several extensions to the present work are

described.

Keywords Magnetotellurics � Time-series analysis � Probability distributions � Numerical

approximations and analysis

1 Introduction

The fundamental datum in magnetotellurics (MT) is a location-specific, frequency-de-

pendent tensor linearly connecting the horizontal electric and magnetic fields measured at

Earth’s surface (or at the seafloor). Under general conditions (Weidelt and Chave 2012,

Section 4.1.2), in the absence of noise and with precise data, the relationship may be

written as follows:

ð1Þ

where E and B are two-vectors of the horizontal electric and magnetic field components at

a specific site and frequency, Z
$
is the second-rank, 2 9 2 MT response tensor connecting

them, and denotes the inner product. Additional transfer functions exist between the

vertical and horizontal magnetic fields, or between the horizontal magnetic fields at dif-

ferent sites, for which the estimation methodologies are similar, and hence only the MT

response Z
$
will be considered in this paper.

When E and B are actual measurements (1) does not hold exactly due to the finite size

of the data sample and the presence of noise, and it becomes necessary to estimate both Z
$

and its uncertainty dZ
$
in a statistical manner. The initial approach used for MT was a

standard application of least squares principles (e.g., Sims et al. 1971; Vozoff 1972). In the

standard linear regression model for the row-by-row solution of (1), the equivalent set of

matrix equations is:

e ¼ b
$
� zþ e ð2Þ

where there are N observations (i.e., N Fourier transforms of N independent data sections at

a given frequency), so that e is the N � 1 response vector, b
$
is the N � 2 predictor matrix,

z is a two-vector corresponding to a row of the MT response tensor, and e is an N-vector of

unobservable random errors.

However, early results from least squares frequently exhibited bias and erratic vari-

ability with frequency, along with unreliable error estimates. The bias problem was

addressed through the remote reference method (Goubau et al. 1978; Gamble et al. 1979)

that utilized magnetic field measurements at a secondary site to reduce downward bias by

replacing auto-powers with cross-powers in the solution of (2). Variability of the responses

and their errors eventually led to the introduction of robust estimators (Egbert and Booker

1986; Chave et al. 1987) to eliminate the influence of outliers and non-stationarity, and

quickly became the standard approach. Over time, extensions to standard robust estimators

have been introduced, such as the robust remote reference implementation with jackknife

error estimates of Chave and Thomson (1989), the multi-site principal components

838 Surv Geophys (2017) 38:837–867

123



approach of Egbert (1997, 2002), or the bounded influence estimator of Chave and

Thomson (2004). The principles and implementation of such robust estimators for MT data

will not be covered in this paper, as the topic was thoroughly reviewed by Chave (2012).

This paper primarily covers more recent work on MT response estimation. The major

extension that will be described is due to the serendipitous discovery (Chave 2014) that

MT data in the frequency domain are pervasively described by well-understood statistical

distributions having algebraic rather than exponential tails. This enables the formulation of

a statistically optimal maximum likelihood estimator (MLE) whose performance will be

compared to the robust methods that have been in standard use since the late 1980s.

The success of any MT response estimator depends on the fidelity of the spectral

analysis that produces the frequency domain data that are its inputs. Chave (2012, Sec-

tion 5.2) provides a review of the important principles that yield low bias spectral esti-

mates that are statistically independent at a given frequency. At a high level, the spectral

analysis steps are based on the Welch overlapped section averaging (WOSA) approach

(Percival and Walden 1993, Section 6.17):

1. The raw time series are prewhitened, typically by convolution with an autoregressive

filter fit to the time series, to reduce the spectral dynamic range. The autoregressive

filter must be computed robustly;

2. Starting at the lowest frequency (or longest period) of interest, a section length N that

is of order a few over the frequency of interest is selected. N is typically much smaller

than the length of the entire time series;

3. The resolution bandwidth W is selected, and each section is tapered with the lowest

order Slepian sequence parameterized by N and W that is an optimal data taper, in the

sense that it maximizes the energy concentration in the band �W ;Wð Þ about any

frequency (Slepian 1978). With adequate prewhitening, the best choice for the time–

bandwidth product NW is 1, as it ensures independence of adjacent frequencies on the

standard discrete Fourier transform grid. Data sections may be overlapped to improve

statistical efficiency, as described by Percival and Walden (1993, Section 6.17);

4. Discrete Fourier transforms of the tapered data sections are taken, and prewhitening

and the instrument response are corrected in the frequency domain. In the present

context, the data are the Fourier transforms of the windowed time series at a given

frequency from each section;

5. The section length is then repetitively reduced as higher frequencies are addressed.

2 The statistical problem

In MT, the predictor variables in b
$
are random variables, and the linear regression sta-

tistical model underlying (2) is:

E ejb
$� �

¼ b
$
� z

cov ejb
$� �

¼ r2I
$

N

ð3Þ

where E and cov denote the expected value and covariance, ejb
$
means e conditional on b

$
,

and I
$

N is the N 9 N identity matrix. E ejb
$� �

and cov ejb
$� �

are both random variables
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(hereafter rvs); a different result will ensue for each instance of b
$
. The theory of least

squares applies equally well when b
$
contains rvs under very general conditions (Shaffer

1991). It will further be assumed that the statistical model is linear in the parameters, a

condition that holds for MT based on physics [see Eq. (1)], and that z is not affected by

linear equalities among the predictor variables, so that rank b
$� �

¼ 2.

The least squares estimator for the statistical model (3) is:

ð4Þ

where the superscript H denotes the Hermitian transpose and the elements of and

are averaged estimates of the auto- and cross-power spectra based on the available

data. Chave (2017, Section 9.2) defines the properties and definitions that apply to the

linear regression estimator, and which in turn motivate robust estimation when they are

violated. A subset of these issues that will be further evaluated in Sect. 7 are:

1. The estimator is unconditionally unbiased:

Eð ẑÞ ¼ E Eð ẑ j b
$
Þ

h i
¼ z ð5Þ

when the random errors e have zero mean and a common variance. These conditions

are equivalent to requiring that all of the data have equal influence on the result.

2. The N-vector of predicted values for the response variables is:

ê ¼ b
$
� ẑ ¼ b

$
� b

$H

� b
$

� ��1

�b
$H

� e � H
$

N � e ð6Þ

where H
$

N is the N 9 N hat matrix that depends only on the predictor variables. Chave

and Thomson (2004) or Chave (2012) describe the properties of the hat matrix.

3. The residuals are given by:

r̂ ¼ e� b
$
� ẑ ¼ I

$

N �H
$

N

� �
� e ð7Þ

4. An unbiased estimate for r2 is:

ð8Þ

5. The residuals r̂ are uncorrelated with the predicted values ê.
6. The parameter vector ẑ is the best linear unbiased estimator for z. This statement is the

Gauss–Markov theorem that underlies linear regression.

7. While statements 1–8 do not depend on distributional assumptions, if e�CN 0; r2I
$

N

� �

(where * specifies ‘‘is distributed as’’), meaning that the random errors are N-variate

complex normal with zero mean and common variance r2 (implying that they are

identically distributed), then z is also the maximum likelihood estimate, and hence is

840 Surv Geophys (2017) 38:837–867

123



asymptotically Gaussian, so that:

ẑ�C2 z; r2 b
$H

� b
$

� ��1
" #

ê�CN b
$
� z; r2H

$

N

� �

N � 2ð Þr̂2
r2

� v2N�2

ð9Þ

where v2m is the chi square distribution with m degrees of freedom. Further, ẑ is

consistent (i.e., it becomes more tightly concentrated around the population value as

the number of data increases), and ẑ and r̂2 are independent, serving as sufficient

statistics for estimating z and r2. The term sufficient statistic means that no other

statistic for a parameter calculated from a given data sample can provide additional

information about the value of the parameter.

