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Abstract Despite impressive progress in the development and application of electro-

magnetic (EM) deterministic inverse schemes to map the 3-D distribution of electrical

conductivity within the Earth, there is one question which remains poorly addressed—

uncertainty quantification of the recovered conductivity models. Apparently, only an

inversion based on a statistical approach provides a systematic framework to quantify such

uncertainties. The Metropolis–Hastings (M–H) algorithm is the most popular technique for

sampling the posterior probability distribution that describes the solution of the statistical

inverse problem. However, all statistical inverse schemes require an enormous amount of

forward simulations and thus appear to be extremely demanding computationally, if not

prohibitive, if a 3-D set up is invoked. This urges development of fast and scalable 3-D

modelling codes which can run large-scale 3-D models of practical interest for fractions of

a second on high-performance multi-core platforms. But, even with these codes, the

challenge for M–H methods is to construct proposal functions that simultaneously provide

a good approximation of the target density function while being inexpensive to be sampled.

In this paper we address both of these issues. First we introduce a variant of the M–H

method which uses information about the local gradient and Hessian of the penalty

function. This, in particular, allows us to exploit adjoint-based machinery that has been

instrumental for the fast solution of deterministic inverse problems. We explain why this

modification of M–H significantly accelerates sampling of the posterior probability dis-

tribution. In addition we show how Hessian handling (inverse, square root) can be made

practicable by a low-rank approximation using the Lanczos algorithm. Ultimately we

discuss uncertainty analysis based on stochastic inversion results. In addition, we
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demonstrate how this analysis can be performed within a deterministic approach. In the

second part, we summarize modern trends in the development of efficient 3-D EM forward

modelling schemes with special emphasis on recent advances in the integral equation

approach.

Keywords Quantification of uncertainties � Bayesian approach � Metropolis–Hastings �
Gradient and Hessian � Adjoint sources approach � Finite elements � Contracting integral

equations

1 Introduction

Electromagnetic (EM) three-dimensional (3-D) studies of the Earth have advanced sig-

nificantly over the past decade. However, one of the key questions in the theory and

practice of EM studies—uncertainty quantification of the recovered electrical conductivity

models—remains practically unexplored. It is rather clear that only a Bayesian (stochastic)

approach (Tarantola 2005) provides a systematic framework to quantify such uncertainties.

Note that the number of works devoted to implementation of a stochastic approach in EM

studies is rather limited (cf. Grandis et al. 1999; Chen et al. 2007, 2011; Rosas-Carbajal

et al. 2013; Grandis et al. 2012; Minsley 2011; Brown et al. 2012) and moreover, the

works are confined mostly to 1-D problems.

In contrast to a deterministic approach, the solution of the stochastic inverse problem is

not a single model, but a family of models that samples the posterior probability density

function (PDF). This family (ideally) delivers a complete statistical characterization for

any nonlinear inverse problem (Bodin et al. 2012). The Metropolis–Hastings (M–H)

algorithm (Metropolis et al. 1953)—which is one of the variants of the more general

Markov Chain Monte Carlo (MCMC) concept—is the most popular approach for sampling

posterior PDF (Gilks et al. 1996). However all stochastic methods, including M–H, require

a huge number of forward modellings and thus appear to be extremely demanding com-

putationally, if not prohibitive, at least for 3-D set-ups. This prompts development of

highly efficient, robust and scalable modelling codes which can run large-scale 3-D models

(say, models with millions of degrees of freedom) within seconds, in order to make M–H

analysis feasible. Bearing in mind that nowadays high-performance multi-core platforms

are readily available, the scalability of the codes becomes especially important. Another

important challenge in M–H is a construction of proposal density functions that simulta-

neously provide a good approximation of the target density function while being inex-

pensive to be sampled. In this paper we address both of these challenges by confining

ourselves, however, to the frequency-domain formulation.

The paper is organized as follows. In Sect. 2 we discuss the Bayesian formulation of the

inverse problem. In Sect. 3 we explain the classical Metropolis–Hastings (M–H) algorithm

as applied to an inverse problem. In Sect. 4 we introduce a proposal density based on local

quadratic approximation of the penalty function (via gradient and Hessian). In Sect. 5 we

discuss low-rank approximation of the Hessian-based proposal density. In Sect. 6 we

present M–H algorithm with a proposal density based on low-rank approximation of the

Hessian. In Sect. 7 we discuss uncertainty analysis based on stochastic results and in Sect.

8 we show how uncertainty analysis can be performed within a deterministic framework. In

Sects. 9 and 10 we briefly discuss efficient calculation of gradient and Hessian-vector

products which are needed to implement efficiently the extended M–H and deterministic

110 Surv Geophys (2016) 37:109–147

123



approaches introduced in previous sections. In the second part of the paper (Sect. 11) we

summarize modern trends in the development of efficient 3-D EM forward modelling

schemes with special emphasis on the integral equation approach. The paper also includes

a number of appendices which detail results presented in the main body of the paper.

2 Bayesian Formulation of the Inverse Problem

The main challenge in solving inverse problems lies in the fact that they are usually ill-

posed: many very different conductivity models may be consistent with the data. In other

words there always exists a set of inverse problem solutions (models), m, for which the

following inequality holds

bd mð Þ� minbd þ Dbd; ð1Þ

where bd stands for the data misfit function, and Dbd relates to the noise in the data. We

refer to

E Dbdð Þ ¼ m bd mð Þ� min bd þ Dbdjf g; ð2Þ

as an equivalence domain (ED). Usually this domain is narrow but has a large size (see

Fig. 1). A more illustrative explanation is presented in Fig. 2. Note that in the latter

figure we assume that the number of model parameters is equal to 2. Terms well resolved

and poorly resolved will be discussed later in the paper (in Sects. 7.2, 8).

The geometry of ED determines the uncertainty of the inverse solution which we are

interested in. A conventional (deterministic) approach—which is a mainstream of EM

studies—provides only a single solution without comprehensive survey of ED. However,

the study of ED is possible in the framework of the Bayesian approach (Kaipio and

Somersalo 2005; Tarantola 2005), namely by reformulating the inverse problem as a

problem in statistical inference.

A Bayesian approach deals with posterior, likelihood, prior and evidence as follows

posterior ¼ likelihood � prior

evidence
: ð3Þ

These terms will be explained later in the text. In the geophysical context a Bayesian

approach assumes that there exists some joint probability distribution of the model vector

m 2 RNM and the vector of observed responses U 2 RNd , where NM is the number of (real-

valued) model parameters, and Nd is the number of (real-valued) responses. This distri-

bution which can be written as

Pðm;UÞ dNMm dNdU; ð4Þ

Fig. 1 Equivalence domain is
narrow but has a large size
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specifies that a model vector belongs to volume mþ dNMm and simultaneously a response

vector belongs to volume Uþ dNdU with probability Pðm;UÞ dNMm dNdU. Here Pðm;UÞ
stands for probability density of the joint distribution, dNMm is a standard measure in the

model space (or a small rectangular parallelepiped) and dNdU is a standard measure in the

data space (or, again, a small rectangular parallelepiped).

Marginal densities

PðmÞ ¼
Z

Pðm;UÞ dNdU; ð5Þ

PðUÞ ¼
Z

Pðm;UÞ dNMm; ð6Þ

define marginal probability distributions for model

PðmÞ dNMm; ð7Þ

and responses

PðUÞ dNdU; ð8Þ

respectively. Conditional probability densities PðmjUÞ and PðUjmÞ are defined as follows

PðmjUÞ ¼ Pðm;UÞ=PðmÞ; ð9Þ

PðUjmÞ ¼ Pðm;UÞ=PðUÞ: ð10Þ

Bayes’s theorem for the densities states that

PðmjUÞ ¼ PðUjmÞ � PðmÞ
PðUÞ : ð11Þ

Fig. 2 An illustration of equivalence domain concept for an example where the number of model
parameters is equal to 2. Terms well resolved and poorly resolved will be discussed later in the paper (in
Sects. 7.2, 8).
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In this form the theorem looks trivial, since it immediately follows from Eqs. (9)–(10) but

in 1763 when it was published (Bayes 1763), it shed a light on the ‘‘Doctrine of Chances’’.

Since that time the doctrine significantly changed, the theory progressed (e.g., the

Lebesgue measure theory was developed), and new nomenclature (e.g., statistics, proba-

bility theory, and probability spaces) was introduced; see, e.g., Kolmogorov (1956).

Nowadays the concept of probability space includes a sample space, a set of events and a

measure that assigns probabilities to events. A standard Lebesgue measure in Rn is denoted

by dx1; . . .; dxn, and any continuous measure can be represented as the product of the

measure density and the standard Lebesgue measure, f ðx1; . . .; xnÞdx1; . . .; dxn. In the

context of stochastic inverse problems the above densities and probability space concept

are used as follows

• PðmjUÞ is called posterior density, and it is the main object to be explored. Later in the

paper we will discuss approaches to build a family of models that samples this

distribution;

• PðUjmÞ is called a likelihood density,

PðUjmÞ ¼ Cl exp �1
2
bdðmÞ

� �
; ð12Þ

where

Cl ¼
Z

exp �1
2
bdðmÞ

� �
dNMm

� ��1

ð13Þ

is a normalizing constant, and bdðmÞ is the data misfit, which is a quadratic function of

the residuals usually defined as

bdðmÞ ¼
X
g2G

hgðmÞ � Ug

DUg

����
����
2

: ð14Þ

Note that a more general form reads

bdðmÞ ¼ ðHðmÞ �UÞTC�1
noiseðHðmÞ �UÞ; ð15Þ

where U is the vector of the experimental responses, HðmÞ is the vector of the pre-

dicted responses for trial model m, and Cnoise is the data covariance matrix. If this

matrix is diagonal, then Eq. (15) degenerates to Eq. (14).

• PðmÞ is called prior density,

PðmÞ ¼ Cr exp �1
2
bregðmÞ

� �
; ð16Þ

where

Cr ¼
Z

exp �1
2
bregðmÞ

� �
dNMm

� ��1

; ð17Þ

is a normalizing constant, and bregðmÞ is a regularization term, which is a convex

downward function of the model vector aimed to make the inverse problem well posed.

This function is usually a quadratic function defined as

bregðmÞ ¼ ðm�mpriorÞTC�1
priorðm�mpriorÞ; ð18Þ

where Cprior is a symmetric positive-definite matrix.
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• PðUÞ is called an evidence density; it is a constant in Eq. (11) because U is a fixed

dataset that we are going to invert; thus the evidence density can be ignored in the

further consideration.

