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Abstract Magnetotelluric (MT) data can image the electrical resistivity of the entire

lithospheric column and are therefore one of the most important data sources for under-

standing the structure, composition and evolution of the lithosphere. However, interpre-

tations of MT data from stable lithosphere are often ambiguous. Recent results from

mineral physics studies show that, from the mid-crust to the base of the lithosphere,

temperature and the hydrogen content of nominally anhydrous minerals are the two most

important controls on electrical conductivity. Graphite films on mineral grain boundaries

also enhance conductivity but are stable only to the uppermost mantle. The thermal profile

of most stable lithosphere can be well constrained, so the two important unknowns that can

affect the conductivity of a lithospheric section are hydrogen content and graphite films.

The presence of both of these factors is controlled by the geological history of the litho-

sphere. Hydrogen in nominally anhydrous minerals behaves as an incompatible element

and is preferentially removed during melting or high-temperature tectonothermal events.

Grain-boundary graphite films are only stable to *900 �C so they are also destroyed by

high-temperature events. Conversely, tectonic events that enrich the lithosphere in

incompatible elements, such as interaction with fluids from a subducting slab or a plume,

can introduce both hydrogen and carbon into the lithosphere and therefore increase its

electrical conductivity. Case studies of MT results from central Australia and the Slave

Craton in Canada suggest that electrical conductivity can act as a proxy for the level of

enrichment in incompatible elements of the lithosphere.
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1 Introduction

Magnetotellurics (MT) is a passive, electromagnetic geophysical method that has sufficient

depth penetration to image the electrical resistivity of whole of the lithosphere (Jones and

Ferguson 2001; Heinson and Constable 1992; Egbert and Booker 1992; Jones 1999; Muller

et al. 2009). It stands with seismic tomography as the only geophysical techniques able to

accurately resolve lithospheric-scale features. Therefore, the electrical character of the

lithosphere has the potential to be one of its best understood parameters. However, the

relationship between electrical resistivity and geological features is often not well

understood and this has limited the contribution of MT data to our understanding of the

lithosphere. These interpretational difficulties have stemmed largely from insufficient data

on the expected resistivities of different mineral systems at lithospheric pressure and

temperature conditions and on the possible causes of enhanced conductivity in stable

lithosphere. In recent years, numerous experiments in mineral physics have bridged this

gap and have provided much of the data necessary to make more geologically meaningful

interpretations of MT data. By combining MT data with results from mineral physics

experiments and an understanding of the compositional effects of various geological

processes, MT can contribute to improving our understanding of lithospheric composition,

structures and processes.

MT data measure the electrical resistivity of the Earth by utilizing the fact that time

variations in the Earth’s magnetic field induce currents in conductive bodies within the

Earth. The fluctuations in the Earth’s magnetic field are sourced from electrical storms at

periods shorter than *1 s and from the interaction between the ionosphere and the solar

wind at periods longer than *1 s. Due to the distant origin of the magnetic source fields

and the period range of interest, MT fields are considered to be plane waves that are

vertically incident on the Earth’s surface before traveling in a diffusive manner within the

Earth (e.g., Dmitriev and Berdichevsky 1979). The depth of penetration for an MT signal is

dependent on the period of the signal and the resistivity of the Earth, such that deepest

penetrations will result from a long recording time (typically in the order of several weeks

for lithospheric-scale surveys) and a resistive Earth. Electric and magnetic fields are

measured in orthogonal directions at the Earth’s surface, and the resulting time series are

Fourier-transformed into the frequency domain. The ratio of the square of the total mag-

netic field to the induced electric field at a given period is proportional to the apparent

resistivity of the Earth. Therefore, by measuring MT signals at numerous stations along a

profile or in a grid and inverting the data, lateral and vertical changes in the electrical

resistivity of the Earth can be determined.

There are several potential causes of enhanced conductivity in the lithosphere. Ionic

conduction occurs in interconnected saline fluids and can result in low-resistivity zones in

porous sedimentary rocks (e.g., Hautot et al. 2000; Hoffmann-Rothe et al. 2001; Tournerie

and Chouteau 2005; Selway et al. 2012), in regions where water may infiltrate shear zones

above the brittle–ductile transition in the mid- to upper crust (Becken and Ritter 2012;

Ritter et al. 2005) or where metamorphic fluids are being released from active dehydration

reactions (e.g., Wannamaker et al. 2002, 2009; Bertrand et al. 2009). Ionic conduction also

occurs in interconnected melts with resulting low-resistivity zones observed beneath areas

of active volcanism or tectonism (ten Grotenhuis et al. 2005; Schilling et al. 1997; Brasse

et al. 2002; Hill et al. 2009). The focus of this review is the interpretation of MT data in

tectonically stable, cratonic lithosphere. In such regions, by definition, active tectonism is

not occurring and low-resistivity zones caused by melts or metamorphic fluids would not

be expected. Saline fluids may cause low-resistivity zones in the upper crust, but free,

220 Surv Geophys (2014) 35:219–257

123



interconnected fluid would not be expected to exist at greater depths within the lithosphere.

These conduction mechanisms will therefore not be a focus of this discussion.

Sulfide minerals have low resistivity, and interconnected sulfides have been interpreted

to be the cause of some low-resistivity features in cratonic environments (Chouteau et al.

1997; Livelybrooks et al. 1996; Jones et al. 2005a). While interconnected sulfides are of

importance in selected settings, they are not expected to be a common cause of enhanced

conductivity in the lithosphere. Sulfides are not volumetrically abundant (sulfur is only

*0.7 wt% of a bulk Earth composition (Allegre et al. 1995)) and are generally unstable at

depths greater than the uppermost mantle (e.g., Sack and Ebel 2006) so anomalies due to

such minerals will generally be discrete, small-scale features. In a recent study, Watson

et al. (2010) found that a small amount (1.4 wt%) of FeS powder added to finely ground

(*45 gm) olivine formed films on the olivine grain boundaries that enhanced conduc-

tivity by more than an order of magnitude. Since it does not currently appear common for

natural samples to exhibit such films and the measured grain sizes are much smaller than

average lithosphere, which would enhance grain-boundary conduction (see discussion in

Sect. 2.1), these films will also not be a focus of this review. However, given the stark

increase in conductivity measured by Watson et al. (2010), such films would produce an

observable response if further research can predict circumstances in which they might

exist.

Since fluids, melt and interconnected sulfides are unlikely to account for significant

conductivity anomalies in the stable lithosphere, only two primary candidates remain to

explain such observations: conduction through grain-boundary graphite films and semi-

conduction through diffusing particles in silicate minerals. In order to produce geologically

meaningful interpretations of MT data, it is therefore necessary to understand the geo-

logical factors that lead to enhancement of or reduction in these two components. In this

review, conduction through both silicate semi-conduction and grain-boundary graphite

films is summarized and it is argued that each of these conduction mechanisms will be

most abundant in lithosphere that is enriched in incompatible elements, which are elements

that preferentially partition into melt during partial melting. This summary is followed by a

discussion about the thermal and compositional structure of cratonic lithosphere in terms of

the factors that will lead to enrichment or depletion in incompatible elements. It is shown

that lithosphere that has experienced multiple generations of melting events will be

depleted but that such lithosphere may be re-fertilized by interaction with melts from a

subducting slab or a mantle plume. With this in mind, MT results from the Archean to

Paleoproterozoic Gawler Craton and Mesoproterozoic to Neoproterozoic Musgrave

Province in Australia and from the Archean Slave Craton in Canada are reviewed. The

analysis shows that those parts of the lithosphere that have been re-fertilized by subduction

or plume events have higher conductivities than would be expected for dry, crystalline

lithosphere with no conducting phase, whereas those that have undergone high-temperature

metamorphic and melting events have high resistivities that suggest that no enhanced

conductivity is present. It is suggested that, for stable lithosphere, MT data be interpreted

with a consideration of the expected enrichment state of the lithosphere (e.g., Wannamaker

2005; Yang et al. 2011).

2 Electrical Conduction Mechanisms in Stable Lithosphere

The first step in seeking to make meaningful interpretations of MT data must be to know

the expected resistivities of common mineral assemblages at lithospheric pressure and
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temperature conditions by reviewing findings from relevant mineral physics experiments.

It is only through comparing such data with MT models that it is possible to know whether

additional phases need to be invoked to explain the modelled resistivity.