The theory outlined in (3)–(9) strictly applies when b
$
, while containing random vari-

ables, is measured without error. A more realistic model incorporates measurement error

into both e and b
$
and is called an errors-in-variables model. It has been known since at

least the time of Adcock (1878) that the presence of errors in all of the measured variables

makes the ordinary linear regression estimator (4) biased. Additional analysis steps are

required to minimize bias when an errors-in-variables model obtains, and is addressed by

the now standard remote reference method in which the horizontal magnetic field at a

reference site bHr replaces the local magnetic field bH in (4).

With natural source electromagnetic data, the conditions on the least squares estimate

are rarely tenable even when b
$
is measured without error for at least three reasons:

(a) The variance of the residuals r̂ is often dependent on that of the data, especially

when energetic intervals coincide with source field complexity, as is the case for

many classes of geomagnetic disturbances;

(b) The finite duration of many geomagnetic or cultural events results in data anomalies

that occur in patches, violating the independent residual requirement;

(c) Extreme residuals are much more common with MT data than would be expected for

a Gaussian model, and hence the residual distribution is very long-tailed, typically

with an algebraic rather than exponential character. The data corresponding to large

residuals are called influential and can result in serious bias to ẑ and even larger bias

in parametric estimates of its uncertainty unless properly accounted for.

Any one of these issues can seriously impact the linear regression solution (4) in

unpredictable and sometimes insidious ways; in the presence of more than one, difficulty is

guaranteed.

These problems have led to the introduction to statistics, and subsequently MT, of

procedures that are robust, in the sense that they are relatively insensitive to a moderate

amount of unusual data. The principle underlying all robust estimators is that the data are

described by a Gaussian core contaminated by outlying values that are longer-tailed than

Gaussian, and hence elimination of the extreme data will yield an estimate based only on

the Gaussian data that is consistent with (3)–(9). This model will hereafter be called the
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robust model. A key purpose of this paper is evaluation of the validity of this model for MT

data.

For the purposes of illustration, an exemplar broadband data set from northwest

Namibia consisting of 1,000,000 points sampled at 15 Hz will be utilized. The primary site

is located at 20�130S, 18�200E, and the reference site is located at 20�360S, 18�220E. The x-
and y-axes are aligned with local geomagnetic north and east, respectively. These data can

reasonably be assumed to be free of cultural noise given the remoteness of these sites, and

hence the focus will be on the character of the geomagnetic field used to estimate the MT

response.

3 Statistical verification

It is important to devise statistical tools to evaluate the performance of an estimator, and

this of necessity means a posteriori tests to validate the results of MT data analysis. In this

context, the most useful have proven to be quantile–quantile (q–q) and percent–percent (p–

p) plots of the regression residuals against an entity dependent on a target distribution.

Both types of plots compare the statistical distribution of an observed quantity with a

theoretical entity and hence provide a qualitative means for assessing the statistical out-

come of data processing that can be quantified by placing error bounds on the result. The N

quantiles qj
� �

of a probability distribution divide the area under the probability density

function (PDF) into N ? 1 equal area pieces and hence define equal probability intervals.

They are easily obtained from:

qi ¼ F�1 i� 1=2ð Þ=N½ � i ¼ 1; . . .N ð10Þ

where F�1 xð Þ is the target quantile or inverse cumulative distribution function (cdf). A q–q

plot is a comparison of the quantiles with the residual-order statistics r̂ ið Þ obtained by

sorting them into an ascending sequence. If the postulated distribution fits the residuals,

then a q–q plot will approximate a straight line. Quantile–quantile plots emphasize the

distribution tails; most of a q–q plot covers only the last few percent of the distribution

range. Consequently, they are quite useful to assess whether the robust model pertains.

Further detail may be found in Chave (2017, Section 4.8.4).

Suppose a rv X has a continuous cdf F xð Þ. If a new random variable is defined as

u ¼ F xð Þ, then U has the uniform distribution on 0; 1½ �, which defines the probability

integral transform (Chave 2017, Section 4.8.1). A percent–percent plot consists of the

uniform distribution quantiles ui ¼ i� 1=2ð Þ=N for i ¼ 1; . . .N against the residual-order

statistics transformed using the probability integral transform. If the target cdf is correct for

the residuals, then the plot will approximate a straight line. The p–p plot is most sensitive

at the mode of the distribution and hence is appropriate for evaluating heavy-tailed dis-

tributions, but is not very useful for detecting outliers under the robust model.

A useful variant on the p–p plot was introduced by Michael (1983). The standard p–p

plot has its highest variance near the distribution mode and its lowest variance in the

distribution tails. Michael applied an arcsine transformation to equalize the variance at all

points on a stabilized p–p plot. The variance-stabilized p–p plot consists of:

xi ¼ 2 sin�1 ffiffiffiffi
ui

pð Þ=p ð11Þ

plotted against:
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ŝi ¼
2

p
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F r̂ ið Þ � l̂
	 


=r̂
� �q

ð12Þ

where l̂ r̂ð Þ are location (scale) estimates for the distribution parameters. As with the

ordinary p–p plot, a stabilized p–p plot will approximate a straight line if the target

distribution is appropriate for the residuals.

The data in a MT context are Fourier transforms and therefore complex, and it is

convenient to measure residual size using the magnitude since that quantity is rotationally

(phase) invariant. The appropriate distribution for the magnitude of a complex Gaussian

number is Rayleigh (Chave 2017, Section 3.4.3). For a residual q–q plot, the N quantiles of

the Rayleigh distribution are plotted against the residual absolute value order statistics

r̂ ið Þ


 

.

A robust estimator utilizes data-adaptive weighting that censors a fraction of the data,

hence requiring that the quantiles be obtained from the truncated form of the original target

distribution, or else the result will inevitably appear to be short-tailed. The truncated

distribution is easily obtained from the original one, as described in Chave and Thomson

(2003, Appendix C) or Chave (2017, Section 4.8.8).

Whether the data have been censored or not, a straight line q–q or p–p plot indicates that

the residual elements are drawn from the target distribution. Data that are inconsistent with

the target distribution appear as departures from linearity manifest as sharp upward

(downward) shifts in the order statistics at the distribution ends for q–q (p–p) plots. The

residual q–q or p–p plots from the output of a robust estimator should be approximately

linear or slightly short-tailed if the robust model is correct.
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Fig. 1 Quantile–quantile
residual plots for the
y-orientation at the exemplar site
at a period of 45.5 s. The
ordinary least squares result is
shown in the top panel, and the
robust result is shown in the
bottom panel. There are 740 data
for the ordinary least squares and
724 data for the robust result
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Figures 1 and 2 show q–q plots for the residuals from the y-orientation (i.e., electric

field oriented east–west) estimate for the exemplar data set at periods of 45.5 and 2.1 s,

respectively. The top panels show the ordinary least squares, and the bottom panels show

the robust (scaled by the robust weights) residuals, in both cases using the standard remote

reference method to control bias caused by magnetic field noise. The robust q–q plots

utilize the truncated form of the Rayleigh distribution to account for data censored by

robust weighting. The ordinary least squares q–q plots are long-tailed, but do not suggest

the presence of outliers at the top of a Gaussian core. Rather, they suggest a distribution

that is systematically longer-tailed than Gaussian. A robust estimator removes the most

extreme values (note the different scales for the ordinary and robust cases), but the residual

distribution remains systematically long-tailed. This is especially true for Fig. 2 whose

period lies within the so-called dead band around 1 s. For both examples, the final residual

distributions are not even approximately Rayleigh and are not explained by the robust

model of a Gaussian (or Rayleigh) core contaminated by a fraction of outlying data. This

effect is present in the q–q plots at all periods for this data set and has also been observed in

dozens of additional, globally distributed data sets; see Chave (2014) for additional

examples. The observations surrounding Figs. 1 and 2 are not new, but have received little

attention over the years, perhaps because robust estimators do appear to dramatically

improve MT response estimates over ordinary least squares.