Following Bayes’s theorem (11) and Eqs. (12) and (16) posterior density reads

pðmÞ :¼ PðmjUÞ ¼ Cp exp �1
2
bdðmÞ � 1

2
bregðmÞ

� �
; ð19Þ

where normalizing constant Cp is as follows

Cp ¼
Z

exp �1
2
bdðmÞ � 1

2
bregðmÞ

� �
dNMm

� ��1

: ð20Þ

Stochastic inversion is the generation of a Markov Chain Monte Carlo (MCMC) sequence

of models which samples the Bayesian posterior density (19). Note that an MCMC

sequence is a random chain in which the current model depends only on the previous

model and not on the models that preceded it. In contrast to deterministic inversion which

in fact relies on a minimization of the negative argument of the exponential function in

Eq. (19) and usually delivers a single model, the stochastic inversion allows for a statistical

characterization of the inverse problem (e.g., mean value, covariance, etc.), and ultimately

is capable specifying the shape of the equivalence domain. In the next section we discuss

the most popular MCMC algorithm—Metropolis–Hastings (M–H).

3 Metropolis–Hastings Sampling Algorithm

The Metropolis–Hastings (M–H) algorithm generates a sequence of models iteratively. At

each iteration M–H: (1) randomly generates a new model m0 from the previous model m
using a proposal density qðm;m0Þ; (2) rejects/accepts the new model m0 using the M–H

criterion. The proposal density means that new model m0 belongs to volume m0 þ dNMm0

with probability

qðm;m0Þ dNMm0; ð21Þ

provided that the previous model is m. One of the simplest choices for qðm;m0Þ is a

symmetric (Gaussian) proposal density (see illustration in Fig. 3)

qðm;m0Þ ¼ 1

ð2pÞNM
exp �1

2
jm�m0j2

� �
; ð22Þ

which is easy to sample. This sampling scheme was introduced by Metropolis et al. (1953)

who also suggested a criterion to reject/accept the new model. Namely, m0 is accepted with

the probability

Fig. 3 Equivalence domain and
a symmetric (Gaussian) proposal
density (depicted as a circle)
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min 1;
pðm0Þ
pðmÞ

� �
; ð23Þ

which means that a model with a smaller penalty function has greater chance to be

accepted. Later (Hastings 1970) generalized the concept to work with an arbitrary proposal

density qðm;m0Þ and modified the criterion in such a way that m0 is accepted with the

probability

min 1;
pðm0Þqðm0;mÞ
pðmÞqðm;m0Þ

� �
: ð24Þ

This generalization underlies the Metropolis–Hastings sampling algorithm which is sum-

marized below as a pseudo-code.

Algorithm 1 The standard Metropolis-Hastings sampling algorithm

– Choose(A) initial model m(0) =
(
m

(0)
1 , ..., m

(0)
NM

)
– Calculate(B) regularization term λβreg(m(0))

– Perform forward modelling to calculate βd(m(0))

– Calculate posterior probability π(m(0))/Cp = exp
(
−1

2β(m(0))
)

– for k = 0, ..., Nit − 1(C) do

– Draw(D) a new model m′ from the proposal density q(m(k), ·)
– Calculate regularization term λβreg(m′)

– Perform forward modelling to calculate βd(m′)

– Calculate posterior probability π(m′)/Cp = exp −1
2β(m′)

)
– Calculate proposal density function values q(m′,m(k)) and q(m(k), m′)

– Calculate criterion α(m(k), m′) = min
(
1, π(m′)q(m′,m(k))

π(m(k))q(m(k), m′)

)

– m(k+1) =

{
m′ with probability α(m(k), m′)(E)

m(k) with probability 1 − α(m(k), m′)
– end for

Below are the explanatory notes on the code.

(A) It is very reasonable to take a (regularized) solution of the deterministic inverse

problem as an initial model mð0Þ. Making this choice there is a hope that mð0Þ are

inside, or in the vicinity of, the equivalence domain.

(B) k is specified during deterministic inversion.

(C) Deciding when to stop the chain is an important practical issue. The aim is to run the

chain long enough to sample adequately posterior density. One of the most obvious

informal methods for determining Nit is to run several chains in parallel, with

different starting models, and compare marginal densities, where the estimate of

marginal density, piðmiÞ, of the i-th model parameter is a histogram computed from

m
ðkÞ
i ; k ¼ 0; . . .;Nit (see illustration in Fig. 4). More advanced approaches on

convergence diagnostics, integrated autocorrelation, chain mixing and ergodicity

can be found in the literature on MCMC [see Gilks et al. (1996) and Martin et al.
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(2012), among others]. Note that in any case Nit is large (from thousands to ten

thousand or more) but is much less than the number of samples in straightforward

grid-based sampling.

(D) A specific algorithm to draw a new model m0 is determined by the nature of the

proposal density qðm;m0Þ chosen. For example, if symmetric qðm;m0Þ in the form

of Eq. (22) is invoked then a Gaussian sampler should be used. Note that in this case

the M–H criterion degenerates to the criterion specified by Eq. (23).

(E) The last step in the loop of the pseudo-code stands for the following action

• Draw a random number u uniformly distributed in the interval (0, 1)

if u\aðmðkÞ; m0Þ then
‘‘Accept’’: set mðkþ1Þ ¼ m0

else

‘‘Reject’’: set mðkþ1Þ ¼ mðkÞ

end if

Concluding this section we have to stress that in most applications of the M–H concept

the Gaussian proposal density [see Eq. (22)] is implemented, i.e. all model parameters have

equal importance (see illustration in Fig. 3). This means that specifics of the forward

problem are not accounted for in the choice of the proposal density. An important and

undesirable side effect of this is that during the M–H process an excessively large number

of models are rejected. Since each step of the M–H algorithm involves forward modelling,

it may lead to prohibitive computational loads. In the next section, following Martin et al.

(2012), we discuss construction of the proposal density based on local quadratic approx-

imation of the penalty function.

4 A Proposal Density Based on Local Quadratic Approximation
of the Penalty Function

Following Martin et al. (2012) we introduce a proposal density qðmðkÞ; m0Þ to be an

approximation of the posterior density via a second-order (Taylor’s) expansion of the

penalty function b

qðmðkÞ; m0Þ ¼ ~pðmðkÞ; sÞ � pðmðkÞ þ sÞ; ð25Þ

with

~pðmðkÞ; sÞ ¼ C1 exp �1
2

2gTk sþ sTHks
	 
	 


: ð26Þ

Fig. 4 A marginal density,
piðmiÞ, of the i-th model
parameter is a histogram
computed from

m
ðkÞ
i ; k ¼ 0; . . .;Nit
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Here

s ¼ m0 �mðkÞ; ð27Þ

stands for the jump from the current model mðkÞ; gk ¼ r bðmðkÞÞ is the gradient of the

penalty function, and Hk is the Hessian operator HessbðmðkÞÞ, both of which are evaluated

for the current model mðkÞ, and C1 is a normalizing constant. For such a proposal density

the acceptance rate should be very high (moreover, if the penalty is a quadratic function of

the model vector then the acceptance rate is 100 %), and thus M–H should work much

faster. This situation is illustrated in Fig. 5. But the question arises how to draw a new

model m0 ¼ mðkÞ þ s from the proposal density defined by Eq. (26)? What follows is an

explanation of a procedure which makes such a drawing feasible.

Let us first rewrite an argument of the exponent on the right-hand side (RHS) of Eq. (26)

via perfect squares

gTk sþ 1
2
sTHks ¼ 1

2
Fksþ F�T

k gk
�� ��2�1

2
F�T
k gk

�� ��2; ð28Þ

where Fk is a matrix that satisfies the equality

FT
k Fk ¼ Hk: ð29Þ

Then we can write the introduced proposal probability distribution

d ~PkðsÞ ¼ ~pðmðkÞ; sÞ dNMs; ð30Þ

in the following form

d ~PkðsÞ ¼ C2 exp �1
2
Fksþ F�T

k gk
�� ��2� �

dNMs: ð31Þ

Note that the second term in RHS of Eq. (28) reduces to constant C2 since it does not

depend on s. Next, defining

g0k ¼ �F�T
k gk; ð32Þ

and

y ¼ Fks; ð33Þ

and using standard Gaussian distribution normalization coefficient, we obtain

d ~PkðyÞ ¼
1

ð2pÞNM=2
exp �1

2
y� g0k
�� ��2� �

dNMy; ð34Þ

Fig. 5 Equivalence domain and
a proposal density based on local
quadratic approximation of
penalty function (depicted as a
narrow ellipsoid)
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where y is drawn as

y ¼ g0k þN NMð0; 1Þ: ð35Þ

Here N NMð0; 1Þ is an NM-dimensional normal (Gaussian) distribution generator with zero

mean and unit variance. Finally, using Eqs. (30), (31), (34) and the Jacobian, detFk, of

transform (33), we find constant C2 in (31) and write

~pðmðkÞ; sÞ ¼ j detFkj
ð2pÞNM=2

exp �1
2
Fksþ F�T

k gk
�� ��2� �

; ð36Þ

where s is drawn as the Newtonian step �H�1
k gk

	 

plus a random spherically distributed

vector N NMð0; 1Þ transformed to a random ellipsoidally distributed vector by linear

operator F�1
k as follows

s ¼ �H�1
k gk þ F�1

k N NMð0; 1Þ ¼ F�1
k � �F�T

k gk þN NMð0; 1Þ
	 


: ð37Þ

The RHS of the latter equation follows from Eq. (29). Here the term spherically distributed

means that the distribution of the vector is invariant with respect to orthogonal transfor-

mations. The term ellipsoidally distributed stands for the random vector that is a linear

transformation of some spherically distributed random vector. Note that we choose the

normalization of the misfit that led to unit coefficient in front of the second (stochastic)

term in the RHS of the latter equation (the more general case is described in Appendix 1).

Equation (37) shows a way how to draw s but this way looks frightening since it involves

the inverse of the Hessian and the inverse of ‘‘square root’’ of the Hessian. In the next

section we explain how one can avoid calculations of these inverses by calculating instead

only a limited number of the Hessian-vector products.

5 Low-rank Approximation of the Hessian-Based Proposal Density

Let us introduce the following definitions

Hd;k :¼ Hessbd ðm
ðkÞÞ; ð38Þ

Hreg :¼ Hessbreg
ðmðkÞÞ: ð39Þ

Hk :¼ HessbðmðkÞÞ: ¼ Hd;k þ kHreg ð40Þ

Note that the symmetric positive matrix Hreg does not depend on k [due to Eq. (18)].