2.1 Diffusion in Semi-conductors

While silicate minerals behave as resistors at surface pressures and temperatures, at depths

as shallow as the lower crust they begin to behave as semi-conductors. The charge carriers

for semi-conduction are diffusing particles (see Chakraborty (2008) for a review of dif-

fusion in silicates) and conductivity r obeys the Nernst–Einstein equation:

r ¼ Nzel

where N is the number of electric charge carriers per unit volume, z is the charge number, e

is the charge of an electron, and l is the mobility. Conduction by diffusing species is

defined by the Arrhenius relation:

r ¼ r0 � exp
�DH

RT

� �

where r0 is the pre-exponential factor, DH is the activation enthalpy, R is the gas constant,

and T is the absolute temperature.

The physical manifestation of these relationships is that composition and temperature

are the two most important factors controlling the conductivity of silicates. Composition is

important because it determines which species are available to diffuse. Experiments on

nominally anhydrous minerals which dominate the lithosphere such as olivine (Poe et al.

2010; Wang et al. 2006, 2012; Yoshino et al. 2006, 2009), garnet (Dai et al. 2012;

Mookherjee and Karato 2010; Yoshino et al. 2008), orthopyroxene (Dai and Karato 2009a;

Yang et al. 2012), clinopyroxene (Yang et al. 2011) and plagioclase (Yang et al. 2012)

have concluded that hydrogen content is the most important compositional parameter

affecting conductivity at lithospheric temperatures and pressures (Karato 1990, 2006;

Yoshino 2010). Other compositional factors such as mineralogy (e.g., Dai and Karato

2009b; Yang et al. 2012) and magnesium number (Mg# = Mg/(Mg ? Fe)) (Dai et al.

2012; Yoshino et al. 2009) have important but lesser effects on conductivity (Fig. 1).

Given the importance of hydrogen concentration to conductivity, experiments with con-

trolled and measured water contents will be focused on in the following discussion.

Temperature must be sufficiently high to overcome the activation enthalpy of diffusion,

and an increasing temperature will increase the efficiency of diffusion. In many systems,

the most efficient diffusion regime will change with increasing temperature as different

particles gain sufficient energy to overcome their activation enthalpy (Chakraborty 2008;

Yoshino 2010).

Olivine ((Mg,Fe)2SiO4) is the dominant mineral in the upper mantle and its conductivity

has been extensively studied in mineral physics experiments. Although some findings

differ with different experimental methods between groups (Yoshino 2010; Yang et al.

2012; Karato and Dai 2009), the experimental data agree that, at temperatures represen-

tative of the lithospheric mantle, conduction in hydrous olivine is dominated by hydrogen

diffusion (Yoshino et al. 2009; Wang et al. 2006, 2012; Poe et al. 2010; Karato 2006).

Hydrogen sits in the mineral lattice of hydrated olivine (or other nominally anhydrous

minerals) as a point defect (e.g., Karato 2006; Kohlstedt and Mackwell 1998) and therefore

requires a lower activation enthalpy to diffuse than more stable species. At higher
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temperatures representative of the upper mantle but dependent on the specific composition

of interest (Yoshino et al. 2009, 2012), the system has sufficient energy to overcome the

activation enthalpy for diffusion of electron holes between ferric (Fe3?) and ferrous (Fe2?)

ions (Schock et al. 1989; Kohlstedt and Mackwell 1998; Chakraborty 2008) in a process

called small polaron conduction. In this regime, the major element chemistry of olivine is

important and an increase in iron concentration (or decrease in magnesium number) will

increase conductivity as it results in a greater concentration of diffusing particles (Yoshino

et al. 2009, 2012). In addition, a decrease in the activation enthalpy has been measured

with increasing iron content, interpreted to be due to a decreasing average distance

between Fe2? and Fe3? ions (Yoshino 2010). In the polaron conduction regime, the effects

of polaron conduction and hydrogen conduction will be cumulative such that, at these

temperatures, hydrous olivine will still be more conductive than anhydrous olivine (Poe

et al. 2010; Wang et al. 2006; Yoshino et al. 2009). At temperatures that are higher still and

approach the melting temperature of olivine, diffusion between iron and magnesium ions

and lattice vacancy sites begins to occur (Schock et al. 1989) (Figs. 1, 2).

Semi-conduction in other nominally anhydrous mantle silicate minerals follows the

same pattern as in olivine. Experimental results on orthopyroxene show higher conduc-

tivities and lower activation enthalpies for hydrous samples than dry samples (Dai and

Karato 2009a; Xu and Shankland 1999). Activation energies are similar to those measured

in olivine, suggesting that the conduction mechanisms are the same, but the absolute

conductivities of both dry and hydrous orthopyroxene are higher than those of olivine (Dai

and Karato 2009a). Likewise, hydrous garnet has a higher conductivity and lower acti-

vation enthalpy than dry garnet, but the conductivity of garnet is higher than that of olivine

and orthopyroxene at the same temperature, pressure and hydration conditions (Dai and

Karato 2009a, b). Measurements taken at temperatures corresponding to the polaron dif-

fusion regime demonstrate that garnets with higher iron contents have higher conductiv-

ities at given pressure and temperature conditions (Yoshino et al. 2008; Dai et al. 2012).

Figure 3 shows a comparison of experimental ranges from different laboratories of

resistivities of dry and hydrous olivine, pyroxene and garnet, adapted from a compilation

by Fullea et al. (2011).

Fig. 1 Schematic illustration of the main diffusion mechanisms in (Fe, Mg) silicates using the Kröger-Vink

notation XZ
Y where species X occupies site Y with charge Z, V is a vacancy, 0 is a negative charge, x is neutral

charge and • is a positive charge. Ionic diffusion involves the diffusion of iron or magnesium ions with a site
vacancy and has a high activation enthalpy. Polaron diffusion involves the diffusion of an electron between
ferrous and ferric iron and has a moderate activation enthalpy. Proton diffusion involves the diffusion of
hydrogen ions (diffusion with a vacancy is illustrated, but diffusion may involve other species) and has a low
activation enthalpy
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Fig. 2 Schematic plot of the
change in conduction mechanism
with temperature. With
increasing temperature, the most
efficient conduction mechanism
changes from proton conduction
to small polaron conduction to
ionic conduction. Proton
conduction is dependent on
hydrogen concentration, and
small polaron conduction is
dependent on iron concentration.
The specific temperature at which
the dominant conduction
mechanism changes is
compositionally dependent

Fig. 3 Resistivity versus
temperature data for selected
experimental results of mantle
minerals described in the text and
adapted from the compilation of
Fullea et al. (2011) for a
temperature range representing
the lithospheric mantle. The
upper plot shows results for the
resistivity of dry olivine from
Yoshino et al. (2009) and Wang
et al. (2006), dry orthopyroxene
from Dai and Karato (2009a),
and dry garnet from Dai and
Karato (2009b) and Yoshino
et al. (2008). The lower plot
shows results for the resistivity of
hydrous olivine (400 wt ppm
H2O) from Wang et al. (2006),
Yoshino et al. (2009) and Poe
et al. (2010), hydrous
orthopyroxene (200 wt ppm
H2O) and hydrous clinopyroxene
(400 wt ppm H2O) from Dai and
Karato (2009a), and hydrous
garnet (20 wt ppm H2O) from
Dai and Karato (2009b)
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Measurements of the conductivities of crustal nominally anhydrous minerals show

similar trends to those seen in the mantle minerals described above. Yang et al. (2012,

2011) measured orthopyroxene, clinopyroxene and plagioclase, which are the main con-

stituents of stable lower crust, at both dry and hydrous conditions. As for mantle minerals,

dry orthopyroxene, clinopyroxene and plagioclase have higher activation enthalpies and

lower conductivities than hydrous minerals and there is evidence that higher iron contents

in the pyroxenes and sodium content in the plagioclase decrease the activation enthalpy of

the dry minerals (Yang et al. 2011, 2012). Plagioclase has the lowest conductivity of the

three minerals in both the dry and hydrous cases, while the conductivity of orthopyroxene

is slightly higher than that of clinopyroxene at the same conditions of hydration (Yang

et al. 2012). However, in nature, water partitions preferentially into clinopyroxene so it is

likely that clinopyroxene would dominate the conductivity of a hydrous lower crust if

interconnected (Yang et al. 2012).