This raises the obvious question ‘‘what distribution does describe the regression

residuals for MT?’’ The answer appears to be that they are pervasively described by a

distribution family whose tails are algebraic rather than exponential called stable distri-

butions, as reviewed in Chave (2014) or Chave (2017, Section 3.4.2). Power laws such as

the stable family approximate the distribution of many natural phenomena, such as the size

of earthquakes, volcanic eruptions, solar flares and lightning strikes.
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Fig. 2 Quantile–quantile
residual plots for the
y-orientation at the exemplar site
at a period of 2.1 s. The ordinary
least squares result is shown in
the top panel, and the robust
result is shown in the bottom
panel. There are 11,866 data for
the ordinary least squares and
10,893 data for the robust result
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Stable distributions are characterized by a tail thickness parameter a, a skewness

parameter b and scale (location) parameters c dð Þ that are analogous to the standard

deviation and mean. The tail thickness parameter ranges over 0ð ; 2�, with 2 corresponding

to a Gaussian distribution, 1\a\2 having infinite variance with increasingly thick tails as

a decreases, 1 corresponding to the Cauchy distribution and 0\a	 1 having infinite mean

and variance, along with very thick tails. Except for three special cases, stable distributions

cannot be expressed in closed form, and numerical methods are required to compute their

properties. Based on the analysis of dozens of data sets by the author, MT data are typically

stably distributed with the empirical observation that 0:8	 a	 1:8 and b 
 0.

In addition to qualitative evaluation using a stabilized p–p plot, it is important to utilize

a statistical hypothesis test to assess the fit of a stable model to a given data set. This is

most easily achieved using a Kolmogorov–Smirnov test (Chave 2017, Section 7.2.3) to

compare the empirical cdf of the residuals to a fitted stable cdf, yielding a test p value. A

p value is the random probability of observing a value of the test statistic as large as, or

larger than, the one that is observed for a given data set. However, it is well known that the

Kolmogorov–Smirnov test p value is biased when the distribution parameters are estimated

from the data, as in the present application. The bias can be removed using a permutation

method (Chave 2017, Section 8.3) as follows:

1. Fit a stable distribution to the residuals;

2. Obtain a random draw of the same size from the fitted stable distribution;

3. Compute the two-sample Kolmogorov–Smirnov test statistic for the data and random

draw;

4. Merge the two data sets;

5. Randomly permute the indices of the merged data set;

6. Compute the two-sample Kolmogorov–Smirnov test statistic as if the first half of the

permuted data are the original data and the second half are the random draw;

7. Repeat 5–6 many (in the present application, 10,000) times;

8. Compute a two-tailed p value by comparing the original test statistic to the

permutation distribution defined by steps 5–7 in the standard way.

If the data are statistically consistent with the random draws, then the original test

statistic should lie near the middle of the permutation distribution, yielding a large p value

and hence acceptance of the null hypothesis that the data are stably distributed according to

the fitted parameters. Conversely, if the original test statistic lies in one of the permutation

distribution tails, then the test will reject. Permutation tests are exact (meaning the prob-

ability of a false-positive outcome always has the same value) under very general

circumstances.

4 Maximum likelihood estimation for stable MT data

Convergence of the least squares estimator to the true value of the MT response function

occurs at the rate N�1=2, where N is the number of data. Ordinary least squares applied to

stable data converges as N 1�að Þ=a (McCulloch 1998), and hence is increasingly slow as the

tail thickness parameter decreases, failing for a	 1. However, an iteratively re-weighted

least squares estimator for stable data that is analogous to a robust estimator is easily

devised and works well provided that a is sufficiently large.
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In the absence of a theory for complex-valued stable distributions, an augmented real

version of (4) will be used in the remainder of this paper. Let e0 ¼ er eið ÞT be a column 2N-

vector of the real parts of the electric field stacked above the imaginary parts, and let

b
$0

¼ b
$r

�b
$i

b
$i

b
$r

" #
ð13Þ

be the 2N 9 4 real magnetic field predictor matrix. Then, the real equations:

e0 ¼ b
$0
� z0 þ e0 ð14Þ

are equivalent to (4), where z0 ¼ zr zið ÞT is the MT response function 4-vector and e0 is a
2N-vector of random errors.

For stable MT data, the PDF of a single residual (real or imaginary part) is

S r̂ija; b; c; dð Þ. For independent data, the sampling distribution is:

SN r̂ j a; b; c; dð Þ ¼
Y2N
i¼1

S r̂i j a; b; c; dð Þ ð15Þ

The likelihood function is the sampling distribution (15) regarded as a function of the

parameters for a given set of residuals. The MLE is obtained by maximizing the likelihood

function, or equivalently, its logarithm:

L 1; zj r̂ð Þ ¼
X2N
i¼1

log S r̂ij1ð Þ ð16Þ

where 1¼ a;b;c;dð Þ is a vector of stable parameters. The first-order conditions for the MLE

solution follow by setting the derivatives of (16) with respect to the parameters to zero:

o1jL 1; zj r̂ð Þ ¼
X2N
i¼1

o1j S r̂ij1ð Þ
S r̂ij1ð Þ ¼ 0 j ¼ 1; . . .4

ozkL 1; zj r̂ð Þ ¼ �
X2N
i¼1

ozk S r̂ij1ð Þ
S r̂ij1ð Þ bik ¼ 0 k ¼ 1; . . .4

ð17Þ

The sufficient condition for the solution of (17) to be a maximum is that the Hessian

matrix of the log likelihood function be negative definite. Equations (17) will be solved

using an iterative two-stage process that decouples its two types of parameters. In the first

stage, the stable distribution parameter vector 1 is estimated using the stable MLE algo-

rithm of Nolan (2001). In the second stage, the MLE response function ẑ is computed

using these values for the stable distribution parameters. Iteration between the two stages

then continues until convergence is achieved.

Let k r̂ið Þ ¼ log S r̂ij1ð Þ where 1 is assumed known. The second equation in (17) can be

rewritten as:

�
X2N
i¼1

k0 r̂ið Þbik ¼ �
X2N
i¼1

k0 r̂ið Þ
r̂i

eibik �
X4
j¼1

bijẑjbik

 !
¼ 0 k ¼ 1; . . .4 ð18Þ

where k0 xð Þ is called the score function. Equation (18) may be recast in matrix form to

yield the iteratively re-weighted MLE solution:
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ẑML ¼ b
$H

� w$ � b
$

� ��1

� b
$H

� w$ � e

� �
ð19Þ

where w
$
is a diagonal weight matrix whose ith element is �k0 r̂ið Þ=r̂i. A remote magnetic

field reference is easily implemented by replacing b
$H

with b
$H

r in (19), where b
$

r is the

magnetic field at a reference site. Equation (19) is very similar in form to a robust esti-

mator. However, there is one very important distinction: The weights for the stable MLE

are based on a statistical model for the residuals that is derived directly from them, and

whose statistical significance can be evaluated, while robust estimator weights are ad hoc,

being based on the robust model that is inconsistent with actual MT data.