Further, let us decompose the matrix Hreg as follows

Hreg ¼ L�TL�1: ð41Þ

The latter equation in particular means that L does not depend on k. Suppose we have a

decomposition

LTHd;kL � VkDkV
T
k : ð42Þ

The latter can be approximately obtained from a number of steps (say, n�NM steps) of the

Lanczos algorithm to matrix LTHd;kL, thus here Dk is a diagonal n� n-matrix
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Dk ¼ diag d
ðkÞ
1 ; . . .; dðkÞn

� �
�

d
ðkÞ
1 0

� � �
0 dðkÞn

0
B@

1
CA; ð43Þ

and Vk is a semi-orthogonal NM � n-matrix; that is, a matrix such that

VT
kVk ¼ 1n: ð44Þ

Here 1n is an identity n� n-matrix. An equivalent definition of a semi-orthogonal NM � n-

matrix is that it can be complemented to an orthogonal NM � NM-matrix.

For the sake of numerical efficiency, we propose to terminate the Lanczos process after

n � NM iterations thus obtaining a low-rank approximation (42) for the Hessian matrix of

the data misfit.

Thus, defining an approximate to Hd;k as

~Hd;k :¼ L�TVkDkV
T
kL

�1; ð45Þ

and an approximate penalty function Hessian as

~Hk ¼ ~Hd;k þ kHreg � HðmðkÞÞ; ð46Þ

we obtain the following representation for the approximate penalty function Hessian

~Hk ¼ L�T VkDkV
T
k þ k1NM

	 

L�1; ð47Þ

where 1NM is an identity NM � NM-matrix.

Following Eqs. (36) and (37) we in fact need not ~Hk but ~F�1
k ; ~F�T

k and det ~Fk, which

satisfy

~FT
k
~Fk ¼ ~Hk: ð48Þ

In order to find them we introduce matrix Jk as

Jk ¼ VkDkV
T
k þ k1NM : ð49Þ

From this representation we can construct the power Jxk for any x 2 R as follows

Jxk ¼ Vk Dk þ k1nð Þx�kx1nð ÞVT
k þ kx1NM

¼ Vk diag ðkþ d
ðkÞ
j Þx � kx

� �
VT

k þ kx1NM :
ð50Þ

It can be also shown that its determinant has a form

det Jk ¼ kNM�n detðDk þ k1nÞ ¼ kNM�n
Yn
j¼1

ðkþ d
ðkÞ
j Þ: ð51Þ

The latter two results are achieved using VT
kVk ¼ 1n and complementing Vk to an

orthogonal matrix NM � NM. From these two results, and defining ~Fk as

~Fk :¼ J
1
2

kL
�1; ð52Þ
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we obtain

~F�T
k ¼ J

�1
2

k LT ; ð53Þ

~F�1
k ¼ LJ

�1
2

k ; ð54Þ

det ~Fk ¼ ðdet JkÞ
1
2ðdetLÞ�1: ð55Þ

Introduced in this way ~FT
k and ~Fk give Eq. (48), indeed

~FT
k
~Fk ¼ L�TJkL

�1 ¼ L�T VkDkV
T
k þ k1NM

	 

L�1 ¼ ~Hd;k þ kHreg ¼ ~Hk: ð56Þ

Note that matrices Dk ¼ DðmðkÞÞ and Vk ¼ VðmðkÞÞ (see Eqs. 43, 44) are primary

components of the algorithm, and they ensure fast performance of all needed matrix-vector

operations (32), (58) as well as the determinant operation det ~Fk from Eq. (36) (see Eqs. 50,

51, 53, 54). Matrices Jk ¼ JðmðkÞÞ; Jxk and ~Fk ¼ ~FðmðkÞÞ (see Eqs. 49, 50, 52) are not to be

stored, and their operations are to be calculated on the fly.

Thus, to draw a sample s from low-rank approximation of ~pðmðkÞ; sÞ the following

procedure is applied:

• Instead of using Eq. (32) we calculate vector g0k as

g0k ¼ �~F�T
k gk; ð57Þ

with ~F�T
k defined by Eq. (53).

• Next we draw a sample y using Eq. (35).

• Finally we calculate vector s from equation

s ¼ ~F�1
k y ð58Þ

with ~F�1
k defined by Eq. (54).

Note that for reasons explained in Appendix 1 Eq. (35) can be modified as

y ¼ g0k þ
ffiffiffi
j

p
N NMð0; 1Þ; ð59Þ

where j is a positive real-valued constant.

6 Metropolis–Hastings Sampling Algorithm with the Hessian-Based
Proposal Density

An overall Hessian-based M–H algorithm utilizes proposal density ~pðmðkÞ; sÞ (see Eq. 36)

built with the use of the second-order approximation of the penalty. In this algorithm we

invoke matrix-vector Hessian operations only, rather than computing the full Hessian

matrix. The details of the matrix-vector Hessian operations can be found in Appendix 3.

The algorithm is presented as follows.
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Algorithm 2 The M-H sampling algorithm with proposal density π̃(m(k), s) built
with the use of the second-order approximation of the penalty function

– Choose(A) initial model m(0) =
(
m

(0)
1 , ..., m

(0)
NM

)

– Calculate(B) regularization term λβreg(m(0))

– Decompose(C) the regularization matrix as Hreg = L−TL−1 (see eq. 41)

– Perform forward modelling to calculate βd(m(0))

– Calculate posterior probability π(m(0))/Cp = exp
(
−1

2β(m(0))
)

– Perform forward modelling to calculate gradient g0 = ∇ β(m(0)) and low-rank
approximation of the data misfit Hessian (56)

– Define(D) n < NM

– In n steps of the Lanczos algorithm (using only the Hessian-vector prod-
ucts) calculate a semi-orthogonal matrix V0 ∈ R

NM×n and a low-rank Hes-
sian representation D0 = diag

(
d
(0)
j

)
∈ R

n×n, such that LT Hd(m(0))L ≈
V0D0VT

0 . Note that n columns of V0 are orthonormal vectors of the Lanc-
zos basis.

– for k in 0 to Nit − 1 do

– Draw(E) a new sample model m′ from the proposal density q(m(k), ·):
• Calculate g′

k = −F̃−T
k gk using eqs (32) and (53)

• Draw vector y ∼ NNM(0, 1) from a standard Gaussian NM-dimensional
sampler

• s = F̃−1
k · (y + g′

k) using eq. (54)

• Calculate vector m′ = m(k) + s

– Calculate criterion α(m(k), m′) = min
(
1, π(m′)q(m′,m(k))

π(m(k))q(m(k), m′)

)
:

• Perform forward modelling to calculate π(m′)/C0 = exp −1
2β(m′)

)
• Calculate π(m′)

π(m(k))

• Calculate(F) q(m′,m(k))
q(m(k), m′) :

1. Calculate det F̃k using eq. (55)

2. Calculate q(m(k), m′) = π̃(m(k), m′ − m(k)) using eq. (36)

3. Calculate the gradient g(m′) = ∇ βd(m′) ∈ R
NM for model m′

4. Calculate(D) n′ < NM and primary components D(m′) ∈ R
n′×n′

and V(m′) ∈ R
NM×n′

of the approximate Hessian matrix H̃(m′)
(56), which ensures fast matrix-vector operations (40)-(56) for ma-
trices D(m′), V(m′), H̃(m′), J(m′), Jx(m′), F̃(m′), and determi-
nant det F̃(m′) calculation

5. Calculate q(m′,m(k)) = π̃(m′,m(k) − m′)

– m(k+1) =

{
m′ with probability α(m(k), m′)(G),
m(k) with probability 1 − α(m(k), m′).

– end for

Below are the explanatory notes on the code.
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(A) It is very reasonable to take a (regularized) solution of the deterministic inverse

problem as an initial model mð0Þ. Making this choice there is a hope of being inside,

or in the vicinity of, the equivalence domain.

(B) A value of k can be specified during deterministic inversion; however, for realistic

study of the uncertainty it is necessary to define a value of ‘the uncertainty k’

significantly less than the value of k used for the deterministic inversion.

(C) To decompose the regularization matrix as Hreg ¼ L�TL�1 one can use either

• a Cholesky decomposition H�1
reg ¼ LLT ,

• or the spectral decomposition Hreg ¼ U diag hj
	 


UT and a symmetric square root

L ¼ H
�1

2
reg ¼ U diag h

�1
2

j

� �
UT (where UT ¼ U�1).

(D) A simple choice for n; n0\NM could be a fixed value for all iterations. A more

complicated scenario could be dependency of n on the decay rate of the coefficients

dj; d
0
j , where D0 ¼ diag d0j

� �
.

(E) To reduce the Hessian calculation, we suggest to introduce a tunable branching

parameter b1 and draw b1 new models m0
1; . . .;m

0
b1

at this step from the proposal

density qðmðkÞ; �Þ. As a result we have a tree-like family of models, and the latest

branches of the tree are not needed in the Hessian calculation to draw new models

(as they are the latest). This saving is bigger, the larger the branching parameter b1

is.

(F) To reduce the Hessian calculation, we suggest to introduce a tunable frequency

f1 2 ½0; 1	 and assign the proposal density to be symmetric with probability f1, thus

having in this case
qðm0;mðkÞÞ
qðmðkÞ;m0Þ ¼ 1. For f1 ¼ 1 the value of the fraction is always 1; this

means a maximum saving in the Hessian calculation but the M–H criterion is

approximate in this case. For f1 ¼ 0 the value of the fraction is always to be

calculated, which requires calculation of ~Fðm0Þ;Vðm0Þ, but the M–H criterion

aðmðkÞ; m0Þ is precise in this case.

In addition, we suggest not calculating the fraction (but to assign it a value of 1) for

the latest point in the chain [or for the latest branches in the tree-like family of

models, see note (E)].

(G) The last step in the loop of the pseudo-code stands for the following action

• Draw a random number u uniformly distributed in the interval (0, 1)

if u\aðmðkÞ; m0Þ then
‘‘Accept’’: set mðkþ1Þ ¼ m0

else

‘‘Reject’’: set mðkþ1Þ ¼ mðkÞ

end if

7 Uncertainty Analysis Based on M–H Results

In this section we briefly outline possible methods to analyze the uncertainty of the inverse

solution based on M–H results.
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7.1 Marginal Distributions

First we suggest to study local uncertainties that can be calculated and plotted as follows.

From the resulting stochastic chain, we calculate the marginal densities, piðmiÞ, for each

individual model parameter mi (see illustration on the definition of these densities in

Fig. 4). Note that model parameters stand for conductivity or log-conductivity of the i-th

spatial cell of 3-D inverse domain. Having the density pi we calculate mean value of the

i-th parameter,

ei ¼
Z

R

mipiðmiÞdmi; ð60Þ

its variance,

Di ¼
Z

R

mi � eið Þ2
piðmiÞdmi; ð61Þ

as well as the other moments. All these moments can be portrayed as spatial maps,

delivering an impression of how uncertain the resulting solution is.