Oxygen fugacity also affects electrical conductivity at a given composition and tem-

perature (e.g., Dai et al. 2012; Karato 2011; Dai and Karato 2009c). In the small polaron

diffusion regime, an increase in oxygen fugacity will increase the proportion of ferric

(Fe3?) ions and will therefore increase conductivity. In the hydrogen diffusion regime, an

increase in oxygen fugacity will have the opposite effect, decreasing the number of

hydrogen point defects and decreasing conductivity. Experimental data for garnet at

temperature and pressure conditions typical of the upper mantle show that the effect of

oxygen fugacity is less than that of temperature and hydration but is still significant, with

conductivities differing by approximately half an order of magnitude between the highest

(Fe2O3 ? Fe3O4) and lowest (Mo ? MoO2) oxygen buffers (Dai et al. 2012). As depth

increases through the continental lithospheric column, oxygen fugacity is expected to

systematically decrease by three to four orders of magnitude due to increasing pressure and

changing mineral stability fields (Frost et al. 2008; Wood et al. 1990). Therefore, dry

conductivity will systematically increase with depth, and wet conductivity will systemat-

ically decrease. While pressure affects the conductivity through changing oxygen fugacity,

its direct impact on conductivity within the stability field of the mineral being measured is

minimal (e.g., Xu et al. 2000; Yang et al. 2011; Yoshino 2010). Studies show that con-

ductivity may be anisotropic for some lithospheric minerals. Although the strength of

conductivity anisotropy is debated, it appears to increase with water content and to be

strongly temperature-dependent (Poe et al. 2010; Yoshino et al. 2006; Du Frane and

Tyburczy 2012; Du Frane et al. 2005; Wang et al. 2006). The reader is directed to the

review by Pommier (2013) in this volume for a more thorough discussion.

Hydrogen diffusion, small polaron diffusion and ion diffusion are all volume diffusion

processes, that is, the particles diffuse through the interior of the crystal lattice. However,

diffusion of point defects can also occur along grain boundaries (Chakraborty 2008).

Studies directly investigating the influence of grain size on conductivity suggest that grain-

boundary diffusion becomes important only at very small grain sizes (Fig. 4). For instance,

Demouchy (2010a) showed that, depending on diffusion mechanism and crystallographic

axis, diffusion is independent of grain size for grain sizes greater than a minimum of

0.01 mm and a maximum of 1 mm. ten Grotenhuis et al. (2004) measured an increase in

conductivity with decreasing grain size for synthetic forsterite but only for a narrow range

of very small grain sizes (1.1 ± 0.4 to 4.7 ± 2.4 lm), for which hydrogen contents were

not measured. In contrast, Yang et al. (2011) and Yang and Heidelbach, (2012) observed

no difference in conductivity between polycrystalline samples of clinopyroxene with grain

sizes 5–250 lm and larger single crystals of approximately 1 mm. The majority of mineral

physics experiments carried out on polycrystalline aggregates described in the preceding
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section observed only volume diffusion, even at grain sizes of 1 lm, suggesting that grain-

boundary diffusion did not contribute significantly to conduction (e.g., Dai and Karato

2009c; Wang et al. 2006; Yoshino et al. 2009). Therefore, while more experimental results

are needed, it is reasonable to expect that increases in conductivity with decreasing grain

size may only be apparent for grain sizes smaller than 10–100 lm, if at all. Given that

typical grain sizes in the lithospheric mantle are on the order of 1 mm and smaller grain

sizes (*B10 lm) only expected in specific settings such as shear zones, small grain size is

not likely to be the cause of large conductive anomalies.

Combined analysis of seismic and MT data can be very powerful in discriminating

between the different causes of enhanced conduction by semi-diffusion. Seismic velocities

are strongly dependent on major element chemistry and will be substantially reduced by an

increasing Fe content, but are only slightly reduced by the addition of substantial amounts

of hydrogen. In contrast, seismic attenuation is strongly dependent on hydrogen content,

has a modest dependence on grain size and shows little variation with major element

chemistry (Karato 2006 and references therein). Joint analysis of appropriate datasets

therefore has potential to be a powerful tool for constraining lithospheric composition (e.g.,

Jones et al. 2013).

2.2 Grain-Boundary Graphite Films

Graphite films with thicknesses from as small as several nm up to several hundred nm have

been observed on the grain boundaries of minerals from many mid- to lower crustal

samples (Frost et al. 1989; Mareschal et al. 1992; Mathez et al. 1995). Experimental results

show that the presence of interconnected graphite films on grain boundaries can increase

the conductivity of a sample by several orders of magnitude (e.g., Glover 1996) and have

provided a feasible interpretation of low-resistivity zones in the graphite stability field

within the crust and upper mantle (e.g., Jones et al. 2003; Santos et al. 2002; Mareschal

et al. 1995) that in some cases has been proven through petrological identification of

Fig. 4 Experimental results showing the grain-size dependence of grain-boundary diffusion in olivine at
1,200 �C and 300 MPa, adapted from Demouchy (2010a). The steep gradient at small grain sizes indicates
faster diffusion along grain-boundaries, whereas at larger grain sizes, the flat gradient shows that grain-
boundary diffusion is less efficient than lattice diffusion and that grain size will not affect resistivity. The
grey box indicates the range of grain sizes included in the experiments of ten Grotenhuis et al. (2004). At
grain sizes typical of the upper mantle ([1 mm), the effect of grain-boundary diffusion will be minimal
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graphite in the conductor and petrophysical analysis of rock samples (Jödicke et al. 2004;

Pous et al. 2004). It is necessary to understand the habit of carbon in order to predict its

conductivity since individual flakes of graphite (e.g., Jödicke et al. 2004), unconnected

grain-boundary films (e.g., Katsube and Mareschal 1993) or carbon trapped in fluid

inclusions will not enhance conductivity. More detail on the conditions in which graphite

would be expected to exist as grain-boundary films is given in Sect. 3.2.

3 Expected Resistivity Structure of Stable Continental Lithosphere

Cratons are stable pieces of lithosphere that have remained largely undeformed since the

Proterozoic. Cratonic sub-continental lithospheric mantle (SCLM) is expected to be

dominantly Archean in age since Proterozoic crust exposed at the surface of cratons

appears to be generally underlain by Archean SCLM (Griffin et al. 2009). Given the age

and stability of cratonic lithosphere, several generalizations can be made about its struc-

ture, composition and temperature profile. Since the factors that control lithospheric

conductivity are temperature, hydrogen content and graphite films, this analysis will focus

on the thermal structure of the lithosphere, the mechanisms by which hydrogen is incor-

porated into nominally anhydrous minerals and the expected settings in which hydrogen

and graphite films would be present.

3.1 Thermal Structure of the Lithosphere

Compilations of average surface heat flow from Archean and Proterozoic regions show that

heat flow statistically decreases with increasing age of the lithosphere, from an average of

41 ± 11 mW/m2 in Archean regions to 55 ± 17 mW/m2 in Proterozoic regions not

associated with Archean lithosphere (Nyblade and Pollack 1993). The thermal structure of

the lithosphere associated with these heat flows is dependent on the partitioning of

radioactive elements (and therefore heat production) between the crust and the mantle and

on the thickness of the lithosphere (Nyblade and Pollack 1993; Rudnick et al. 1998; Jaupart

and Mareschal 2007). Combined analysis of seismological data, heat flow data, pressure

and temperature estimates from xenoliths and compositional constraints from xenoliths

have allowed well-constrained models of average lithospheric thermal structure to be

produced (Fig. 5) (McKenzie et al. 2005; Rudnick et al. 1998; Artemieva and Mooney

2001; Artemieva 2006) with uncertainties as little as 100–200 �C (Artemieva and Mooney

2001). However, individual regions may depart from these averages. For instance, stable

Proterozoic lithosphere in central and southern Australia has surface heat flows that exceed

100 mW/m2 due to high concentrations of radioactive elements. In contrast, the Tanzanian

Craton has surface heat flow values as low as 13 mW/m2 (Nyblade et al. 1990), but the

temperature at the base of the lithosphere is elevated by *150 �C due to the present-day

thermal impact of a plume (Lee and Rudnick 1999). Since temperature exerts a strong

influence on conductivity (as described in Sect. 2.1), it is important to consider the specific

thermal regime of the region of interest in interpreting MT data. For instance, a Phan-

erozoic setting or a region of high heat flow would be expected to exhibit higher con-

ductivities than an Archean or other low heat flow setting for a given depth even if all other

compositional factors were identical.

The thermal history of the lithosphere can also control its composition and therefore

also its conductivity. For instance, at high temperatures, grain-boundary graphite films

become unstable and minerals are likely to dehydrate (see Sect. 3.3) which will increase
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lithospheric resistivity even after the thermal structure has stabilized. Mantle temperatures

would have been approximately 150 �C higher toward the end of the Archean (Michaut

et al. 2009), so depths of temperature-controlled reactions would have been shallower.

Tectonic events such as collision, accretion, delamination and rifting will also result in

increased lithospheric temperatures. Specific thermal histories can be determined through

petrological analysis of metamorphic rocks; for instance, ultra-high-temperature meta-

morphic mineral assemblages representing lower crustal temperatures C900 �C have been

interpreted to be formed in accretionary back-arc basins, collisional systems and through

contact metamorphism (Kelsey 2008). Determination of the thermal history of the litho-

sphere may allow the causes of an observed resistivity structure to be constrained.