As proof that (19) reduces the influence of outlying data, Fig. 3 shows the weight

function w
$

for a standardized (c ¼ 1; d ¼ 0) symmetric (b ¼ 0) stable distribution for

several values of the tail thickness parameter a compared to a robust estimator weight

function as used in the last stage of the Chave and Thomson (2004) algorithm (as

implemented in the widely used BIRRP code). From (19), the solution is unaffected by

scaling the weight function by a constant, so the relative size of the curves in Fig. 3 is

irrelevant. For the Gaussian end member (a ¼ 2), the weights are independent of the size

of the residuals and yield the ordinary least squares solution. As a decreases, the weight

function becomes increasingly peaked at the origin and falls off more rapidly with residual

size. By comparison, the Chave and Thomson robust estimator utilizes a weight function

that is constant between �n, where nj j usually lies between 3 and 5 in scaled units and then
descends to zero for larger values; it is shown as a boxcar function for n ¼ 4 in Fig. 3. It is

readily apparent that, for data with a tail thickness parameter lying below 2 that is typical

for MT, the robust estimator consistently overemphasizes data corresponding to large

residuals within the pass band relative to those at the center when compared to the

stable MLE estimator and does not utilize any data beyond the cutoff point. In fact, the

robust estimator simply truncates the stable distribution without adapting to its form. This

Fig. 3 MLE weight function for a standardized (c ¼ 1; d ¼ 0), symmetric (b ¼ 0), stable distribution for
tail thickness parameter a values of 2 (solid line), 1.5 (dashed line) and 1.0 (dot-dash line). The dotted
boxcar function is a typical robust weight function with a cutoff of 4 on the abscissa. See text for discussion.
Taken from Chave (2014)
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has implications for the bias and variance properties of the robust estimator that will be

elaborated in the sequel.

Figure 4 shows the MLE weights for a skewed stable distribution (b ¼ �0:1) for the
same values of a as in Fig. 3. In this case, the weights are asymmetric around the origin,

with large negative (positive) values for positive (negative) residuals close to it. The

conventional robust estimator is insensitive to skewness, and so its weight function would

appear as in Fig. 3.

An iteratively re-weighted least squares MLE is easily implemented by initiation using

the ordinary least squares solution with data corresponding to the 5% most extreme

residuals at both distribution ends trimmed to reduce the influence of actual outliers. The

estimated residuals are fit with stable parameters using the MLE algorithm of Nolan

(2001), standardized as r̂i � dð Þ=c to ensure scale independence and then applied to

computation of the weights in (19). The weighted least squares problem (19) is solved, the

residuals are subsequently used to re-compute the stable parameters, and the process is

repeated iteratively until the median absolute deviation from the median, or MAD, of the

iteration residuals does not change by more than 1%. This typically takes 3–9 iterations,

with the number increasing as the tail thickness parameter approaches unity from above

due to the efficiency properties of the least squares estimator. The iteratively re-weighted

solution has the advantage of being relatively fast, but has the disadvantage of slow

convergence for a ! 1 and failure below that value, which is a significant practical

limitation.

An alternative MLE solution that does not suffer from the convergence issue, and is

similar to the algorithm described by Nolan and Ojeda-Revah (2013), has also been

implemented. As with the iteratively re-weighted least squares solution, this utilizes a two-

stage approach initialized by the 5% trimmed least squares solution, with the Nolan (2001)

MLE used at the first stage to compute the stable parameters, and an unconstrained

Fig. 4 MLE weight function for a standardized (c ¼ 1; d ¼ 0), skewed (b ¼ �0:1), stable distribution for
tail thickness parameter a values of 2 (solid line), 1.5 (dashed line) and 1.0 (dot-dash line). Taken from
Chave (2014)
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nonlinear multivariable function minimizer based on a trust region algorithm (Conn et al,

2000) utilized for the second stage. Alternation between the two stages ensures conver-

gence, which typically requires no more than 2–3 iterations. Numerical solutions for the

gradient and Hessian matrix are implemented to speed convergence for the second stage.

The objective function that is minimized is the negative log likelihood given by (16)

preceded by a minus sign, and with the stable parameter vector 1 fixed. Remote referencing

is easily implemented by using two-stage regression as described by Chave and Thomson

(2004) or Chave (2012), in which the transfer functions between the local magnetic field

components and all of the reference ones are first estimated using the nonlinear MLE, and

then the magnetic field values predicted via the transfer functions are used to replace the

local magnetic field to get the MT response function. This method works well for all values

of the tail thickness parameter, but requires substantially more computer time compared to

the iteratively re-weighted least squares approach.

The MT processing algorithms described in this section share all of the standard

optimality properties of the MLE (Stuart et al. 1999, chap. 17–18):

1. The solution is asymptotically consistent, meaning that it converges in probability to

the true solution, or Pr ẑ� zj j[ sð Þ ! 0 as N ! 1 for every positive s. It is

asymptotically unbiased, but not necessarily unbiased for finite N. Further, the finite

sample bias is O 1=Nð Þ (Stuart et al. 1999, sec. 18.14) and hence is typically negligible

for the sample sizes used in MT. This statement does not provide any insight into the

rate of convergence (i.e., the number of data required to reach the asymptotic limit),

which will be further addressed in Sect. 7;

2. The solution is equivariant, meaning that if ẑ is the MLE, then f ẑð Þ is the MLE for

f zð Þ, where f is some function. For example, this means that the apparent resistivity

computed from a MLE MT response is also the MLE for that parameter;

3. The solution is asymptotically Gaussian, meaning that the difference between the

estimated and true MT response converges in distribution to N4 04; I
$�1

� �
as N ! 1,

where N4 is the four-variate Gaussian distribution, 04 is a vector of four zeroes, and I
$

is the Fisher information matrix defined in Sect. 5;

4. The solution is asymptotically efficient, meaning roughly that its sampling distribution

is the most tightly coupled around z of all possible sampling distributions. An

equivalent statement is that the covariance of the MLE achieves the lower bound of the

Cramér–Rao inequality described in Sect. 5.

It follows directly that a conventional robust estimator may not be in compliance with

these properties since it cannot be the MLE unless (9) pertains, which is contradicted by

the discussion around Figs. 1 and 2. In particular, violation of the optimality properties (1)

and (2) may result in asymptotic (and hence finite sample) bias of the MT response

function and derived quantities like apparent resistivity, violation of (3) means that

parametric estimates for MT response uncertainty will be larger than those for the MLE,

and violation of (4) means that data are being wasted. How important these issues are can

only be determined with actual data and is addressed in Sect. 6.
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5 Uncertainty estimates on the MLE response

A complex random vector x ¼ xr þ ixi has 2 column elements, where xr and xi are,

respectively, the real and imaginary parts. The probability distribution of a complex random

vector is the joint distribution of the real and imaginary parts and hence is at least bivariate.

Let a complex random vector possessN data rows. Its second-order statistics are described by

the covariance and pseudo-covariance matrices (e.g., van den Bos 1995; Picinbono 1996):

C
$
¼ E x� lxð ÞH x� lxð Þ

� �
¼ C

$

xrxr þ C
$

xixi þ i C
$T

xrxi
� C

$

xrxi

� �

C
^
$

¼ E x� lxð ÞT x� lxð Þ
� �

¼ C
$

xrxr � C
$

xixi þ i C
$T

xrxi
þ C

$

xrxi

� � ð20Þ

The covariance matrix C
$

is complex and Hermitian and will be assumed positive

definite, while the pseudo-covariance matrix C
^
$

is complex and symmetric. The terms on

the right-hand side of (20) are the real covariance matrices for the indexed components.