However, marginal moments may not be sufficient to study the equivalence domain

(ED), as the inverse problem might have much more complex uncertainties than the local

ones mentioned above. As an example, let us recall the well-known magnetotelluric (MT)

effect (S-equivalence) where a stack of n relatively thin layers h1; � � � ; hn can be well

resolved from the MT data vector only as a value of conductance S in the form

f ðr1; . . .; rnÞ :¼ r1h1 þ � � � þ rnhn; ð62Þ

and any combination of values of r1 
 0; . . .; rn 
 0 satisfies the MT data vector provided

that the values satisfy the following equation

f ðr1; . . .; rnÞ ¼ S: ð63Þ

Let us refer to such layers (or cells) as linked elements of the model. In the next section we

discuss a possible way to detect such linked elements.

7.2 Linked Elements of the Model

Let us first introduce the following terminology. We call the weak forms those eigenvectors

Vej of the Hessian that have the smallest eigenvalues dj. A set of the weak forms we denote

in this section as w1; . . .;wn. Note that weak forms determine poorly resolved directions in

the model space.

Let us denote the linear span of the weak forms as

W ¼ span w1; . . .;wnf g; ð64Þ

and from the basis vectors ei of model parameters mi we build the following coordinate

spaces

E1
i ¼ span eif g; ð65Þ

E2
i;j ¼ span ei; ej

� �
; ð66Þ
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and similarly for E3
i;j;k etc. Next we introduce the following linking angles

a1
i ¼ \ W ; E1

i

	 

¼ arccos max

u2E1
i ; w2W

u � w
juj jwj ; ð67Þ

a2
i;j ¼ \ W; E2

i;j

� �
¼ arccos max

u2E2
i;j; w2W

u � w
juj jwj ; ð68Þ

and similarly for a3
i;j;k etc. (note that in the fractions above we take only nonzero vectors).

Then the condition a1
i ! 0 means that the i-th model parameter is weak by itself: there

is no link with other parameters in terms of resolution. Such a situation, for example, arises

in MT when a resistive layer underlies a conductive layer. In this case the resistive layer is

poorly resolved. Let us imagine that a1
i 6! 0 and a1

j 6! 0. Then the condition a2
i;j ! 0

means that a combination of the i-th and the j-th parameters is poorly resolved. In this case

we consider the i-th and the j-th parameters to be linked.

7.3 Study of Dimensionality of ED Using Metrics

This study might be performed using a Riemannian metrics and having the chain from the

M–H sampling algorithm with the Hessian-based proposal density. Riemannian metrics

gives a possibility to measure length, angle and volume in the model space. By fixing a

radius R we construct a union F of all convex hulls of the part of the M–H chain that

belongs to a ball of radius R. Then the dependence of the volume of F as R ! 0 allows us

to estimate the dimension of the ED which can be considered as a degree of uncertainty of

the solution. For example, if in MT three conducting layers are seen as one conductive

layer of conductance S, then the dimension of ED (which is an analog of null space) is

equal to 2.

7.4 Topological Study

Topological study can answer the following questions:

1. Whether the ED is a connected subset of the model space?

2. How many connected components exist in ED?

Note that the number of connected components is related to the number of local minima of

the penalty function. Constructively, having the M–H chain from Sect. 6 we can build the

set F (from Sect. 7.3) and answer these two questions with respect to F but relating the

result to ED.

8 Uncertainty Analysis Based on the Results of the Deterministic
Inversion

So far we discussed a stochastic approach to explore the ED. However the ED to some

extent can be studied in the frame of a deterministic approach.

Let us assume that mðkÞ is a solution of a regularized deterministic inversion with

regularization parameter kreg. Let us then substantially decrease k to make the inverse

solution unstable. Further we run a Lanczos process (see Eqs. 40–56) for the Hessian
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matrix ~HkðkÞ to get the largest eigenvalues dj and their eigenvectors and for the shifted

Hessian matrix ~Hk � l1NM (where l is the maximum of dj) to get the smallest eigenvalues

dj and their eigenvectors. As a result we will have an approximate local pattern of the

uncertainty in the vicinity of the model mðkÞ, namely:

• the largest eigenvalues dj and their eigenvectors Vej represent the so-called strong

forms, i.e. combinations of the model parameters that are well determined from the data

vector U. Note that strong forms determine well-resolved directions in the model space;

• the smallest eigenvalues dj and their eigenvectors Vej represent the weak forms

(already discussed in Sect. 7.2), i.e. combinations of the model parameters that are

poorly resolved from the data vector U;

• intermediate eigenvalues and their eigenvectors which can be interpreted to relate to

the one of the aforementioned forms depending on the problem set up, namely:

• if importance is given to the structures that do exist in the model, then the

intermediate forms should be considered as weak ones;

• if importance is given to the structures that do not exist in the model, then the

intermediate forms should be considered as strong ones;

With this local uncertainty analysis it is possible to represent a general solution as a sum

of strong (fixed) part and an arbitrary linear combination of the weak forms.

It is evident that the implementation of both stochastic and deterministic approaches

requires calculation of the data misfit gradients and the Hessian-vector products. The

efficient way to perform these calculations is discussed in Sects. 9 and 10.

9 Calculation of Data Misfit Gradient

The efficient calculation of a data misfit gradient using adjoint formulation is a well-

established approach in computational science and is described in numerous publications.

As applied to EM studies it can be shown that NXNP forward modellings are needed to

calculate a data misfit gradient, where NX and NP are the numbers of frequencies and

polarizations, respectively. We refer the reader to Appendix 2 in which we provide the key

formulae in accordance with nomenclature of Pankratov and Kuvshinov (2010) and

Pankratov and Kuvshinov (2015).

10 Calculation of the Hessian-Vector Products

The computation of the Hessian-vector products using adjoint formulation is also a rather

well-established approach, especially in seismic inverse modelling (Santosa and Symes

1988; Epanomeritakis et al. 2008; Fichtner and Trampert 2011; Metivier et al. 2013,

among others). Surprisingly, for EM modelling the literature discussing efficient calcula-

tion of the Hessian-vector products is very limited. Some work has been done by Newman

and Hoversten (2000) who, however, confined the discussion to the case when the data are

controlled-source electric or magnetic fields. Very recently Pankratov and Kuvshinov

(2015) present a general formalism for the efficient calculation of the second derivatives of

EM frequency-domain responses and the second derivatives of the misfit (Hessian matrix)

with respect to variations of 3-D conductivity, using adjoint sources approach. They also
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show how this technique can be implemented to calculate multiple Hessian-vector products

very efficiently. Their finding is that a single Hessian-vector product can be calculated for a

price of OðNXðNP þ NSÞÞ forward problem runs, where NS is the number of observation

sites. However, if such a product is calculated multiple times, as in the case of the Lanczos

process, the price drops down to 2NPNX per product. Appendix 3 discusses this result in

more detail and provides necessary formulae.

The formalism introduced in Pankratov and Kuvshinov (2015) allows one to work with

any responses that arise in EM problem set-ups either with natural- or controlled-source

excitations. Using this methodology one can readily obtain appropriate formulae for the

specific sounding methods. To illustrate the concept authors provide such formulae for two

EM techniques: magnetotellurics and controlled-source sounding with vertical magnetic

dipole as a source.

11 Modern Trends in Developments of Efficient 3-D EM Forward
Modelling Schemes

Implementation of a M–H concept, as shown in previous sections, also requires a huge

amount of 3-D forward modellings. This prompts development of highly efficient and

scalable modelling codes. There are three basic numerical simulation techniques for

computing 3-D EM fields/responses, namely finite-difference (FD) methods, finite element

(FE) methods and volume integral equation (IE) methods. For decades FD schemes

(Mackie et al. 1994; Haber and Ascher 2001; Newman and Alumbaugh 2002, among

others) dominated in EM; however, in recent years FE and IE methods have grown in

popularity due to a number of advantages which we discuss below.

11.1 FE Method: Short Summary

It is well known that FE methods are a very convenient way to treat conductivity models

that involve complicated shapes and curved interfaces, for instance, free surface topog-

raphy or bathymetry, by utilizing unstructured meshes. It is also important that FE method

for Maxwell’s equations provides a well-elaborated theory (Hiptmair 2002; Monk 2003,

among others) which comprises error estimation analysis (Beck et al. 2000; Bürg 2000,

among others) and efficient adaptive schemes (e.g., Bürg 2013; Ren et al. 2013). The

popularity of FE is also driven by the availability of open-source libraries (Kirk et al. 2006;

Logg and Wells 2010, among others) and mesh generating software which simplify

development of the codes for specific applications. There is a large number of papers

published recently which use a variety of finite element formulations for 3-D EM mod-

elling [see review paper by Börner (2010) and more recent works by Schwarzbach et al.

(2011), Farquharson and Miensopust (2011), Puzyrev et al. (2013), Ren et al. (2013) and

Um et al. (2013)].

Usually, FE discretizations of Maxwell’s equations result in large sparse systems of

linear equations. The solution of these systems is the most time-consuming part of the

modelling codes. In addition the standard formulation of frequency-domain Maxwell’s

equations involves the operator r� which inherits a large cokernel. In other words,

numerical estimations of r� E and r�H do not satisfy the zero divergence equation.

The standard recipe to overcome this problem is an application of a divergence correction

scheme (Smith 1996; Farquharson and Miensopust 2011, among others). Although this
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correction supresses to some extent the fictive effects in the solution, the original problem

remains ill-conditioned and generic iterative methods applied to the resulting linear system

converge slowly (Ernst and Gander 2011; Um et al. 2013). Furthermore, locally refined

grids are often required to properly discretize large modelling domains. This also often

results in performance losses (Mulder 2006; Farquharson and Miensopust 2011) due to

increase in the condition number of the linear system matrix. Thus there is a demand for

stable and high-performance FE algorithms to the aforementioned problems. Another

claim is the scalability of new FE schemes, bearing in mind growing availability of

massive parallel processor arrays. An important step forward has been made recently by

Grayver and Burg (2014) and Grayver and Kolev (2015) who presented highly robust and

scalable FE solvers for 3-D EM problems with large conductivity contrasts, wide range of

frequencies, stretched grids and locally refined meshes.

11.2 Integral Equation (IE) Method: Detailed Summary

The application of IE to 3-D EM modelling dates to the works of Raiche (1974), Hohmann

(1975) and Weidelt (1975). Since then the IE concept has progressed dramatically but there

is still a general preconception in the EM community that IE-based solvers are the solvers

of choice only for 3-D models with simple and compact geometries. In the following we

will try to persuade the reader that recent developments of the IE concept, both theoretical

and numerical, make modern IE realizations competitive with the most advanced FD- and

FE-based codes, irrespective of the complexity and extension of 3-D conductivity models

under consideration.