3.2 Distribution of Grain-Boundary Graphite Films

For graphite to cause significant conductivity anomalies, two main conditions must be met:

first, the lithosphere must contain sufficient carbon to form the requisite thickness of

graphite, and second, the graphite must be interconnected, which will generally be in the

form of grain-boundary films. Estimates of mid-ocean ridge basalt (MORB) carbon content

vary from 10 to 30 ppm, while estimates of enriched mantle vary from 50 to 500 ppm

(Dasgupta and Hirschmann 2010). Since grain-boundary films as thin as several nm will

enhance conductivity, geologically reasonably carbon concentrations of the order of

100 ppm can produce a conductivity anomaly if the graphite is interconnected (Duba and

Shankland 1982). Xenolith samples display a range of carbon contents, suggesting that the

distribution of carbon in the SCLM is not uniform. Interaction with kimberlitic or sub-

duction-related melts, which are rich in carbon (Sleep 2009; Plank and Langmuir 1998), will

increase the carbon content of the SCLM, as discussed in greater detail in Sect. 3.5. The

different sources of carbon in the mantle may be distinguished by d13C isotopes whereby

‘‘heavy’’ d13C signatures (*-5 %) have been interpreted to represent a mantle source and

‘‘light’’ d13C signatures (*-25 %) have been interpreted to represent a subducted organic

matter source (e.g., Sano and Marty 1995; Pearson et al. 1994; Tappert et al. 2005).

However, some caution should be applied to these interpretations as Deines (2002) argues

that the different d13C signatures may simply represent different mantle C reservoirs.

Fig. 5 Solid line shows the
thermal gradient of stable
continental lithosphere calculated
by McKenzie et al. (2005).
Greyscale regions show the
average thermal gradients of
lithosphere of different ages
calculated by Artemieva (2006)
on the basis of surface heat flow
and xenolith data
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Carbon in the lithosphere can exist as diamonds, fluid inclusions, CH4, carbonate

minerals, CO2-bearing melt or fluids, individual graphite flakes and as grain-boundary

graphite films. In stable lithosphere in which we assume no melt is present, it is only the

latter form that will create a significant conductor so it is important to determine the

conditions under which grain-boundary graphite films will form. Diamonds and graphite

both require reducing conditions (approximately 1.5–2.5 log units below the fayalite-

magnetite-quartz (FMQ) oxygen fugacity buffer) for stability (Stagno and Frost 2010). At

more oxidizing conditions, diamonds and graphite become unstable, converting to car-

bonate minerals at temperatures below the solidus and to a carbon-rich melt at tempera-

tures above the solidus. Graphite is stable at pressures and temperatures less than *5 GPa

and 1,100 �C, corresponding to a depth of approximately 150 km in a standard cratonic

geotherm, while diamond is stable at greater depths (Pearson et al. 1994). However, even

within the graphite stability field, grain-boundary graphite films appear to have a limited

stability range. Analysis of xenoliths suggests that grain-boundary graphite films are only

stable to temperatures of approximately 600–900 �C (Mathez 1987; Mathez et al. 1984;

Pineau and Mathez 1990). Likewise, in conductivity measurements, Yoshino and Noritake

(2011) found that the conductivity of grain-boundary graphite films on synthetic quartz

crystals decreased rapidly at temperatures [1,000 �C as the graphite films became

unstable. At very shallow depths, low pressures appear to break the connection pathways

between the graphite films such that they no longer form a conductor (e.g., Katsube and

Mareschal 1993; Duba et al. 1988, 1994). Grain-boundary graphite films observed on

xenoliths have been interpreted to have formed during quenching of the sample, when

carbon from volcanic gases was deposited on fresh mineral surfaces (Mathez 1987), which

suggests that they are related to low-temperature processes operating in the uppermost

mantle or the crust. Kimberlite melts are particularly rich in carbon and are likely to degas

CO2 in the uppermost mantle (Pearson et al. 1994; Sleep 2009; Hunter and McKenzie

1989; Wyllie 1980). The characteristic interstitial angle of the degassed CO2 is sufficiently

low that it can move along grain boundaries (Hunter and McKenzie 1989). In sufficiently

reducing conditions, this CO2 will be converted to graphite and this could be an important

source for grain-boundary graphite films.

3.3 Hydrogen Content in Nominally Anhydrous Minerals (NAMs)

Measured hydrogen concentrations in mantle xenoliths generally fall in the ranges

0–0.02 wt% for olivine and garnet (equivalent to 0–200 wt ppm) and 0.01–0.02 wt% for

pyroxenes (equivalent to 100–200 wt ppm) (Bell and Rossman 1992). However, it is not

necessarily valid to rely on xenolith data to determine the average water content of the

upper mantle since xenoliths may lose or gain hydrogen during exhumation (e.g., Ingrin

and Skogby 2000) and tend to be sourced from non-representative regions of the litho-

sphere (Griffin et al. 2009). Experimental studies on dissolution of hydrogen in NAMs

show that the hydrogen content is related to the number of appropriate point defects in the

mineral lattice combined with the availability of hydrogen ions that can act as a charge

compensator in the vacancy (e.g., Karato 2006). The maximum amount of hydrogen that

can be incorporated into mantle minerals will increase with increasing pressure and with

decreasing oxygen fugacity (Ingrin and Skogby 2000) but at typical upper mantle condi-

tions will be in the order of 0.01 wt% for olivine and garnet and 0.1 wt% for pyroxenes

(Ingrin and Skogby 2000; Kohlstedt et al. 1996; Bell et al. 2003; Lu and Keppler 1997;

Mierdel et al. 2007; Kovács et al. 2012).
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Hydrogen behaves as an incompatible element in the mantle, meaning that during

melting or devolatilization, it will preferentially partition into the melt rather than remain

in the solid mineral phase. Michael (1988) analyzed MORB glass samples and found that

the samples that were enriched in incompatible elements were also enriched in H2O. H has

approximately the same incompatibility as Ce, and the measured H partition coefficient

between olivine and melt is 0.0017 ± 0.0005, between clinopyroxene and melt is

0.023 ± 0.005 and between orthopyroxene and melt is 0.019 ± 0.004 (Aubaud et al.

2004). In the solid phase, water will partition preferentially into orthopyroxene and

clinopyroxene rather than into olivine, whereas most other incompatible elements will

partition into clinopyroxene and garnet over orthopyroxene and olivine (Bell and Rossman

1992). Therefore, it is reasonable to expect that hydrogen proportions will broadly follow

incompatible element proportions and that ‘‘enriched’’ portions of the lithosphere will have

high hydrogen concentrations while ‘‘depleted’’ portions will contain little to no hydrogen.

Although lithospheric hydrogen content is difficult to constrain from xenoliths and is not a

routine measurement, the level of enrichment or depletion in incompatible elements in

xenoliths is a common analysis and their distribution with regard to different geological

systems is well understood. By recognizing that regions enriched in other incompatible

elements are also likely to be enriched in hydrogen, it is possible to predict the regions in

which we would expect high conductivity due to hydrogen.

3.4 Compositional Structure of the Lithosphere

Compositionally, the volumetrically most abundant mineral in the SCLM is olivine, fol-

lowed by orthopyroxene, clinopyroxene and garnet. Average trends show that mantle

composition becomes increasingly depleted in incompatible elements (such as Fe, Al, Ca

and radioactive elements) with increasing age (e.g., Djomani et al. 2001) as these volatile

elements are preferentially partitioned into melt during melting events (Hofmann 1988;

Workman and Hart 2005). Careful analysis by Griffin et al. (2009) to remove bias inherent

in determining compositions from xenolith data showed that highly depleted Archean

SCLM would have a magnesium number of 93.1. In contrast, the magnesium number of

models for mantle that has undergone no depletion events (the primitive upper mantle) is

approximately 89.3 (McDonough and Sun 1995) (Fig. 6). Changes in iron content of this

magnitude will produce such small changes in conductivity that they will not affect MT

results (e.g., Yoshino et al. 2008). In comparisons of xenolith samples made by Kame-

netsky et al. (2001), the median of the proportion of forsterite (the magnesium end-member

of olivine) in depleted MORB was 89.5, whereas the median value for enriched, plume-

derived ocean island basalt was 83.5. This difference is also unlikely to produce a

detectable conductivity signature. The difference was more pronounced in spinels (median

magnesium number of 71 for MORB and 51 for ocean island basalts) so, if such phases are

sufficiently voluminous to be interconnected, a small signal may be detectable. However,

other compositional changes are expected to be more important. The models of Griffin

et al. (2009) and McDonough and Sun (1995) predict that at 100-km depth, the proportions

of olivine/orthopyroxene/clinopyroxene/garnet are 87.8/11.2/0.2/0.9 for depleted Archean

SCLM and 55.1/17.9/10.0/17 for primitive mantle that is not depleted in incompatible

elements. At 200-km depth, the trend is similar with compositional proportions of 87.8/

10.7/0.3/1.2 for depleted Archean SCLM and 55.6/19.6/9.6/15.2 for the primitive mantle

(Fig. 6). Undepleted mantle therefore has much higher proportions of pyroxenes and garnet

compared to olivine than depleted mantle. Under dry conditions, garnet is approximately

an order of magnitude more conductive than olivine at mantle temperatures and the
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conductivity of orthopyroxene is intermediate between garnet and olivine (under hydrous

conditions the difference is reduced) (Dai and Karato 2009a, b). Therefore, it is possible

that, given a sufficient, interconnected volume fraction, the increased garnet and pyroxene

proportion in primitive mantle may be detectable by MT.