A complex random vector x is proper if the pseudo-covariance C
^
$

is identically zero, and

otherwise it is improper. The complex covariance matrix for proper data is then given by

the first equation in (20). However, in the improper case, both C
$
and C

^
$

are required for a

complete description of the second-order statistics. The existence of impropriety is a

consequence of non-stationarity of the underlying physical processes; see Haykin et al.

(2009) or Schreier and Scharf (2010, Chapter 9) for details.

Extending statistical definitions from the real to the complex case utilizes the concept of

the so-called augmented variables and covariance matrices. The augmented complex

random variable for x is given by x
_
¼ x x�ð Þ, where the * denotes the complex conjugate,

and is obtained by adding the columns of x� to those of x. Its elements x and x� are clearly
not independent, but augmented variables simplify statistical algebra. The augmented

covariance matrix is given by:

C
_

$
¼ C

$
C
^
$

C
^
$�

C
$�

2
64

3
75 ð21Þ

C
_

$
is block-structured and Hermitian and will be assumed positive definite.

The standard approach to estimation of the variance of an estimator is the use of the

Fisher score to compute the Cramér–Rao lower bound. The principles are covered in

Chapter 17 of Stuart et al. (1999), and its extension to complex random variables is

reviewed in Schreier and Scharf (2010, Chapter 6). Define the complex Fisher score given

by the gradient of the log likelihood:

k wjeð Þ ¼ owL wj r̂ð Þ ð22Þ

where w ¼ 1; zð Þ is the parameter vector. It is straightforward to show that the Fisher

score is a random variable with zero mean. The 8 9 8 Fisher information matrix for the

stable MLE is given by:
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I
$
wð Þ¼E owL wj r̂ð Þ

� �H
owL wj r̂ð Þ
� �n o

¼ �E ow owL wjeð Þ
� �Hn o

ð23Þ

For an unbiased estimator of w, the covariance matrix is bounded by:

cov wð Þ
I
$�1

wð Þ ð24Þ

Equation (24) is the Cramér–Rao inequality when the MT responses are proper complex

random variables.

In the presence of impropriety, the augmented Fisher information matrix (21) replaces

the ordinary one and is given by:

I
_

$
wð Þ ¼ I

$
wð Þ I

^
$

wð Þ

I
^
$�

wð Þ I
$�

wð Þ

2
64

3
75 ð25Þ

where the Fisher pseudo-information matrix is:

I
^
$

wð Þ¼E owL wjeð Þ
� �T

owL wjeð Þ
� �n o

¼ �E ow owL wjeð Þ
� �Tn o

ð26Þ

The Cramér–Rao inequality for improper complex random variables becomes:

cov wð Þ
 $
_
I�1 wð Þ ð27Þ

where C means the right-hand side is more positive definite than the left-hand side. The

block matrix inversion lemma reduces (27) to:

cov wð Þ
 I
$
wð Þ � I

^
$

wð Þ I
$�

wð Þ
h i�1

I
^
$�

wð Þ
( )�1

ð28Þ

The right-hand side of (28) is larger (i.e., more positive definite) than I
$�1

wð Þ; hence, not
accounting for impropriety will result in underestimation of the covariance. Equation (28)

yields a covariance matrix with a block structure, with the upper left block comprising the

covariance matrix of the stable parameters, the lower right block containing the covariance

matrix of the MT response functions, the upper right block yielding the covariance of the

stable parameters and MT responses, and the lower left block being the Hermitian transpose

of the upper right block. Under the two-stage approach used in this paper, the stable and MT

parameters are assumed to be uncoupled, and hence the proper Cramér–Rao bound or (28)

may be regarded as block diagonal, with the upper left block defined in Nolan (2001). As a

consequence, the focuswill be on the lower right block.All of the equations in this sectionwill

henceforth be regarded as pertaining only to the lower right block. Chave (2014) defines a

likelihood ratio test for impropriety of theMT tensor elements, but since (28) reduces to (24)

for proper complex variables, it is simpler to routinely use the improper result in practice. In

any case, impropriety is pervasive for MT data, and so its neglect carries with it the risk of

systematic underestimation of the covariance matrix.

Implementation of the Cramér–Rao bound for the MT MLE covariance matrix is

straightforward. The Fisher information matrix I
$

R for the MT responses in (14) is given by

the Hessian matrix:
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I
$

R ¼ �b
$0T

� v$ � b
$0

ð29Þ

where v
$
is a diagonal matrix whose ith element is the second derivative of the log like-

lihood k00 r̂ið Þ. I
$

R is real and block-structured, containing the Fisher information for the real

and imaginary parts in the upper left and lower right blocks, and that between the real and

imaginary components in the two off-diagonal blocks. Its elements can be combined to

yield the complex Fisher information matrices I
$
and I

^
$

through:

I
$
¼ I

$

xrxr þ I
$

xixi þ i I
$T

xrxi
� I

$

xrxi

� �

I
^
$

¼ I
$

xrxr � I
$

xixi þ i I
$T

xrxi
þ I

$

xrxi

� � ð30Þ

The improper covariance bound (28) then follows directly.

6 Example

Unconstrained estimation of the four stable parameters for the residuals using the exemplar

data set shows that the skewness b is not statistically distinguishable from zero, and so that

parameter was fixed at this value for further analysis. Figure 5 shows the MLE tail

thickness parameter a as a function of the base 10 logarithm of the period in seconds, along

with double-sided 95% confidence limits after apportioning a 0.05 tail probability among

the three stable parameters that were estimated. For the x-orientation, the four longest

period estimates are indistinguishable from the Gaussian end member, and then the tail

thickness declines with decreasing period to about 1.35 in the dead band below 10 s. The

y-orientation displays tail thickness parameters that are somewhat smaller than for the
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Fig. 5 Tail thickness parameters
for the exemplar data computed
after forcing the skewness to be
zero. The black error bars are for
the x-orientation, and the gray
error bars are for the
y-orientation; the latter is offset
5% to the right in log space for
clarity. The double-sided
confidence intervals use the
Gaussian quantile 2.39
corresponding to dividing the tail
probability of 0.05 among the
three parameters that were
estimated
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Fig. 6 Variance-stabilized
stable MLE residual p–p plots for
the x-orientation at 68.3 s (top)
and 1.4 s (bottom). The dashed
lines are the 95% (top) and 99%
(bottom) confidence bounds on
the p–p plot, as described in
Michael (1983). The
corresponding bias-corrected
p values are given in Table 1

Fig. 7 Variance-stabilized
stable MLE residual p–p plots for
the y-orientation at 45.5 s (top)
and 2.1 s (bottom). The dashed
lines are the 95% (top) and 99%
(bottom) confidence bounds on
the p–p plot, as described in
Michael (1983). The
corresponding bias-corrected
p values are given in Table 1
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x-orientation, also decreasing into the dead band. Similar behavior was observed for a

different broadband data set in Chave (2014), although in that case a went as low as 0.8.