This is especially true for the particular class of IE with a contracting kernel [hereinafter

denoted as contracting integral equation (CIE)] which possesses a remarkable property: its

system matrix is well-conditioned irrespective of discretization, frequency and contrasts of

conductivity. The next section summarizes the evolution of the CIE concept, and Sect.

11.2.2 discusses general advantages of the IE approach and modern developments. Note

that the explanation of the CIE approach in a nutshell, and some theoretical aspects of CIE

are presented in Appendices 4 and 5, respectively.

11.2.1 The Evolution of CIE Concept

The CIE concept was first introduced by Fainberg and Zinger (1980), who obtained an

integral equation (IE) of a specific form and proved that this equation can be solved using

simple iterates that always converge to the equation solution. The authors called this

technique the iterative dissipative method (IDM) and showed that the optimal convergence

rate of the IDM iterates is inversely proportional to the lateral contrast of the conductivity

distribution.

Singer (1995) derived a new CIE and showed that the optimal convergence rate of

simple iterates as applied to new IE is inversely proportional to the square root of the

lateral contrast of the conductivity distribution. He called this technique modified iterative

dissipative method (MIDM). Two remarks are relevant at this point: (a) originally in both

methods displacement currents are ignored and only isotropic conductivities are consid-

ered; (b) in both methods optimal convergence rate is achieved by specific choice of the

reference 1-D media which does not have to always coincide with the background 1-D

section.

Pankratov et al. (1995, 1997) [and independently Singer and Fainberg (1995, 1997)]

generalized the technique to media with complex-valued conductivities (to account for
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displacement currents and polarization effects), and to media with tensor-valued conduc-

tivities (to account for conductivity anisotropy). This became possible due to a renewed

way of looking on CIE as a spectrum-shifted equation, in which the shift is not a constant

but a spatial distribution. An optimal choice of the shift is achieved by extracting perfect

squares from the energy inequality, which provides faster convergence of the CIE iterates.

In addition, Pankratov et al. (1995) proposed a general scheme (based on Lobachevsky–

Bolyai geometry) to construct reference 1-D media which delivers an optimal convergence

rate, irrespective of whether the conductivity is a real- or complex-valued function. Also

Pankratov et al. (1995) noted that the simple iterates applied to solve the CIE equation can

be considered as a partial sum of convergent Neumann series for this equation. In their

nomenclature the technique has been named a modified Neumann series (MNS).

Further development of the CIE approach was made by Avdeev et al. (2000), who

observed that the integral operator of CIE is well-conditioned irrespective of the physically

feasible conductivity contrasts, and suggested that Krylov subspace iterates may be used to

replace the Neumann series summation in the solution of the CIE. Later it was widely

reported (Avdeev et al. 2002; Kuvshinov et al. 2005; Singer 2008, among others) that the

implementation of Krylov subspace iterates further reduces the number of iterations nee-

ded to obtain the CIE solution. Although it was not proved theoretically, the common

observation is that the rate of convergence—if Krylov subspace iterates are implemented—

becomes inversely proportional to the natural logarithm of the lateral contrast of the

conductivity distribution (see, e.g., Singer 2008). Now all codes based on CIE—either

working in spherical (Koyama et al. 2006; Kuvshinov 2008; Sun and Egbert 2012) or

Cartesian (Avdeev et al. 2002; Hursan and Zhdanov 2002; Singer 2008; Koyama et al.

2008; Avdeev and Knizhnik 2009; Kamm and Pedersen 2014) geometries—exploit Krylov

subspace iterates.

It is interesting to note that Pankratov et al. (1995) stated in the conclusion of their

paper that CIE approach has, in a certain sense, a universal character and can effectively be

used, for example, in seismology and acoustics. Almost two decades later the CIE concept

indeed attracts the attention of the seismic community. As far as we know Abubakar and

Habashy (2013) were the first who presented a CIE formalism to solve 3-D seismic

(acoustic approximation) wave propagation problems.

11.2.2 General Advantages of IE Approach and Modern Developments

The general computational advantages of IE-based solvers along with recent developments

are summarized below.

• The two key components of all IE-based codes are the computation of the Green’s

functions and the numerical solution of IE, respectively. In many scenarios of practical

interest CPU loads for the computation of Green’s functions are comparable to, or

outperform, the loads needed to obtain a numerical solution of IE [see some estimates

for spherical geometry set up in Kelbert et al. (2014)]. This fact puts the IE-based codes

at a computational advantage when repeated forward modellings are required, such as

for multiple source calculations, and/or conductivity inverse problems. Indeed, as long

as the background model remains unchanged, Green’s tensors only need to be

computed once and may be reused for multiple sources, as well as for varying 3-D

conductivity distributions during inversion iterates.

• Certain properties of typical Green’s functions allow efficient storage and fast

application (convolution with some vector) of Green’s operators, leading to fast
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implementation of Krylov subspace iterates (Greenbaum 1997) to the solution of IE.

One such property is the shift invariances of the Green’s functions defined on lateral

regular grids under invariant background geometries, e.g., shift invariances in lateral

dimensions for horizontally layered structures under Cartesian geometry, and rotational

invariance under spherically layered geometry. Such invariances allow performing

linear (for Cartesian geometry) or circular (for spherical geometry) convolutions using

fast Fourier transform (FFT). Hereinafter we will discuss mostly the results relevant to

Cartesian geometry set up. In this case elements of Green’s tensors can be written as

Gðx; y; z; x0; y0; z0Þ ¼ Gðx� x0; y� y0; z; z0Þ; ð69Þ

and thus the loads to store and calculate elements of Green’s tensors are proportional to

Nx � Ny � N2
z , and the loads to solve IE are proportional to 2Nx � lnð2NxÞ�

2Ny lnð2NyÞ � N2
z , where Nx;Ny and Nz are dimensions in lateral and vertical direc-

tions, respectively.

Representation of the fields and conductivity on a uniform (in lateral directions) grid is

a necessary prerequisite for the use of FFTs. However, in many practical cases, one

needs large model dimensions (for example, to account for the regional effects, such as

ocean-continent contrast), and relatively short wavelengths of the field to accurately

compute EM responses in the region of observations/interest. In these cases, the use of

a regular grid leads to an excessively large number of cells and thereby to a groundless

increase in the required computational loads. This obstacle is tackled in many IE

publications (Phillips and White 1996; Nie et al. 2013; Avdeev et al. 2002; Kamm and

Pedersen 2014, among others), and probably the most natural solution to the problem is

to use a concept of nested uniform grids (cf. Avdeev et al. 2002; Kamm and Pedersen

2014), which preserves the computation efficiency of the Green’s tensor and its con-

volutions. The following idea underlies the concept. The initial CIE in the entire model

volume is reduced to a system of integral equations specified in successively nested

volumes. The resulting system is then solved by an iterative procedure gradually

improving the accuracy of the solution at each iteration.

Quite recently Koyama et al. (2008) and Avdeev and Knizhnik (2009) showed that

separability of the spectral Green’s tensors allows for achieving linear dependence of

IE computational loads on the vertical dimension Nz. Avdeev and Knizhnik (2009)

demonstrated that in the course of IE solution the calculation and storage of Nx �
Ny � 5Nz elements of Green’s tensors are required, rather than calculation and storage

of the whole set of Nx � Ny � N2
z elements. Note that so far we did not assume that

discretization in the vertical direction is uniform.

In some special cases one can apply FFT to all three space dimensions, for example if

the background section is represented by a uniform space. In this case one can write

elements of Green’s tensors as

Gðx; y; z; x0; y0; z0Þ ¼ Gðx� x0; y� y0; z� z0Þ: ð70Þ

One can also apply FFT in all directions if the background is a homogeneous half-

space. In this case the elements of Green’s tensors can be decomposed into direct

waves and waves reflected from the interface (cf. Millard and Liu 2003; Kamm and

Pedersen 2014)

Gðx; y; z; x0; y0; z0Þ ¼ G1ðx� x0; y� y0; z� z0Þ þ G2ðx� x0; y� y0; zþ z0Þ: ð71Þ
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Consequently, the FFT can be applied to both terms in the latter equation through the

convolution and correlation theorems, which also gives linear dependence of IE

computational loads on the vertical dimension Nz. However we notice here that using

FFT in the vertical direction leads to uniform discretization in this direction.

• In contrast to FD and FE formulations that invoke large system matrices, the IE-based

codes work with compact system matrices. The reason for compactness is that

boundary conditions are exactly accounted for via Green’s functions, and thus the

modelling region is confined only to 3-D anomalies. By contrast, in the FD and FE

codes one has to discretize a much larger volume both in lateral and vertical directions

in order to enable the decay (or stabilization) of the fields at the boundaries of the

domain. One can argue that this advantage is counterbalanced by the fact that IE

matrices are dense but FD and FE matrices are sparse.

However it is possible to surmount this IE shortcoming by exploiting the diagonal

dominance of the Green’s functions. The diagonal dominance is the result of a general

phenomenon that EM field responses of a collection of sources reduce with distance.

Acceleration methods based on such consideration are rather numerous, see Chew et al.

(2014) for a review. Two such methods widely used in high-frequency EM forward

modelling (e.g., optical and microwave scattering) are fast multipole algorithm and

varieties (Rokhlin 1990; Lu and Chew 1994, among others), and matrix decomposition

algorithm and varieties (Michielssen and Boag 1996; Rius et al. 2008, among others).

Recently Sun and Kuvshinov (2015) apply a singular value decomposition (SVD)-

based matrix compression method, similar to that developed in Rius et al. (2008), to an

IE forward solver for global geomagnetic induction. After employing rotational

invariance of the Green’s function of a spherical Earth by applying FFT in the

longitudinal direction, the reduced system is further compressed using a divide-and-

conquer approach based on SVD low-rank approximations with controlled errors in

terms of Frobenius norm, leading to a recursively compressed form of the system

matrix that is computationally efficient.

• The IE approach in general is less demanding than FD and FE schemes, in terms of cell

size, since it does not involve numerical differentiation.

• IE schemes allow for rather straightforward parallelization, for example, with respect to

integration along layers containing inhomogeneities, with respect to convolution of

different elements of Green’s tensors with corresponding components of the input

vector field, and/or with respect to performing distributed FFT.

• So far we have discussed the properties which both standard IE and CIE share.