The resistivity of stable lower crust has been imaged in MT surveys to vary greatly from

\10 to [10,000 Xm worldwide (Jones 1992; Korja and Hjelt 1993; Haak and Hutton

1986; Selway et al. 2011; Jones et al. 2005b). The observation of a lower crustal conductor

in many regions has led to significant debate over its possible causes over the last three

decades (e.g., Haak and Hutton 1986; Jones 1992; Yardley and Valley 1997; Wannamaker

2000; Yang 2011). Continental crust displays more lithological variation and less clear

patterns of secular evolution than the mantle, but some generalizations can still be made

about its average expected composition (Taylor and McLennan 1995). In general, since the

crust is formed in a fundamental sense by melting of the mantle, it is more enriched in

incompatible elements than the mantle and its composition will be determined by the

composition of the mantle from which it was extracted (Hofmann 1988). Crustal thickness

is dependent on age and tectonic setting, and for cratons, it averages at approximately

40 km, with its base defined as the Moho (Christensen and Mooney 1995). The lower crust

(defined as depths greater than 20–25 km) is generally in the granulite facies, a meta-

morphic regime defined by having reached temperatures greater than approximately

650 �C and pressures greater than 600 MPa, in which amphiboles dehydrate to pyroxenes.

Its average composition is mafic with the dominant minerals being orthopyroxene, pla-

gioclase and clinopyroxene (Christensen and Mooney 1995; Rudnick and Fountain 1995).

The middle crust (from between 10–15 and 20–25 km depth) is generally considered to be

in the amphibolite facies (metamorphism at 450–700 �C and [300 MPa), in which

amphiboles are stable, and plagioclase, quartz and amphibole are the dominant mineral

species present (Rudnick and Fountain 1995; Christensen and Mooney 1995). In com-

parison with the mantle, the magnesium number of the crust can vary significantly, for

Fig. 6 Average composition at 100 km depth of three types of lithosphere as compiled by Griffin et al.
(2009): lithosphere that has experienced no tectonism since 2.5 Ga, lithosphere that has experienced
tectonism between 2.5 and 1.0 Ga and lithosphere that has experienced tectonism later than 1.0 Ga. The
heavy black line is the magnesium number (Mg/(Mg ? Fe)), and the solid shaded areas are the proportions
of olivine, orthopyroxene, garnet and clinopyroxene
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example varying between approximately 45 and 62 for the samples compiled by Rudnick

and Fountain (1995), and may be sufficient to be observed in MT measurements. Yang

(2011) has argued that that lower crustal conductors up to *100 Xm can be explained by

semi-diffusion in common crustal minerals (Yang and Heidelbach 2012; Yang et al. 2011,

2012) due to their high iron contents and some high measured water contents ([0.1 wt%).

However, in this analysis, Yang (2011) relied on a lower crustal temperature estimate of

700–1,000 �C, which is much higher than that expected for stable, Precambrian crust

(Fig. 5). At a more reasonable lower crustal temperature of 500 �C, laboratory data at even

the highest calculated water contents (0.0375 wt% for clinopyroxene, 0.0285 wt% for

orthopyroxene and 0.089 wt% for plagioclase) only predict resistivities of between 103 and

104 Xm and are therefore unable to explain lower resistivities sometimes observed in the

lower crust.

Alternative interpretations have been in two forms. Early explanations relied on labo-

ratory data that showed that typical lower crustal mineralogies saturated by free saline

fluids could reproduce observed high conductivities (Glover and Vine 1994; Hyndman and

Hyndman 1968). In stable tectonic settings, free fluid will only exist in the brittle regime

and will not extend into the ductile regime where significant pore spaces do not exist (e.g.,

Kohlstedt et al. 1995; Connolly and Podladchikov 2004). Although the brittle/ductile

transition is generally in the mid-crust, in regions with low geotherms, the brittle regime

may extend into the lower crust (e.g., Bürgmann and Dresen 2008). However, Yardley and

Valley (1997) showed that even if fluids can reach stable lower crust, they will react with

wall rocks and be consumed. The stable lower crust is therefore a ‘‘sink’’ for fluids, and no

significant volumes of fluid will survive there. Most other interpretations for strong crustal

conductors have relied on grain-boundary graphite films, which will be at appropriate

pressures to be interconnected throughout much of the crust and, given sufficiently

reducing conditions, will be stable. In many cases, this interpretation has been strengthened

by a tectonic association with a former suture zone, which is likely to have contained large

quantities of carbon-rich sediment, or by a correlation with an outcropping graphite-rich

horizon (e.g., Boerner et al. 1996; Jödicke et al. 2004; Hjelt and Korja 1993; Banks et al.

1996; Ogawa et al. 1996). In reality, due to the very heterogeneous nature of the crust, the

causes for lower crustal conductivity are likely to differ in different locations (Wanna-

maker 2000). In some cases, there can be little doubt that the conductors are caused by

graphite. In regions of only moderately high conductivity, elevated temperature or very

high iron or water contents could produce the conductors. Interconnected sulfides create at

least some important crustal conductors (Jones et al. 2005a), and further research on sulfide

films (Watson et al. 2010) may cement these as another candidate. As for the rest of the

lithosphere, the specific thermal and compositional structure and thermotectonic history of

each region of interest should be carefully considered in order to include or exclude

possible interpretations.

The upper crust is also highly heterogeneous, and there are many potential causes of

upper crustal conductivity anomalies. Conductors caused by graphite or sulfides in the

lower crust would be expected to continue to the upper crust so long as the connection

pathways do not become broken. In addition, because the upper crust is in the brittle

regime and temperatures will generally be too low for metamorphic reactions to consume

fluid, free fluids can exist in available pore spaces. Saline fluids are the likely cause of low

resistivities observed in many sedimentary basins and aquifers (e.g., Meqbel and Ritter

2013; Selway et al. 2012) and in upper crustal shear zones (Becken and Ritter 2012).

Sedimentary basins may also contain layers of shale that are rich in organic matter that will

also produce a conductive response (e.g., Branch et al. 2007).
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3.5 Compositionally Modified Lithospheric Mantle

While Sect. 3.4 summarized the expected composition of average lithospheric mantle, it is

important to note that this composition can be modified by tectonothermal events. By

definition, incompatible elements such as H, Fe, Na and Al preferentially partition into a

melt phase rather than remain in a solid phase, so partial melting events will deplete the

SCLM of its incompatible elements. In contrast, metasomatism by fluids or melts that are

enriched in incompatible elements (such as those released from a subducting slab or a

plume) may re-fertilize it, so long as the interaction with the enriched fluids or melts is

sufficiently slow that the incompatible elements begin to diffuse into the host rock (Hof-

mann 1997). Subduction transports (generally) oceanic crust, including sediments, into the

mantle and takes with it species in which the crust is enriched that may be important

controls on conductivity including C, Fe and H2O (Plank and Langmuir 1998). The water

transported by subduction zones occurs both as interstitial water in sediments, which will

be squeezed out by pressure gradients at shallow depths, and as water bound in the

structures of hydrous minerals, which will undergo dehydration reactions at appropriate

pressure and temperature conditions (Moore and Vrolijk 1992; Stern 2002). Since the

subducting slab is cold relative to the surrounding mantle, its temperature gradient is lower

and the hydrous minerals will be able to remain stable to greater depths than would be

possible in lithosphere with a normal geotherm. The majority of the dehydration reactions

involved in subduction occur at depths\100 km, corresponding to the fore-arc and the arc

on the surface of the over-riding plate (Stern 2002). However, water can be transported to

much greater depths by serpentinite which may be stable to depths as great as 250 km

(Ulmer and Trommsdorff 1995; Booker et al. 2004). While serpentinite is not expected to

be conductive in its stable form (Guo et al. 2011; Reynard et al. 2011), it converts to

olivine, orthopyroxene and water upon dehydration and will release as much as 13 wt%

water, which is likely to increase the hydrogen content of surrounding NAMs. Demouchy

(2010b) calculated that, for a typical mantle mineral aggregate, it would take 4 Gy for

hydrogen to diffuse a distance of 14 km. Therefore, in the absence of melting or high-

temperature events that would remove it, hydrogen will still be present in the lithosphere

from enrichment events that occurred even several billion years ago.