Figures 6 and 7 show variance-stabilized p–p plots for the x- and y-orientations at

selected periods outside and inside the dead band, along with double-sided confidence

Table 1 Bias-corrected p values
for Kolmogorov–Smirnov test for
stable distribution

Period (s) px py

182.0 0.0032 0.213

136.5 0.774 0.580

91.0 0.154 0.991

68.3 0.195 0.501

45.5 0.590 0.411

34.1 0.522 0.767

22.8 0.063 0.014

11.4 0.621 0.832

8.5 0.709 0.430

7.1 0.851 0.902

5.7 0.023 0.753

4.3 0.816 0.856

2.8 0.358 0.293

2.1 0.135 0.127

1.4 0.154 0.255

1.1 0.095 0.104

Fig. 8 Kernel density estimator
permutation distributions for the
Kolmogorov–Smirnov statistic
(solid lines) for the x-orientation
at 68.3 s (top) and 1.4 s (bottom)
computed using the algorithm of
Sect. 3. The vertical dashed line
is the Kolmogorov–Smirnov
statistic computed from the
stable MLE residuals and a
random draw with MLE
parameters prior to permuting the
indices. The two-sided p value is
twice the smaller of the area to
the left or right of the dashed line
and is specified in each panel
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Fig. 9 Kernel density estimator
permutation distributions for the
Kolmogorov–Smirnov statistic
(solid lines) for the y-orientation
at 45.5 s (top) and 2.1 s (bottom)
computed using the algorithm of
Sect. 3. The vertical dashed line
is the Kolmogorov–Smirnov
statistic computed from the
stable MLE residuals and a
random draw with MLE
parameters prior to permuting the
indices. The two-sided p value is
twice the smaller of the area to
the left or right of the dashed line
and is specified in each panel

Fig. 10 Real and imaginary parts of the Zxy component of the MT response tensor scaled by the square root
of period computed using (black) the stable MLE and (gray) the robust remote reference estimator described
in Chave (2012). The latter are offset to the right by 5% in log space for clarity
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bounds obtained using the critical value of the Kolmogorov–Smirnov statistic, as described

in Chave (2017, Section 7.2.3). The p–p plots are nearly straight lines that lie within the

confidence bounds. There is some slight variability near the distribution center at 68 s for

the x-orientation and at the ends of the distribution for both orientations. These fig-

ures provide qualitative support for the stable model that will be further explored quan-

titatively. Similar results are obtained at the remaining periods for the exemplar data set.

A Kolmogorov–Smirnov test for goodness of fit to a stable distribution with MLE

parameters was applied to the final residuals at each period and bias-corrected as described

in Sect. 3. Table 1 lists the p values by period. Figures 8 and 9 show exemplar kernel

density estimator (Chave 2017, Section 4.8.3) permutation distributions along with the

original test statistic that is used to compute a bias-corrected p value at the same periods

and for the same orientations as in Figs. 6 and 7. In each case, the permutation p value is

well above a 0.1 threshold, indicating no support for the alternate hypothesis that the

residuals are not stably distributed. Table 1 shows that the null hypothesis that the residuals

are stable with parameters given by its MLE is strongly rejected (p\ 0.01) only for the

x-orientation at the longest period, and weakly rejected (0.01\ p\ 0.05) at one additional

period for each orientation. Taken in aggregate, Figs. 6, 7, 8 and 9 and Table 1 provide

strong affirmation for a stable model for the residuals with these MT data.

Figures 10 and 11 show the comparison between the Zxy and Zyx components (scaled by

the square root of period for clarity) of the stable MLE and robust remote reference

estimates at the exemplar site. Uncertainty estimates were obtained using the diagonal

elements of the improper Cramér–Rao bound (28) for the MLE response and the jackknife

for the robust response, respectively, in each case utilizing the Gaussian quantile 2.73

corresponding to apportioning the 0.05 tail probability among all 8 real and imaginary MT

Fig. 11 Real and imaginary parts of the Zyx component of the MT response tensor scaled by the square root
of period computed using (black) the stable MLE and (gray) the robust remote reference estimator described
in Chave (2012). The latter are offset to the right by 5% in log space for clarity
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response components at each period using the Bonferroni method (Chave 2017, Sec-

tion 5.5). It is obvious that the stable MLE confidence bounds are systematically smaller

than the robust ones, especially in Fig. 10. There also are frequent differences between the

two types of estimates that represent bias of one of the estimators. This is especially

apparent at periods below 10 s for the y-orientation in Fig. 11.

The differences shown in Figs. 10 and 11 are not subtle, but are obscured by the small

size of the confidence intervals and the wide range of the scaled MT response. Figures 12

and 13 present the difference between the stable MLE and robust remote reference esti-

mates normalized by the stable MLE standard deviation for all 4 elements of the x- and y-

orientations of the MT response tensor. The ordinate units are in MLE standard deviations;

the dashed horizontal lines represent ± 2.73 standard deviations within which 95% of the

data (or * 30 values per panel) should be situated if a Gaussian model pertains. There are

32 real and imaginary parts in each panel of Figs. 12 and 13, but 13, 6, 11 and 11 for the

Zxx through Zyy elements actually lie outside the dashed horizontal lines. Further, the

differences are as large as 32 standard deviations. Such frequent and large differences are

extremely unlikely if all of the entities used in the figures are Gaussian. In addition, the

differences are systematic rather than random, being concentrated at short periods, with

increasing size as the period decreases.

Figures 14 and 15 show the comparison of the same stable MLE estimates to a two-

stage robust estimate, in which the transfer functions between the local and remote

Fig. 12 Difference between the stable MLE and robust remote reference estimates divided by the standard
error for the former computed as the square root of the diagonal elements of the improper covariance matrix
defined in Sect. 5 for Zxx (top) and Zxy (bottom) plotted against log period. The real parts are shown as
circles, and the imaginary parts as squares. The horizontal dashed lines are the Bonferroni 95% confidence
bounds after apportioning the 0.05 tail probability among all 8 of the MT tensor elements and define the
region within which 95% of the estimates should lie if Gaussian statistics pertain
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magnetic fields are first computed robustly and then the projection of the remote magnetic

field is used in place of the local values to compute the MT response tensor; see Chave and

Thomson (2004) or Chave (2012) for further details. While differences between the two

estimators are apparent, they are substantially smaller and less frequent than in Figs. 12

and 13. There are 3, 2, 9 and 7 real or imaginary parts for Zxx through Zyy lying outside the

dashed horizontal lines in the figures, and the differences are up to six standard deviations.

In fact, the x-orientation result in Fig. 12 is almost consistent with a Gaussian model,

although the peak differences are large considering the number of data.

7 Discussion

The differences between the stable MLE and robust remote reference estimates in Figs. 12

and 13 are both too frequent and too large to be consistent with Gaussian behavior of all of

the statistical entities they incorporate. Further, the differences are systematic rather than

random, with the deflections increasing with decreasing period into the dead band. Over

the same period range, the tail thickness parameter is also systematically decreasing

(Fig. 5). A similar observation for a different data set with much heavier residual tails was

reported in Chave (2014). However, these effects are partially ameliorated in the present

case by using a two-stage robust method (Figs. 14, 15), suggesting that noise in the local

Fig. 13 Difference between the stable MLE and robust remote reference estimates divided by the standard
error for the former computed as the square root of the diagonal elements of the improper covariance matrix
defined in Sect. 5 for Zyx (top) and Zyy (bottom) plotted against log period. The real parts are shown as
circles, and the imaginary parts as squares. The horizontal dashed lines are the Bonferroni 95% confidence
bounds after apportioning the 0.05 tail probability among all 8 of the MT tensor elements and define the
region within which 95% of the estimates should lie if Gaussian statistics pertain
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magnetic field is removed by the two-stage approach, but not by the simpler remote

reference method. Nevertheless, both the frequency and size of the differences remain

larger than would be expected for Gaussian entities, especially for the y-orientation.

However, the two-stage approach is not a panacea, as it fails for the broadband example in

Chave (2014).

In Sect. 2, the statistical model underlying linear regression (3)-(4) was presented.

Insight into the performance of the robust and stable MLE estimators ensues from eval-

uation of the bias condition on the model given by (5). This specifies that an estimator is

unconditionally unbiased provided that the random errors have zero mean and a common

variance. The random errors are unobservable, but the residuals (7) serve as a realization to

them. Zero-mean residuals are assured for both the robust and stable MLE estimators by

the standard practice of removing the data mean prior to carrying out a spectral analysis.