Regarding specifically the CIE its system matrices has a remarkable property—it is

well conditioned by construction irrespective of discretization, frequency and contrasts

of conductivity, and thus does not require preconditioning, whereas FD and FE do,

especially for the models with large conductivity contrasts (see an estimate of condition

number for CIE system in Appendix 5).

Note that the success of IE solvers is strongly dependent on having a robust and fast

computation of Green’s tensors in the background medium. Such computation is not a

trivial task and requires a lot of analytical work. Avdeev et al. (1997) and Geraskin et al.

(2015) provide a number of numerical recipes to compute Green’s tensors (in Cartesian

geometry) very efficiently, including implementation of fast Hankel transform (Chris-

tensen 1990) and fast and accurate integration of Green’s functions.

Summarizing this section we claim that the CIE-based solvers, if properly coded, can

constitute a competitive alternative to the most advanced FE- and FD-based solvers in
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terms of accuracy, performance and scalability, irrespective of complexity, expansion and

spatial detail of 3-D conductivity models under consideration. To support this statement

Table 1 provides CPU time (in seconds) of novel CIE-based code by Geraskin et al. (2015)

with respect to an increasing number of CPUs. Parallelization in this code involves a

fragmentation of the model along one lateral direction and distributed convolution using

distributed FFT. The model under consideration is COMMEMI 3D-II model (shown in

Fig. 6), and computed quantities are magnetotelluric (MT) responses at period of 100 s. It

is seen from the table that the run time of the code decreases proportionally to the number

of processes, which means that the code is strongly scalable. Note that this model was

excessively discretized by Nx � Ny � Nz ¼ 512 � 512 � 40 cells in order to demonstrate

the scalability of the code; one can obtain the results of comparable accuracy with much

Table 1 CPU times (see columns 2–4; in seconds) of novel CIE-based code (Geraskin et al. 2015) with
respect to an increasing number of CPUs (see column 1)

MPI processes Green’s tensors CIE solution Overall (Green ? 2 � CIE)

16 234 276 786

32 99 133 365

64 67 76 219

128 34 37 108

256 21 21 63

512 14 10 34

1024 11 6 22

The computations were performed on Cray XC30 supercomputer ‘‘Piz Daint’’ of Swiss National Super-
computer Centre. The same numerical grid, Nx � Ny � Nz ¼ 512 � 512 � 40, was exploited for all runs.

The grid is equidistant in x� and y�directions and covers only the domain where conductivity is non 1-D.
Note that the number of degrees of freedom (DoF) in this CIE solution is 3 � 2 � Nx � Ny � Nz where 3

indicates three components of the (electric) field, and 2 – their real and imaginary parts. The CPU time in the
last (fourth) column is for two plane-wave excitations (note that for MT scenario the Green’s tensor for a
given period is computed only once). The resulting system of equations Ax ¼ b was solved by Krylov
subspace iterations, or, more explicitly, by FGMRES (Frayss et al. 2003). The CPU time for Ax ¼ b solution

is summarized in the third column. It was assumed that the approximation to the solution, xðnÞ, was obtained

once the following inequality holded: jjAxðnÞ � bjj=jjbjj\�, with � ¼ 10�8. In this particular case the total
(for two plane-wave excitations) number of matrix-vector multiplications, Ax, was 139. MPI stands for
Message Passing Interface

Fig. 6 COMMEMI 3D-II conductivity model. Left and right plots are side and plane views of the model,
respectively
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smaller gridding of the model. An accuracy of the code is illustrated in Fig. 7 where IE results

are compared with the results obtained by one of the most advanced 3-D FE code (Grayver

and Kolev 2015). One can see that the agreement between IE and FE results is excellent.

12 Concluding Remarks

In this review we address the problem of uncertainty quantification in 3-D EM studies of

the Earth. It is rather evident that a Bayesian (stochastic) approach is the most appropriate

tool to quantify systematically such uncertainties. However, there is a common opinion

that it is still prohibitive to perform uncertainty analysis in the framework of 3-D models

due to tremendous computational loads. We argue that recent strides in 3-D forward

Fig. 7 MT responses at period of 100 s along profile depicted by dashed line in Fig. 6. Left and right upper
plots show apparent resistivities, qxy and qyx, respectively. Lower plots demonstrate corresponding phases of

impedances. The comparison is between IE (Geraskin et al. 2015) and FE (Grayver and Kolev 2015) results.
See details in the text
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problem modelling and sampling algorithms (that are cornerstones of any stochastic

inversion), and implementation of adjoint source formalism likely make this analysis

tractable.

In the discussion of sampling algorithms, we concentrate on the most popular tech-

nique—the Metropolis–Hastings scheme and its recent (potentially less expensive) mod-

ification. We also discuss how the results of stochastic (and even deterministic) inversions

can be used to quantify uncertainties of the recovered electrical conductivity models.

Applying of the developed formalisms to practical scenarios is intentionally beyond the

scope of the paper but will be the subject of a subsequent study.

As for 3-D forward modelling we made a decision to mostly address recent progress in

integral equation solutions. Surprisingly, this method is overlooked in all recent reviews

which are dedicated to a progress in 3-D forward problem solutions. We debate that the

modern IE-based codes, if properly coded, could be a competitive alternative to the most

advanced FE- and FD-based codes, irrespective of complexity, contrasts, expansion and

spatial detail of 3-D conductivity models under consideration.

Most of this review (along with the appendices) is rather mathematically saturated but is

written in a way to allow researchers to apply the discussed ideas and algorithms in a rather

straightforward manner.
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Appendix 1: The Misfit Renormalization

Quadratic approximation [�1
2

2gTk sþ sTHks
	 


, cf. Eq. (26)] of the misfit bdðmÞ might not

work well in the desired vicinity of the current conductivity model mðkÞ. In this case we

suggest to use the following renormalization of the misfit

bd 7!
bd
j

ð72Þ

which tells us that the larger local uncertainty ellipsoid (explained later in this section) has

more chances to catch the true minimum point as illustrated in Fig. 8.

Renormalization (72) leads to a modification in Eqs. (28), (32), (33), (58) and (37) as

follows

gTk
j
sþ 1

2
sT

Hk

j
s ¼ 1

2
Fk

sffiffiffi
j

p þ F�T
k

gkffiffiffi
j

p
����

����
2

�1
2
F�T
k

gkffiffiffi
j

p
����

����
2

; ð73Þ

g0k ¼ �F�T
k

gkffiffiffi
j

p ; ð74Þ

y ¼ Fk

sffiffiffi
j

p ; ð75Þ

s ¼
ffiffiffi
j

p
F�1
k y ð76Þ
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s ¼ �H�1
k gk þ

ffiffiffi
j

p
F�1
k N NMð0; 1Þ; ð77Þ

and to corresponding equations for ~F (recall that ~F is a low-rank approximation for F, see

Sect. 5).

We see that the renormalization leads to the similarity transformation of the uncertainty

ellipsoid, but it does not change the Newtonian step �H�1
k gk

	 

. We call here as uncertainty

ellipsoid the following set

U ¼ �H�1
k gk þ

ffiffiffi
j

p
F�1
k Bð0; 1Þ; ð78Þ

where Bð0; 1Þ is a unit sphere in RNM centered at the origin.

Finally, the renormalization factor j might be one of the parameters that are needed to

keep the acceptance rate (percentage of the accepted models in the sample) to be in the

desired interval; e.g., in the M–H method it is generally accepted that the rate should be

between 20 and 70 %.

Appendix 2: Summary of Formulae to Calculate Data Misfit Gradient

This and follow-up appendices summarize the results presented in Pankratov and

Kuvshinov (2015). But before we proceed with final formulae we introduce definitions to

be used.

Green’s Operators

Let us define an operator G�� in 3-D space R3

E

H

� �
¼ G�� jimp

himp

 !
,

r�H ¼ rEþ jimp;

r� E ¼ ixlHþ himp;

EðrÞ;HðrÞ �! 0 as jrj �! 1;

8>>>>>><
>>>>>>:

ð79Þ

where E and H are electric and magnetic fields, jimp and himp are impressed (extraneous)

electric and magnetic sources, respectively, r 2 R3 is a position vector, i ¼
ffiffiffiffiffiffiffi
�1

p
;x ¼

2p=Period is an angular frequency, r rð Þ and l rð Þ are electric conductivity and magnetic

permeability distributions in an Earth’s model, respectively. In this appendix we assume

that r rð Þ is a real-valued function. One can readily generalize the concept for complex-

valued conductivity. The corresponding formulae are provided in the last appendix of

Pankratov and Kuvshinov (2015). All fields, E;H; jimp; himp, are complex-valued functions

of x and r. In addition the fields E and H depend on r and l. We study the derivatives with

respect to r only. Green’s operator G�� depends on functional arguments jimp and himp.

Fig. 8 Illustration of necessity to
introduce renormalization factor
j, see details in the text
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Hereinafter the dependence of Green’s operator on r; r, and x is omitted but implied. Time

dependence of fields is accounted for by e�ixt, which reads, for example, for the electric

field as �Eðr; tÞ ¼
R
Eðr;xÞe�ixtdx. At this stage we do not specify the coordinate system

in R3; this means that r can be, for example, a triplet of Cartesian coordinates, (x, y, z), or a

triplet of spherical coordinates, ðr; h;/Þ. As far as the column in the left-hand side (LHS)

of Eq. (79) contains two fields, E and H, operator G�� can be represented via operators

Ge�;Gh� Gee;Geh;Ghe;Ghh as follows

G�� ¼
Ge�

Gh�

� �
¼ Gee Geh

Ghe Ghh

 !
; Ge� ¼ Gee; Geh

	 

; Gh� ¼ Ghe; Ghh

	 

; ð80Þ

where operators Ge� and Gh� are electric and magnetic components of G��, operator Gee is a

restriction of Ge� to electric sources etc.

Let us introduce an electromagnetic field, u, as

uðr;xÞ ¼
Eðr;xÞ
Hðr;xÞ

� �
; ð81Þ

which is a complex-valued six-dimensional (6-D) vector. Let us denote the space of such

vectors as U ffi C6. Note that once we have chosen coordinates in 3-D space R3 with the

following basis

e1; e2; e3; ð82Þ

then we naturally and unambiguously have a coordinate system and basis e01; � � � ; e06 in 6-D

complex space U

uðr;xÞ ¼
X6

a¼1

uae
0
a; ð83Þ

saying that e01; e
0
2; e

0
3 are e1; e2; e3 for electric fields, whereas e04; e

0
5; e

0
6 are e1; e2; e3 for

magnetic fields, respectively.