Due to complicated phase equilibria, release of carbon from subducted rocks is more

difficult to predict than water release (Stern 2002). Although the analysis of CO2 emissions

at arcs shows that the majority of the emitted carbon is from a subducted source (Marty and

Tolstikhin 1998), calculations of phase equilibria show that much of the carbon in sub-

ducted rocks is likely to remain stable to depths greater than 180 km and will therefore be

returned to the mantle (Kerrick and Connolly 1998, 2001a, b). Carbon from such depths is

most likely to exist in the form of fluid inclusions in minerals and will not enhance

conductivity (Mathez 1987). If carbon remains in fluid or vapor phases at temperatures

lower than 600–900 �C, it may precipitate grain-boundary graphite films and increase

conductivity by several orders of magnitude (Mathez 1987; Pineau and Mathez 1990;

Glover 1996).

Mantle plumes have chemical signatures that are more enriched than the depleted upper

mantle, although the degree and the nature of the enrichment show evidence for spatial

variations (Hofmann 1997). Plumes are sourced from the asthenospheric mantle and are

believed to come from either (or both) the 660-km seismic discontinuity or the core-mantle

boundary (Hofmann 1997; Zhao 2001). Therefore, igneous rocks that are related to plume

magmatism such as ocean island basalts and continental flood basalts demonstrate

enrichment in incompatible elements, including iron (Dixon et al. 2002; Workman et al.
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2006). Since the asthenosphere is likely to be more hydrous than the lithosphere (e.g.,

Karato 2006), lithospheric regions that have been impacted by a plume are also likely to

have higher water contents. Given the large thermal impact of a plume, it is possible that

resulting incompatible element patterns may be depth-dependent, with deep regions close

to the plume head reaching sufficiently high temperatures to undergo partial melting and

therefore becoming depleted while shallower regions that interact with the resulting melts

become enriched.

3.6 General Comments

This analysis shows that, in general, as lithosphere ages and becomes cooler and more

depleted in incompatible elements (including iron and hydrogen), it can be expected to

become more resistive. However, it is not valid to consider this to be a universal rule.

Lithosphere that has been compositionally affected by fluids or melts from a subducting

slab or a plume will have a higher iron and hydrogen and carbon content than unmodified

lithosphere and, as discussed above, these factors can cause an increase in conductivity in

lithospheric rocks. The signature of enrichment from such an event may remain in the

lithosphere for billions of years (Demouchy 2010a). Within the mantle, the range of iron

contents is expected to be small and is likely to have a negligible impact on conductivity.

In contrast, the possible differences in hydrogen concentrations, from close to zero to up to

several hundred ppm, would be expected to change resistivity values by up to several

orders of magnitude and have the potential to be a major influence on the conductivity

structure of the lithosphere. Within the crust, the much larger ranges of iron content and

higher iron values will lead to a measurable increase in conductivity in iron-rich regions.

Carbon content will be of greater importance in the crust and uppermost mantle than in the

deeper lithosphere since carbon is only likely to exist as grain-boundary graphite films at

temperatures less than approximately 900 �C. Since the process of melting dehydrates and

depletes the lithosphere, it is to be expected that regions that have experienced multiple

melting episodes and have been subject to high temperatures will have low iron and

hydrogen contents and no graphite films and will therefore be resistive. It is therefore likely

that a younger (but still thermally stable) region that has undergone high-temperature

events and has experienced voluminous melting will be more resistive than an older region

that has been enriched by a subduction or a plume event at some point in its history but has

been stable since. Figure 7 summarizes the different factors considered to control most

resistivity anomalies in stable lithosphere and the depth ranges at which they are predicted

to operate.

4 Case Studies

It is common for cratonic lithosphere to show lateral resistivity variations of several orders

of magnitude which can often be related to specific enrichment or depletion events. Some

cratonic lithosphere has high resistivities typical of standard lithospheric mineral com-

positions with little or no enrichment in Fe or H, that is crust and upper mantle resistivities

of at least several thousand Xm that decrease to several hundred Xm toward the base of the

lithosphere due to increasing temperature. Such regions include parts of the São Francisco

Craton in Brazil (Bologna et al. 2011), the Dharwar Craton in India (Naganjaneyulu and

Santosh 2012; Patro and Sarma 2009), the Kaapvaal Craton in South Africa (Evans et al.

2011) and the Superior and Slave Cratons in Canada (Ferguson et al. 2005; Jones et al.
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2005b). However, all of these cratons also contain much more conductive regions. Con-

sidering crustal examples first, a lower crustal conductor in the São Francisco Craton

(*100 Xm) has been interpreted to be caused by graphite and is associated with a pro-

posed suture zone, the strongly conductive North America Central Plains (NACP) anomaly

in central Canada (with resistivities\10 Xm) is associated with interconnected sulfides at

outcrop and a crustal conductor in the Dharwar Craton that is associated with gold min-

eralization has also been interpreted to be caused by sulfides (Gokarn et al. 2004). In the

Fig. 7 Expected depth ranges for important causes of enhanced conductivity in the stable lithosphere. The
thermal gradient is taken from the compilation of Artemieva (2006) assuming a lithospheric thickness of
200 km. Above the brittle–ductile transition in the crust, fluids may exist in interconnected pore spaces in
sedimentary basins or in shear zones. The iron content of Fe/Mg-bearing minerals shows significant
variation in the crust, and high iron contents are detectable as a conductive anomaly. Iron contents in the
mantle are lower than the crust and show little variation. Grain-boundary graphite films have been shown
experimentally to become disconnected at low pressures representative of the uppermost crust and to
become unstable at temperatures greater than *900 �C, corresponding to a depth of approximately 100 km.
High hydrogen content in nominally anhydrous minerals has been shown to increase conductivity to depths
greater than the base of the lithosphere. At the low-temperature end, hydrogen has been shown to enhance
the conductivity of crustal rocks to mid-crustal depths (temperatures of 200–300 �C). The shallow limit of
the effect of hydrogen will be defined by the lowest temperature at which hydrogen will diffuse
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lithospheric mantle, cratonic low-resistivity regions are also common. In the São Francisco

Craton and neighboring Proterozoic Brasilia Belt, a region with resistivities as low as

1 Xm that extends to the lower lithosphere has been interpreted to be caused by graphite

and incipient carbonatite melting (Bologna et al. 2011; Figueiredo et al. 2008), while other

upper mantle regions with resistivities of * 100 Xm are interpreted to be due to iron

enrichment of mantle minerals (Bologna et al. 2011). In the northwestern Dharwar Craton,

a low-resistivity region (*100 Xm) extends through the upper mantle to a depth of

*50 km (Gokarn et al. 2004) with a genesis that could possibly be related to the Deccan

Traps, a c. 66 Ma large igneous province to the north of the survey location. The SCLM of

the Archean Churchill Province in western Canada is an order of magnitude more con-

ductive (at several hundred Xm) than that of the surrounding Proterozoic terranes, inter-

preted to be due to fertilization of the Archean lithosphere during subduction-related

metasomatism in the Paleoproterozoic (Boerner et al. 1999). Beneath the NACP anomaly

in central Canada, a region with resistivities of tens of Xm extends to the limit of data

resolution in the mantle and has been interpreted to be related to nearby diamond-bearing

kimberlites (Jones et al. 2005a). The Bushveld Complex, a large, Paleoproterozoic layered

igneous intrusion in the Kaapvaal Craton, is extremely conductive, with resistivities as low

as *1 Xm centered in the lower crust and at 60–85 km depth and all mantle resistivities

significantly less than 100 Xm. It has been suggested that a combination of sulfides

associated with the Bushveld Complex intrusion with pre-existing Fe-rich or graphite-rich

country rocks could explain these very low resistivities (Evans et al. 2011).