However, the robust estimator does not produce residuals with a common variance, as seen

through q–q plots that are systematically long-tailed without a constant slope (Figs. 1, 2).

By contrast, the stable MLE produces residual p–p plots with a constant slope (Figs. 6, 7),

meaning that a common scale parameter describes their statistical distributions. Conse-

quently, standard statistical theory argues that the stable MLE is unconditionally unbiased

(see also the consistency property of the MLE given by bullet point 1 in Sect. 4), whereas

the robust estimate is not because the data used to compute it do not have equal influence

Fig. 14 Difference between the stable MLE and two-stage robust estimates divided by the standard error
for the former computed as the square root of the diagonal elements of the improper covariance matrix
defined in Sect. 5 for Zxx (top) and Zxy (bottom) plotted against log period. The real parts are shown as
circles, and the imaginary parts as squares. The horizontal dashed lines are the Bonferroni 95% confidence
bounds after apportioning the 0.05 tail probability among all 8 of the MT tensor elements and define the
region within which 95% of the estimates should lie if Gaussian statistics pertain
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on the outcome. Instead, data influence the robust estimator in proportion to the size of the

random errors, as the underlying robust model is invalid.

A further condition on the linear regression model is no correlation between the

residuals (7) and the predicted values (6). Figure 16 contains residual-predicted value plots

for the y-orientation at the same periods depicted in Figs. 1 and 2 for the robust estimator.

At 45.5 s (top panel), correlation of the real and imaginary parts is weak (-0.05 and 0.04,

respectively). A test of the null hypothesis that the correlation is zero against the alternate

that it is not is given in Chave (2017, Section 6.3.6) and returns p values of 0.09 and 0.18

for the real and imaginary parts, meaning that there is no correlation. The lower panel of

Fig. 16 shows a residual-predicted value plot at a period of 2.1 s. The correlation of the

real and imaginary parts is, respectively, -0.22 and -0.23, and the p values for the test of

zero correlation are 5 9 10-163 and 8 9 10-188, strongly rejecting the null hypothesis. In

fact, of the 32 real and imaginary parts at all periods, 20 reject the null hypothesis, and the

rejection is strong at all periods shorter than 12 s. A similar observation pertains to the

x-orientation for the exemplar site.

For comparison purposes, Fig. 17 shows residual-predicted value plots for the

stable MLE at the same periods as in Fig. 16. At 45.5 s (top panel), the correlation of the

real and imaginary parts is, respectively, -0.03 and 0.07. p values for the test of zero

correlation are 0.29 and 0.043, accepting the null hypothesis for the real part and weakly

Fig. 15 Difference between the stable MLE and two-stage robust estimates divided by the standard error
for the former computed as the square root of the diagonal elements of the improper covariance matrix
defined in Sect. 5 for Zyx (top) and Zyy (bottom) plotted against log period. The real parts are shown as
circles, and the imaginary parts as squares. The horizontal dashed lines are the Bonferroni 95% confidence
bounds after apportioning the 0.05 tail probability among all 8 of the MT tensor elements and define the
region within which 95% of the estimates should lie if Gaussian statistics pertain
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Fig. 16 Residuals r̂ given by
(7) plotted against the predicted
electric field ê given by (6) for
the y-orientation robust estimator
applied at 45.5 s (top panel) and
2.1 s (bottom panel). The real
parts are depicted by pluses, and
the imaginary parts by circles
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Fig. 17 Residuals r̂ given by
(7) plotted against the predicted
electric field ê given by (6) for
the y-orientation stable MLE
estimator applied at 45.5 s (top
panel) and 2.1 s (bottom panel).
The real parts are depicted by
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by circles

Surv Geophys (2017) 38:837–867 861

123



rejecting it for the imaginary part. At 2.1 s (bottom panel), the correlation is -0.09 and -

0.11 for the real and imaginary parts, and the null hypothesis of zero correlation is strongly

rejected, with p values of 4 9 10-48 and 5 9 10-43, respectively. However, the perfor-

mance of the stable MLE based on the residual-predicted value criterion is somewhat better

than the robust estimator when viewed at all periods; the null hypothesis of zero correlation

is rejected at 15 of 32 real and imaginary parts, with these being concentrated at periods

under 6 s, or the shortest 5 periods. Similar observations apply to the x-orientation.

The stable MLE is based on a residual model that is independent and identically

distributed (iid) that has been proven to be statistically consistent with the data (see

Table 1), where the robust model is also iid, but is not consistent with the data statistics.

Further, the stable iid model holds even in the presence of the geomagnetic characteristics

a–b (where c is the justification for the use of the stable MLE) listed at the end of Sect. 2,

but none of these pertain to the robust model. Consequently, the stable MLE represents a

significant improvement on the robust model that is statistically consistent with MT data.

It has been argued that since a truncated set of stable rvs has finite variance, robust

estimators will obey the classic central limit theorem and hence display Gaussian behavior.

Like most central limit theorem arguments, this assertion is naı̈ve and insufficient because

it provides no insight into the rate of convergence to a Gaussian limit. The Berry–Esséen

theorem (Feller 1971, p. 542) addresses this point:

sup
x

F̂N xð Þ � U xð Þ


 

	 Cl̂3

r̂3
ffiffiffiffi
N

p ð31Þ

where the supremum is the least upper bound, F̂N and U are the empirical and Gaussian

cdfs, C is a constant of O(1), l̂3 is an estimate of the third central moment, r̂ is the sample

standard deviation, and N is the number of data. Figure 18 shows contours of the least

upper bound on the probability difference (31) computed using random draws from
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Fig. 18 Contours of the least upper bound on the difference in probability between truncated stable and
Gaussian distributions given by Eq. (31) as a function of sample size and tail thickness parameter. See text
for discussion
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symmetric standard stable distributions having varying tail thickness parameters given by

the abscissa, with the most extreme 5% truncated, against the logarithm of the number of

data. A truncation level of 5% is an average value for the exemplar robust estimates, with

the x- and y-orientations being somewhat more severely and weakly down-weighted,

respectively. It is readily apparent that, as the tail thickness parameter decreases, the

number of data required to make a truncated stable distribution close to Gaussian must

increase, with a range of about an order of magnitude over the specified variation in a.
Figure 18 suggests that, all other things being equal, non-Gaussian behavior for a robust

estimator is more likely when the tail thickness parameter is small unless the number of

data is quite large (and substantially larger than available in the exemplar data set) for any

reasonable choice of the probability difference. This is the general tendency seen by

comparing Fig. 5 with Figs. 10, 11, 12 and 13 and is also observed for the examples in

Chave (2014).

Consequently, the stable MLE estimator is nearly unbiased and has approximate

Gaussian second-order statistics. As a result, it is most probable that the differences

between the robust estimator and the stable MLE shown in Figs. 12, 13, 14 and 15 reflect

issues with the former and hence imply bias in the robust estimates. Further, the systematic

dependence of the differences on decreasing tail thickness reinforces this assertion since

robust estimators are insensitive to the actual residual distribution. Instead, they will

incorporate a larger fraction of long-tailed data into the estimator as tail thickness

decreases since the weight function passband (Fig. 3) extends further into the residual

distribution tails. Robust estimators merely remove data corresponding to large residuals,

leaving behind a population that remains stable but reflecting the truncation. The outcome

is MT responses which are sometimes biased and exhibit increasing non-Gaussian behavior

as the tail thickness parameter decreases, and whose variances computed using standard

methods are systematically larger than the true value, which masks the bias to some degree.