Polarizations/Sources

Let

f imp
p

n o
p2P

; P ¼ 1; 2; . . .;NPf g; ð84Þ

be a set of linearly independent distributions (in space and frequency) of the impressed

sources, f imp
p . For example, in magnetotelluric (MT) studies, NP ¼ 2, and f imp

1 and f imp
2

correspond to the plane waves of different orientations. Each f imp
p produces electric, Ep,

and magnetic, Hp, fields that constitute an EM field up that can be written via G�� operator

(104) as

up ¼ G�� f imp
p

� �
: ð85Þ
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Inversion Domain and Parameterization

As far as the inversion is usually done numerically, let the inversion domain, V inv, be

represented as

V inv ¼
[NM

l¼1

Vl; ð86Þ

where Vlf gl2M; M ¼ 1; . . .;NMf g, represent a set of elementary volumes Vl, and within

each volume Vl let the conductivity be a constant r rð Þ ¼ rl. We assemble this conductivity

distribution in the following vector

r ¼ r1; . . .; rNM

	 
T
; ð87Þ

and introduce model parameterization as

m ¼ m1; . . .; mNM

	 
T
; ml ¼ m�1ðrlÞ; l 2 M; ð88Þ

where function m ¼ m�1ðrÞ can be implemented, for example, to preserve conductivity to

be positive. Note that a popular choice is m ¼ lnr. We also remark that some volumes Vl

might be cells (or combinations of cells) of the 3-D part of the model.

Observation Sites, Frequencies, Response Functions and Misfit

Let

Ug;DUg; g 2 G ¼ 1; 2; . . .;NGf g; ð89Þ

be the experimental responses and their uncertainties, respectively, and let NG be the

number of all responses. Let rg, and xg be the spatial location and the frequency,

respectively, at which the response Ug has been obtained.

Let S be a set of observation sites

S ¼ rg g 2 Gj
� �

¼ s1; . . .; sNSf g; ð90Þ

where s1; . . .; sNS are different observation sites, and NS is the number of sites.

Let X be a set of observation frequencies

X ¼ xg g 2 Gj
� �

¼ f1; . . .; fNXf g; ð91Þ

where f1; . . .; fNX are different observation frequencies, and NX is the number of frequen-

cies. The definitions (89)–(91) are introduced in this specific way intentionally in order to

stress the fact that in practice an actual set of experimental responses to be used for

inversion varies with frequency and site.

For each g 2 G, the predicted response, hg, can be written in the following form

hgðmÞ ¼ Wg u1ðm; rg;xgÞ; u2ðm; rg;xgÞ; . . .; uNP ðm; rg;xgÞ
	 


: ð92Þ

Finally the misfit is introduced as

bdðmÞ ¼
X
g2G

�����
hgðmÞ � Ug

DUg

�����
2

: ð93Þ
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Following Pankratov and Kuvshinov (2015) we write the elements of data misfit gradient

as

obd
oml

¼ 2m0l Re
X

x2X p2P

Z

Vl

EpðxÞ �Ge� JMp ðxÞ
� �

dv; l ¼ 1; 2; . . .;NM; ð94Þ

where an adjoint source JMp is given by

JMp ðxÞ ¼
X

g:xg¼x

ðhg � UgÞ�

jDUgj2
oWg

oup
drg

�����
x

; ð95Þ

where � stands for complex conjugation. Table 2 summarizes the steps needed to calculate

the misfit gradient. From the Eq. (94) it is seen that we need 2NPNX forward modellings in

total to calculate the data misfit gradient.

Appendix 3: Summary of Formulae to Calculate the Hessian-Vector
Products

We are interested to calculate Hessbd ak; k ¼ 1; . . .;K, where ak we represent as

ak ¼
XNM

m¼1

akm1Vm
ðrÞ; ð96Þ

where 1Vl
(r) is an indicator function given by

1Vm
ðrÞ ¼

1; r 2 Vm;

0; r 62 Vm:

�
ð97Þ

Following Pankratov and Kuvshinov (2015), the l-th element of the Hessian-vector product

Hessbd ak (which is a vector) has a form

h
Hessbd ak

i
l
¼ ReðBA

kl þ BL
klÞ; l ¼ 1; 2; . . .NM; ð98Þ

where BA
kl and BL

kl are

BA
kl ¼ 2

X
x2X

X
p2P

Z

Vl

m0lEp �Ge� JBp ðm0akÞ
� �

dv
���
x
; ð99Þ

Table 2 The steps needed to calculate the gradient of the data misfit bd

The term Indices range # of forward runs

upðxÞ ¼ G�e fimp
p

� �
p 2 P;x 2 X NPNX

EpðxÞ; hgðmÞ; oWg

oup
; JMp ðxÞ 0

Ge� JMp ðxÞ
� �

p 2 P;x 2 X NPNX

The total number of forward modellings 2NPNX
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BL
kl ¼ 2

X
x2X

X
p2P

Z

Vl

m0lEp �Ge� JWp ðm0akÞ
� �

dv
���
x

þ 2
X
x2X

X
p2P

Z

Vl

�	
m0lG

ee m0ak Ep

	 

þ m00ak Ep



�Ge� JMp

� �

þ m0lEpG
ee m0ak G

e� JMp

� �� ��
dv
���
x
;

ð100Þ

where JMp ðxÞ is defined in Eq. (95) and Ge� JBp ðak;xÞ
� �

and Ge� JWp ðak;xÞ
� �

are as follows

Ge� JBp ðak;xÞ
� �

¼
X

g: xg¼x

X
q2P

1

jDUgj2

(XNM

m¼1

Z

Vm

akm Eq �Ge� oWg

ouq
drg

� �)�

Ge� oWg

oup
drg

� �������
x

;
ð101Þ

Ge� JWp ðak;xÞ
� �

¼
X

g:xg¼x

X
q2P

ðhg � UgÞ�

jDUgj2
Ge� o2Wg

oupouq
G�e akEq

	 

drg

� ������
x

: ð102Þ

We make here three notes.

• Term
R
Vl

Ep �Ge� JWp ð1Vk
Þ

� �
dv vanishes if the response W is a linear function of EM field

u (e.g., for most of the CSEM methods).

• Term
R
Vl

dlkm00l EpðxÞ �Ge� JMp ðxÞ
� �

dv vanishes if r ¼ m.

• One can readily generalize the concept for complex-valued conductivity r. The correspond-

ing formulae are provided in the last appendix of Pankratov and Kuvshinov (2015).

Table 3 provides a number of forward modellings needed to calculate the Hessian-vector

product K times. As seen from the table, a single Hessian-vector product can be calculated

Table 3 The steps needed to calculate the Hessian-vector products Hessbd ak; k ¼ 1; . . .;K

The term Indices range # of forward runs

upðxÞ ¼ G�e fimp
p ðxÞ

� �
p 2 P;x 2 X NPNX

EpðxÞ; hgðmÞ; oWg

oup
0

G�� e0adsa
	 
��

x
a ¼ 1; . . .; 6, sa 2 S;x 2 X ~N ð� 6NSNXÞ

Ge� JBp ðak;xÞ
� �

0

Ge� JMp ðxÞ
� �

0

G�e ak Ep

	 

;Gee ak G

e� JMp

� �� �
k ¼ 1; . . .;K; p 2 P;x 2 X 2KNPNX

Ge� JWp ðak;xÞ
� �

0

The total # of forward runs ~N þ ð2K þ 1ÞNPNX
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for a price of OðNXNSÞ forward problem runs. Moreover, if such a product is calculated

multiple times the price drops down to 2NPNX per product. Note also that computation of

the Hessian itself is merely calculation of the Hessian-vector product for K ¼ NM times

with respective vectors ak ¼ 1Vk
; k ¼ 1; . . .;NM.

Appendix 4: Contracting Integral Equation in a Nutshell

Let rðrÞ be a desired 3-D model of complex-valued conductivity, including the real part

term cðrÞ ¼ Re rðrÞ[ 0 as well as the imaginary part term gðrÞ ¼ Im rðrÞ that describes

displacement currents and/or induced polarization effects. Let the model be excited by

electric source jimp. Let us search for the electric field excited by jimp in the model r. This

electric field is the electric field solution of Maxwell’s equations

E ¼ GeeðjimpÞ ,

r�H ¼ rEþ jimp;

r� E ¼ ixlH;

EðrÞ;HðrÞ �! 0 as jrj �! 1:

8>>>>>><
>>>>>>:

ð103Þ

Let rbðrÞ be any model where we can evaluate Green’s operator Gee
rb that is electric field

solution of the following Maxwell’s equations

Eb ¼ Gee
rbðj

impÞ ,

r�Hb ¼ rbEb þ jimp;

r� Eb ¼ ixlHb;

EbðrÞ;HbðrÞ �! 0 as jrj �! 1:

8>>>>>><
>>>>>>:

ð104Þ

We refer to rb as a reference model, e.g., it could be a background (host) model. In further

discussion we assume that rb describes one-dimensional (1-D) conductivity section, i.e.

rb � rbðzÞ. With such introduced reference model, an action of operator Gee
rb on the field

jimp is represented by the following convolution integral

Eb ¼ Gee
rbðj

impÞ ¼
Z

V

Gee
rbðx� x0; y� y0; z; z0Þ jimpðx0; y0; z0Þdv0; ð105Þ

where V is the volume, occupied by jimp. Note, that analogously we can obtain ‘‘reference’’

magnetic field, Hb, via corresponding Green’s operator Ghe
rb , namely, Hb ¼ Ghe

rbðj
impÞ.

Let ra be an anomalous conductivity distribution

raðrÞ ¼ rðrÞ � rbðrÞ: ð106Þ

By trivial manipulations with Eqs. (103) and (104) one can arrive at the scattering (inte-

gral) equation with respect to E

E ¼ AEþ Eb; ð107Þ
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where

A ¼ Gee
rb  ra: ð108Þ

Note that the composition operator A ¼ Gee
rb  ra acts on E as AE ¼ Gee

rbðraEÞ. The

solution of Eq. (107) can be written in the following form

E ¼ 1� Að Þ�1Eb; ð109Þ

where 1 is a unit operator. If operator A is contracting (which means that kAk\1Þ then

1� Að Þ�1
can be represented as

1� Að Þ�1¼ 1þ Aþ A2 þ � � � ; ð110Þ

and thus the solution of Eq. (109) reads as the following Neumann series

E ¼ 1� Að Þ�1Eb ¼ Eb þ AEb þ AðAðEbÞÞ þ � � � : ð111Þ

Generally, contracting properties of operator Gee
rb  ra are not known to us.