The Dharwar, Slave, Kaapvaal and São Francisco Cratons (among others) all demon-

strate lateral conductivity gradients of two to three orders of magnitude and show that it is

fallacious to simply consider Archean cratons to be resistive. While it is not possible to

closely analyze each cratonic MT survey, it is informative to consider case studies of two

representative regions of stable lithosphere in Australia and Canada that characterize the

different resistivity factors described above. Recent work by Fullea et al. (2011) is an

excellent example of a detailed, numerical calculation of the combined effects of tem-

perature, mineralogy, composition and hydrogen content and comparison to MT data. Such

a detailed analysis is beyond the scope of this paper and, in many instances, requires better-

quality MT, geological and thermal data than are available. Instead, the focus will be on the

broadly expected resistivities for both anhydrous and hydrous compositions in the regional

geothermal regimes to examine correlations between conductivity, temperature and

enrichment.

4.1 Case Study 1: The Gawler Craton and Musgrave Block, Australia

Central and western Australia is composed of Archean to Paleoproterozoic cratons that are

separated by Mesoproterozoic to Neoproterozoic orogens (Fig. 8) (Betts et al. 2002). Due

primarily to a paucity of outcrop within Precambrian Australia, there is significant

uncertainty about the timing and location of collisions between cratonic elements and the

nature of the younger regions. This has been the motivation for many of the MT surveys in

the region (e.g., Selway et al. 2009b, 2011; Thiel and Heinson 2010; Heinson et al. 2006),

but the lack of geological information that motivated these surveys has in turn also

hampered their interpretation. In light of the above discussion, MT results from the

Archean to Paleoproterozoic Gawler Craton in southern Australia, the Paleoproterozoic

Arunta Region in northern Australia and the Mesoproterozoic to Neoproterozoic Musgrave

Block in central Australia will be examined to determine whether the mapped conductivity

structures correspond with known thermal, compositional and enrichment patterns.
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4.1.1 Gawler Craton

The Gawler Craton, South Australia (Fig. 9) (Hand et al. 2007), consists of a Mesoar-

chaean to early Palaeoproterozoic core that is overlain and intruded by Palaeo- to Meso-

proterozoic lithologies (Daly et al. 1998; Hand et al. 2007; Payne et al. 2009). The Archean

nucleus consists of the Neoarchaean Mulgathing and Sleaford Complexes, which are

dominated by sedimentary, volcanic and plutonic rocks that were deformed and meta-

morphosed during the ca. 2,470–2,430 Ma Sleafordian Orogeny (McFarlane 2006; Swain

et al. 2005; Tomkins and Mavrogenes 2002). Recently discovered Mesoarchaean, c.

3,150 Ma felsic gneisses are likely to form the basement to these Neoarchaean complexes

(Fraser et al. 2010). To the east and the north of the Archean core are a series of Palae-

oproterozoic igneous intrusives and volcano-sedimentary basins that have been variably

metamorphosed throughout the Proterozoic (Daly et al. 1998; Hand et al. 2007; Howard

et al. 2009; Payne et al. 2006, 2008; Chalmers 2007; Fanning et al. 2007; Forbes et al.

2012). Isotopic evidence suggests that much of the Gawler Craton that is defined as

Proterozoic based on surface geology is underlain by Archean lithosphere (Fanning et al.

2007; Hopper 2001).

As discussed above, metasomatism by enriched fluids from a subducting slab or a plume

will re-fertilize Archean lithosphere in incompatible elements (including hydrogen) and

increase its conductivity. Australian Precambrian lithosphere is conspicuous for showing

very little evidence of subduction-related processes, but the Paleoproterozoic

1,620–1,608 Ma St Peter Suite in the southwest of the Gawler Craton is one package that

has been interpreted as having formed in a subduction-related environment (Swain et al.

2008). The St Peter Suite displays enriched incompatible element compositions, including

Ce and Nd that are expected to have similar incompatibilities to hydrogen (Michael 1988),

and is interpreted to have originally formed as an island arc that later accreted to the Gawler

Craton (Swain et al. 2008). Swain et al. (2008) interpret that the subduction zone that

formed the St Peter Suite dipped away from the Gawler Craton, so it would not be expected

that deep lithospheric zones of enrichment would exist below the St Peter Suite but it is

possible that shallower zones of enrichment in the lower crust and uppermost mantle may

have been preserved during its accretion. Following the emplacement of the St Peter Suite,

Fig. 8 Cratonic regions within
Australia. The Mesoproterozoic
to Neoproterozoic Musgrave
Province in central Australia is
surrounded by the Archean to
Paleoproterozoic Gawler Craton
to the south, the North Australia
Craton (including the
Paleoproterozoic Arunta Region)
to the north and the West
Australia Craton to the west. The
lithosphere to the east of the
Tasman Line is Phanerozoic in
age
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the Gawler Range Volcanics (GRV) and associated Hiltaba Suite granitoids were extruded

between 1,595 and 1,575 Ma either as a result of a plume impact or formation in a back-arc

basin setting (Betts et al. 2009). The GRV (Allen et al. 2008) is a felsic large igneous

province (LIP) that occupies a volume of at least 25,000 km3 in the center of the Gawler

Craton. Since it is a felsic unit, it is derived from crustal melting and its enriched compo-

sition (Allen et al. 2008) does not provide any information about the fertilization state of the

underlying mantle. The Hiltaba Suite (Stewart and Foden 2003) is also dominantly felsic but

does contain a minor mafic component. Isotopic variations within the Hiltaba Suite have

been interpreted to suggest that it was derived from a depleted mantle source mixed with a

Fig. 9 Simplified map of the Gawler Craton, South Australia, showing the geological regions discussed in
the text. Labelled circles show surface heat flow measurements from Neumann et al. (2000). Stars show the
locations of MT stations used in the analysis. Black stars are stations in the Proterozoic northern Gawler
Craton from Selway et al. (2011), white stars are stations on the Gawler Range Volcanics from Maier et al.
(2007), and white stars with black outline are stations on the Proterozoic western Gawler Craton and the St
Peter Suite from Thiel and Heinson (2010)
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crustal component (Hand et al. 2007). Either of the proposed formation mechanisms (plume

or back-arc basin) would result in the enrichment of the lithosphere so the upper mantle

beneath the GRV/Hiltaba Suite would be expected to have a higher conductivity than that

expected for dry lithosphere. Since there have been no major tectonothermal events in the

Gawler Craton since the emplacement of the GRV/Hiltaba Suite (Allen et al. 2008), this

region of enrichment would be expected to remain today.

In contrast to the global average thermal regimes discussed above, southern and central

Australia has an anomalously high heat flow (Cull 1982; McLaren et al. 2005) with a mean

of heat flow measurements in South Australia 86 ± 20 mW/m2 (Fig. 9) (Neumann et al.

2000). This high heat production is interpreted to be caused by high heat–producing (HHP)

elements such as U, Th and K that lie predominantly in the upper crust (McLaren et al.

2005; Neumann et al. 2000) and are therefore not expected to cause any significant

increases to mantle temperatures (McKenzie et al. 2005; McLaren et al. 2005). Therefore,

despite anomalous surface heat flow values, mantle conductivities are not expected to be

thermally enhanced.

Thiel and Heinson (2010) reported results of an MT survey to a depth of 200 km over

the western Eyre Peninsula region of the Gawler Craton that crossed from the subduction-

related St Peter Suite westwards over the Paleoproterozoic Fowler Domain (Fig. 9). The

geology of the Fowler Domain is very poorly understood and is entirely constrained by

interpretations of potential field data and analysis of samples from rare drill core (Howard

et al. 2011). However, near-surface metasedimentary rocks have reached high metamor-

phic grades up to granulite facies and show affinities with other metasedimentary packages

from the Gawler Craton, suggesting that they were not involved in any collisional oro-

genesis (Howard et al. 2011). Results from the MT survey show that, beneath a shallow

conductive layer which is probably due to interconnected pore fluids in the upper crust, the

bulk of the imaged lithosphere has very high resistivities between 104 and[105 Xm, which

is in the range of expected resistivities for dry, depleted lithosphere at the temperature

conditions of the western Gawler Craton (Fig. 10). In contrast, the crust and upper mantle

beneath the St Peter Suite display some zones of decreased resistivity, to values of one

hundred to several hundred Xm at depths up to approximately 60 km (Fig. 10). These

resistivity values cannot be explained by dry lithosphere in the thermal regime of the

western Gawler Craton and show that there must be an additional component present to

enhance conductivity. Given the depth range of the conductive zone and the fact that it lies

beneath the subduction-related St Peter Suite, it is likely that the conductivity is enhanced

by either (or both) an increased hydrogen content in lower crustal and upper mantle NAMs

that was produced during dehydration of subducted hydrous minerals or graphite films on

grain boundaries caused by precipitation of subducted carbon.