The stable MLE described in this paper is similar to that in Chave (2014), but two

significant extensions have been added: the use of a permutation test to establish goodness

of fit of a stable model to the residuals, and establishing the numerical accuracy of the

solution. The permutation test results are shown in Figs. 8 and 9, and Table 1, and yield

high confidence in the stable MLE model because the p values fail to reject the null

hypothesis that the residuals are stable at nearly all periods for both the x- and y-orien-

tations. This is a statistically stronger statement than was given in Chave (2014). Re-

analysis of the data sets in that paper using the permutation method yields comparable

results to those given here.

The unconstrained multivariable optimization algorithm used in the stable MLE is

inherently nonlinear, but provides a variety of optimality and step size tolerance param-

eters. Decreasing these by six orders of magnitude from their defaults does not change the

response function estimates beyond the 0.01% level, although considerably more computer

time is utilized. This yields a high degree of confidence in the outcome, as numerical

inaccuracy is not biasing the stable MLE result.

Pervasive impropriety in the second-order statistics of the MT response function indi-

cates the presence of some degree of non-stationarity in the physical processes underlying

them. It is well known that confounding influences such as outliers or weak non-station-

arity have substantially more influence on the second-order statistics (i.e., the covariance)

than on the first-order statistics (i.e., the MT response itself). Consequently, the approach

used here of obtaining the stable MLE to compute the MT response combined with the

improper Cramér–Rao bound to obtain its covariance is consistent unless it can be

demonstrated that non-stationarity is large. This may occur for extreme geomagnetic
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events (e.g., very high energy aurora at high latitudes). In that instance, the Loève (1978)

spectral representation that requires correlated spectral increments replaces the ordinary

Fourier representation with independent spectral increments. To the author’s knowledge,

this has not been investigated, although it may prove to be a fruitful avenue for future

work.

Thomson et al. (2007) provide convincing evidence that terrestrial geomagnetic field

variations display the signature of solar normal modes at periods from a minute to over a

day, with harmonics and modulation products that extend to shorter periods. These phe-

nomena begin as normal modes in the Sun, but are affected by a variety of nonlinear

processes when traversing interplanetary space and interacting with Earth’s geomagnetic

field, and in addition exhibit variability due to the nature of the solar surface (Buttighoffer

et al. 1999). The outcome is that detection of a given mode on Earth will occur about 1/6 of

the time, and perhaps less in the presence of local noise. The Q of the solar modes implies

persistence for of order a month, and hence their non-stationarity is weak. In addition, they

are typically modulated at multiples of 1 cpd due to the rotation of Earth, and at 0.5 cpd by

a nonlinear oscillation of the atmosphere and ionosphere. Consequently, their presentation

in terrestrial data is as ephemeral high-Q features that fade in and out over time. This

results in persistent non-stationarity in spectra obtained from geomagnetic data; see

Thomson and Vernon (2016) for further results. While a link between solar mode phe-

nomena and the stable nature of MT data has not been definitively established, it would be

a remarkable coincidence if they were independent given that they occur over the same

frequency range. Consequently, it is likely that the persistent impropriety of MT responses

reflects the weak non-stationarity induced by the presence of solar normal modes.

In addition, the presence of a quasi-deterministic modal component at a given frequency

introduces non-centrality into the MT statistical model. Failure to accommodate non-

centrality may result in additional bias to ẑ and parametric estimates of its uncertainty.

This issue requires further investigation.

8 Conclusions

Several variants on robust estimators were introduced to MT data analysis beginning in the

late 1980s and have since become an essential tool for the analysis of MT time series. The

robust model of a Gaussian core contaminated by longer-tailed outlying data underlies all

robust estimators and is critically evaluated.

The statistical model for linear regression that underlies MT response function esti-

mation is defined, along with the conditions that various statistical entities, including the

regression residuals, must meet to yield an unbiased or Gaussian impedance. Several

statistical tools that are useful in evaluating the distribution of the regression residuals and

their consistency with a given statistical model are introduced. These include quantile–

quantile and percent–percent plots that provide a qualitative picture of the residual dis-

tribution, and a Kolmogorov–Smirnov test for goodness of fit that is corrected for bias due

to estimation of distribution parameters from the data under test using an exact permutation

method.

Using an exemplar data set, the regression residuals from both an ordinary least squares

and robust estimator are shown to be systematically long-tailed rather than comprising a

Gaussian core contaminated by outliers. This observation is not new and appears to be

pervasive. As a result, the robust model that underlies robust estimation is invalid. Instead,
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the residuals are pervasively described by the stable distribution family for which the

Gaussian is an end member, but for which the remaining distributions possess algebraic

rather than exponential tails. Stable distributions cannot usually be expressed in closed

form and are parameterized by tail thickness, skewness, scale and location. Bias-corrected

Kolmogorov–Smirnov tests demonstrate that residuals from the exemplar data are well

described by a stable model, with nearly zero skewness and a tail thickness that decreases

with period.

Because the residual distribution for MT data can now be characterized statistically, an

optimal maximum likelihood estimator (MLE) for MT response function estimation can be

devised. A two-stage approach in which the stable distribution parameters are first esti-

mated from an initial set of residuals, and then the MT response and its residuals are

computed with the stable parameters fixed, is defined utilizing a published MLE algorithm

and a nonlinear multivariable function minimization algorithm for the first and second

stages, and validated using the exemplar data.

The standard approach to computing the covariance for an MLE is through the Cramér–

Rao lower bound. For complex data such as the MT response, the second-order statistics

are described by covariance and pseudo-covariance matrices. When the latter is zero, the

complex data are proper and are otherwise improper. MT responses are shown to be

pervasively improper as a consequence of weak non-stationarity of the underlying physical

processes. The Fisher information matrix for improper complex data is derived, from

which the Cramér–Rao inequality obtains, and whose lower bound describes the covari-

ance of the MT response.

Comparison of the stable MLE and robust estimates for the exemplar data set shows

differences that increase as the tail thickness parameter decreases, and that are both too

frequent and too large to be consistent with Gaussian behavior of all of their statistical

entities. This can be partially ameliorated using a two-stage robust estimator, although this

has not worked on other data sets. The condition for unconditional unbiasedness of the

linear regression model is zero-mean random errors (for which the residuals are a real-

ization) with a common variance. This condition holds for the stable MLE, but not for the

robust estimator, implying that the latter is biased and explaining the disparity between the

two types of estimates. The stable MLE is also shown to yield lower correlation of the

residuals with the predicted electric field as compared to the robust result. Finally, the rate

of convergence of truncated stable data to the Gaussian limit via the central limit theorem

is bounded using the Berry–Esséen theorem, and it is shown that the number of data needed

to reach that limit increases as the tail thickness parameter decreases. As a result, non-

Gaussian behavior of a robust estimator is more likely when the tail thickness parameter is

small unless the number of data is very large, which in part explains the observed dif-

ferences between the robust and stable MLE estimates.

Both the stable MLE and the robust estimator utilize a residual model that is iid, but

only the stable MLE can be shown to be consistent with such a model. Further, the iid

stable model holds even when the variance of the residuals depends on that of the data and

when data anomalies occur in patches, both of which are characteristic of geomagnetic

data. As a result, the stable MLE is a significant improvement on the robust model that is

itself not consistent with MT data.

The pervasive impropriety of the second-order statistics of the MT response function

implies a degree of non-stationarity in the underlying physical processes. When the non-

stationarity is weak, the use of the stable MLE together with the improper Cramér–Rao

bound to characterize the first and second-order statistics of MT data is appropriate. Weak
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non-stationarity is consistent with the observation of high-Q solar normal modes in geo-

magnetic data in the MT band, with a persistence time of order a month.
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