In Pankratov et al. (1995) it is shown that the energy inequality for Maxwell’s equations

can be expressed as

kKrbk� 1; ð112Þ

or in alternative form

kKrbðvÞk�kvk; for any vector field v; ð113Þ

where

Krb ¼ 1þ 2
ffiffiffiffiffi
cb

p Gee
rb 

ffiffiffiffiffi
cb

p
: ð114Þ

Here cb ¼ Re rb is the real part of the reference conductivity. Energy inequality (113) is

sharp in the following sense: it turns into equality for a reference model with real-valued

conductivity (Imrb ¼ 0). In the presence of the imaginary part of conductivity, some part

of the energy can radiate into the space, which makes (113) an inequality.

Using inequality (112) it is possible to obtain a new scattering equation with contracting

operator. Let us first rewrite scattering equation (107) in the form

x ¼ Axþ b; ð115Þ

where x ¼ E and b ¼ Eb. Let us renormalize it as

x ¼ Pvþ Q ð116Þ

and

xþ kx ¼ Axþ kxþ b; ð117Þ

with some unknown multipliers PðrÞ;QðrÞ; kðrÞ. Such renormalization modifies scattering

equation (115) to a new scattering equation

v ¼ Bvþ b ð118Þ
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with new linear operator

B ¼ 1

P

1

1 þ k
ðk1þ AÞ  P ð119Þ

and new source term

b ¼ 1

P

1

1 þ k
ðAQ� Qþ bÞ: ð120Þ

Let us then require that new scattering operator B be expressed as a composition of Krb
with some multiplication operator R

B ¼ Krb  R; ð121Þ

and hence we obtain

PðrÞ ¼
2g

ffiffiffiffiffi
cb

p

rþ r�b
; QðrÞ ¼ g

jimp

rþ r�b
; kðrÞ ¼ r� rb

2cb
; RðrÞ ¼ r� rb

rþ r�b
: ð122Þ

Here g 6¼ 0 is an undefined constant, thus we can assign

g ¼ 1; ð123Þ

as it is done in all works on CIE.

Deducing that 1
P

1
1þk ¼

ffiffiffiffiffi
cb

p
and substituting expressions (122)–(123) into Eqs. (116) and

(120), we get the expressions for E and b as follows

E ¼
2
ffiffiffiffiffi
cb

p
vþ jimp

rþ r�b
; ð124Þ

b ¼ ffiffiffiffiffi
cb

p
Eb �

jimp

rþ r�b
þGee

rb

r� rb
rþ r�b

jimp

� �� �
: ð125Þ

It is proven in Pankratov et al. (1995) that

kRk � max jRðrÞj ¼ q\1; ð126Þ

for feasible conductivity distributions (Re r[ 0;Re rb [ 0), thus together with Eq. (113)

it implies that new scattering operator (121) is contracting

kBk� q\1; ð127Þ

and the Neumann series for Eq. (118)

v ¼ ð1� BÞ�1b ¼ bþ Bbþ B2bþ � � � ; ð128Þ

is always convergent. We call new scattering equation (118) the contracting integral

equation (CIE). An optimum choice of the reference conductivity, as well as an estimate of

condition number of CIE system operator, 1� B, is discussed in the next appendix.
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Appendix 5: Choice of Optimal Reference Model and Estimate
of Condition Number for CIE System Operator

In the previous appendix we considered always contracting series (128) to solve Maxwell’s

equations (103). Now we are interested in a choice of ‘‘optimum’’ reference conductivity,

i.e. the conductivity that delivers the fastest convergence of the series (128). Let us imagine

that we want to obtain the solution with desired accuracy e, i.e.

e ¼ kv� vnk
kvk ; ð129Þ

where

vn ¼ bþ Bbþ � � � þ Bn�1b: ð130Þ

Using the relation

kv� vnk ¼ kBnvk� qnkvk; ð131Þ

we obtain that the number of iterations is governed by the following approximate equality

n� ln e= ln q: ð132Þ

From this relation and Eq. (126) it follows that the minimum number of iterations is

achieved for the reference conductivity rbðzÞ ¼ roptðzÞ such that

max
r2MðzÞ

jRðr; roptðzÞÞj ¼ min
rb2P

max
r2MðzÞ

jRðr; rbÞj; for each z; ð133Þ

where

Rðr; rbÞ :¼
r� rb
rþ r�b

: ð134Þ

Here P stands for the right half plane of complex variable r

P ¼ r 2 C Re r[ 0jf g; ð135Þ

and MðzÞ � P is the range of values of rðx; y; zÞ at horizontal plane z ¼ Const

MðzÞ ¼ rðx; y; zÞ 2 C x; y 2 Rjf g: ð136Þ

Under these assumptions, it turns out that

qopt ¼ max
z

min
rb2P

max
r2MðzÞ

jRðr; rbÞj: ð137Þ

Now we notice that

jRðr; rbÞj ¼
r� rb
rþ r�b

����
���� ¼ tanh

1

2
Sðr; rbÞ; ð138Þ

where

Sðr; rbÞ ¼ 2 artanh
r� rb
rþ r�b

����
���� ¼ 2 arsinh

jr� rbj
2
ffiffiffi
c

p ffiffiffiffiffi
cb

p ; ð139Þ
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is the Lobachevsky–Bolyai (Prasolov 2004) distance in the right half plane P. Using

Lobachevsky–Bolyai geometry formalism, with some efforts, it can be shown that

qoptðzÞ ¼ tanh
1

4
diamOðMðzÞÞ

� �
; ð140Þ

where OðMðzÞÞ is the minimum-size Lobachevsky–Bolyai circle that contains the set M(z).

Moreover it can be shown that

diamðMÞ� diamðOðMÞÞ� 2 arsinh
sinh 1

2
diamðMÞ

	 

ffiffiffi
3

p
=2

� �
: ð141Þ

Here diamðMÞ is the diameter of set M in the Lobachevsky–Bolyai half plane P

diamM ¼ max
r;rb2M

Sðr; rbÞ: ð142Þ

In addition it can be proven that 2 arsinh sinh xffiffi
3

p
=2

� �
is monotonically increasing and convex

upward (for x[ 0) function, from which the following inequality is valid

2 arsinh
sinh 1

2
diamðMÞ

	 

ffiffiffi
3

p
=2

� �
� min

diamðMÞffiffiffi
3

p
=2

; diamðMÞ � 2 ln

ffiffiffi
3

p

2

� �
: ð143Þ

From Eqs. (140) to (143) it follows that the optimum number of iterations for the desired

accuracy e is specified by the following inequality

E� nopt � 2E=
ffiffiffi
3

p
; E ¼ max

z
~EðzÞ � ln

1

e
; ð144Þ

where

~EðzÞ� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1

c2

r
�

ffiffiffiffiffi
c2

c1

r� �2

þ n1 � n2ð Þ2

c1c2

s
¼ jr1 � r2j

2
ffiffiffiffiffi
c1

p ffiffiffiffiffi
c2

p ¼ sinh
1

2
Sðr1; r2Þ: ð145Þ

Here conductivity pair r1 ¼ c1 þ in1; r2 ¼ c2 þ in2 from M(z) is the most mutually distant

(in terms of Lobachevsky–Bolyai geometry) pair, i.e. a pair that delivers a maximum to

expression in (145).

Using the developed formalism, it is also possible to estimate condition number j of

CIE system operator 1� B which obeys the following inequality

j� 4ffiffiffi
3

p max
z

~EðzÞ: ð146Þ

Let us illustrate an application of formulae (144)–(145) for the Cole-Cole induced

polarization (IP) conductivity model

rðx; y; z;xÞ ¼ r1ðx; y; zÞ 1 � gðx; y; zÞ
1 þ ixsðx; y; zÞð Þc

� �
; ð147Þ

with the following typically adopted parameters

0� gðx; y; zÞ� gmax � 0:5; c ¼ 1=2: ð148Þ

Surv Geophys (2016) 37:109–147 143

123



Let us decompose the conductivity into real and imaginary parts as follows

r ¼ cþ in; ð149Þ

and let us vary location (x, y, z) in a thin layer at depth z, thus denoting in this layer

cminðz;xÞ ¼ min
x;y

cðx; y; z;xÞ; cmaxðz;xÞ ¼ max
x;y

cðx; y; z;xÞ; ð150Þ

and in the same manner for the imaginary part, thus getting that for all locations in the

layer z, complex-valued conductivity values belong to the following (Euclidean) rectangle

cminðz;xÞ� cðx; y; z;xÞ� cmaxðz;xÞ;
nminðz;xÞ� nðx; y; z;xÞ� nmaxðz;xÞ:

�
ð151Þ

Let us evaluate ~EðzÞ for the Euclidean rectangle (151) using formulae (144)–(145). Value

of ~EðzÞ is then a maximum value of (145) for any pair of complex numbers c1 þ in1; c2 þ
in2 that belong to Euclidean rectangle (151) as follows

~EðzÞ ¼ max ~E1ðzÞ; ~E2ðzÞ
	 


; ð152Þ

where

~E1ðzÞ�
nmax � nmin

cmin

; ~E2ðzÞ�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmax

cmin

þ nmax � nminð Þ2

cmaxcmin

s
: ð153Þ

Next, taking into account Cole–Cole Eqs. (147)–(148) we get jnmaxj � 0:1jcmaxj and thus

~EðzÞ� 1

2
max 0:1

cmax

cmin

;
ffiffiffiffiffiffiffiffiffi
1:01

p ffiffiffiffiffiffiffiffiffi
cmax

cmin

r� �
: ð154Þ

We see that for a high-contrasting inductive polarized z-layer the value of ~EðzÞ grows as

the contrast of the real part of conductivity, K :¼ cmax

cmin
. The other consequence is that the IP

contrast in Cole–Cole model plays significant role in finding the optimum model, if the

contrast of the real part of conductivity is greater than 100. The latter value is a threshold:

for K 
 100 we get ~EðzÞ� 1
20
K, whereas for K� 100 we have ~EðzÞ� 1

2

ffiffiffiffi
K

p
.

Final remark of this section is that if conductivity is a real-valued function (which is the

most common case in EM studies), then for ~EðzÞ the following equality holds

~EðzÞ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmaxðzÞ
cminðzÞ

s
; ð155Þ

where

cminðzÞ ¼ min
x;y

cðx; y; zÞ; cmaxðzÞ ¼ max
x;y

cðx; y; zÞ: ð156Þ

Equation (155) means that the number of iterations and condition number for the optimal

model are proportional to the square root of the maximum lateral contrast in the model. As

for the optimum conductivity, roptðzÞ, it is equal in this case to the conductivity of the host

section outside the depths occupied by the inhomogeneities, but at depths with laterally

inhomogeneous distribution of conductivity it has the form

roptðzÞ � coptðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cminðzÞcmaxðzÞ

p
: ð157Þ
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