There are no published two-dimensional MT models that cross the GRV but Maier et al.

(2007) published one-dimensional resistivity-depth profiles from a group of long-period

MT stations that were deployed on the GRV (Fig. 9). Resistivities in the crust increase

from several tens of Xm at the top of the crust to several hundreds of Xm at its base. In the

lithospheric mantle, all stations show a pronounced low-resistivity zone of \100 Xm at

approximately 60–70 km depth, before resistivity increases slightly to 100–300 Xm at

100–200 km depth (Fig. 10). This lithosphere is therefore conductive compared to what

would be expected for dry, depleted lithosphere. Even though this region has elevated

surface heat flow compared to the global reference model, it is not expected to have

elevated lithospheric temperatures and a temperature increase approaching 1,000 �C would

be required to account for the modelled resistivities, which is clearly unrealistic. Instead,

lithospheric resistivity must again be enhanced by increased hydrogen content in NAMs
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and/or graphite films on grain boundaries. The conductive anomaly extends to at least

200 km depth, which is greater than the depth to which grain-boundary graphite films will

be stable. Therefore, at least some of the enhanced conductivity must be due to hydrogen in

NAMs. At shallower levels, graphite films could contribute to the enhanced conductivity.

Indeed, experimental data do not show evidence of hydrated mantle minerals reaching

resistivities as low as those observed in the low-resistivity zone at 60–70 km depth, so it is

likely that graphite films contribute to the enhanced conductivity at this level and it is

possible that the marked decrease in resistivity in this zone corresponds with the appear-

ance of grain-boundary graphite films.

Figure 10 shows a comparison of resistivity-depth profiles from the GRV ((Maier et al.

2007), the Fowler Domain (Thiel and Heinson 2010), the St Peter Suite (Thiel and Heinson

2010) and the far-northern Gawler Craton (Selway et al. 2011). The SCLM of the regions

Fig. 10 Resistivity depth slices for the Gawler Range Volcanics (GRV) in the central Gawler Craton
(Maier et al. 2007), the Paleoproterozoic Fowler Domain on the western Gawler Craton (Thiel and Heinson
2010), the Paleoproterozoic, subduction-related St Peter Suite on the western Gawler Craton (Thiel and
Heinson 2010), the Paleoproterozoic northern Gawler Craton (Selway et al. 2011) and the Mesoproterozoic
to Neoproterozoic Musgrave Province in central Australia (Selway et al. 2011), shown to a maximum
resistivity of 105 Xm. The depth slice for the GRV is taken from one-dimensional modelling in Maier et al.
(2007), while the other slices are averaged from two-dimensional models. All regions show moderate and
variable resistivity in the mid- to upper crust which could be due to fluids or conductive minerals. In the
lower crust and upper mantle, resistivities lower that those expected for hydrogen- and graphite-free
minerals are only evident for the GRV and the St Peter Suite. These lithologies are associated with re-
fertilization of the lithosphere, which is expected to enrich the lower crust and lithospheric mantle in
hydrogen and potentially deposit graphite films. Although the Musgrave Province is younger than the
Gawler Craton, it demonstrates high resistivities because numerous high-temperature tectonothermal events
have removed hydrogen and carbon from the lithosphere
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not expected to show any signs of re-fertilization, that is, the Fowler Domain, the deep

lithospheric mantle beneath the St Peter Suite and the far-northern Gawler Craton, dem-

onstrates resistivities between 104 and 105 Xm. In contrast, the entire lithospheric column

beneath the GRV and the lower crust and uppermost mantle beneath the St Peter Suite

demonstrate much lower resistivities, showing a correlation between surface geology that

indicates lithospheric enrichment and conductive lithosphere.

4.1.2 Musgrave Province

The Musgrave Province (Fig. 11) (Wade et al. 2008) is enigmatic in that it is a compar-

atively young and isotopically juvenile region that is surrounded by much older, more

evolved cratons. The oldest known rock package in the Musgrave Province is the Meso-

proterozoic, 1,600–1,540 Ma Musgravian Gneiss, which has geochemical characteristics

suggesting it was formed in a subduction-related arc environment, interpreted to be related

to the collision between the Gawler Craton to the south and the North Australia Craton to

the north (Wade et al. 2006). Following a period of sedimentation, the Musgrave Province

was deformed by the high-grade, 1,230–1,150 Ma Musgrave Orogeny which is represented

by regional amphibolite to granulite-grade mineral assemblages in currently exposed

surface rocks. The Musgrave Orogen has recently been recognized to extend into the

southern Arunta region, more than 200 km north of the most northerly exposed section of

Musgrave Province (Morrissey et al. 2011). This high-temperature event was associated

with emplacement of the granitic, c. 1,200–1,140 Ma Pitjantjatjara Supersuite which is

volumetrically dominant in the northern Musgrave Province and enriched in U and Th. The

1,080–1,040 Ma Giles Event was a deformational event associated with the emplacement

of layered mafic–ultramafic dykes, felsic dykes and bi-modal volcanics of the Giles

Complex. Coeval dyke emplacement over a large area of western and northern Australia

led Wingate et al. (2004) to interpret that the dykes formed in response to the interaction

between the lithosphere and a mantle plume. Following the Giles Event, emplacement of

dykes continued and the Alcurra and Amata dykes were emplaced from 1,080–820 Ma.

Fig. 11 Simplified geological
map of the Musgrave Province,
central Australia, showing the
lithological units discussed in the
text, adapted from Wade et al.
(2008). Stars show the locations
of MT stations from Selway et al.
(2011) that were used in the
analysis
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From c. 630–530 Ma, the Musgrave Province was metamorphosed and deformed by the

Petermann Orogeny. This was an intracratonic event that occurred in response to far-field

forces thought to have been localized in this region partly because initial crustal temper-

atures were elevated by high crustal heat production (Hand and Sandiford 1999). The

metamorphic grade of the orogen reaches granulite grade in the northern Musgrave

Province and sub-eclogite grade in the center of the Province, where the high-grade rocks

were exhumed from an estimated depth of 45 km (Wade et al. 2008; Scrimgeour and Close

1999).

The Musgrave Province therefore displays a complex sequence of events that could be

expected to affect the enrichment, hydrogen content and graphite content of the litho-

sphere. The original subduction event that created the arc-related Musgravian Gneiss

would have been likely to result in a lithosphere containing significant hydrogen in NAMs

and possible grain-boundary graphite films. However, the high temperatures reached

during the Musgrave Orogeny would have removed much of this material from the lith-

osphere. Rocks currently at the surface reached temperatures between 750 and [900 �C

during the Musgrave Orogeny (Wade et al. 2008), so at any greater depth, graphite films

would have become unstable and incompatible elements would have been partitioned into

the Pitjantjatjara Supersuite. The two interpreted plume events would also be expected to

enrich the lithosphere, but geochemical data suggest that this enrichment may have only

been minor. Geochemical signatures from both the Giles Complex and Amata dykes show

only a moderate enrichment in incompatible elements compared to MORB. Ce and Nd,

which behave similarly to hydrogen, are only enriched by approximately 2–3 times over

MORB in dykes of the Giles Complex in the western Musgrave Province (Wingate et al.

2004) and in Amata dykes (Zhao et al. 1994). Rocks currently exposed at the surface

reached temperatures of 650–750 �C during the Petermann Orogeny (Wade et al. 2008).

Such high-temperature metamorphism is likely to have liberated some or most of the

incompatible elements emplaced in the lithosphere during the plume events and destroyed

any grain-boundary graphite films at depths greater than the mid-crust.

MT surveys over the Musgrave Province show that the lithosphere is uniformly highly

resistive. Selway et al. (2011) describe results of a profile extending from the northern

Gawler Craton into the southern Musgrave Province (Fig. 11). Apart from a shallow zone

restricted to the upper crust with resistivities as low as 10 Xm, the entire lithospheric

section displays resistivities[104–105 Xm to the modelled depth of 100 km (Fig. 10). The

southern Musgrave Province was analyzed to be approximately electrically one-dimen-

sional, and forward modelling suggested that there were no major conductive features

further north within the province (Selway et al. 2011). Similarly high-resistivity lithosphere

has been imaged elsewhere in the Musgrave Province. The northern Musgrave Province

lithosphere, together with the lithosphere beneath the Amadeus Basin and in the south-

ernmost Arunta Region to its north, is resistive compared to the more northerly Arunta

Region (Selway et al. 2009a). This region of high resistivity is spatially coincident with the

Musgrave Orogen. The absolute values of resistivity in the north are lower than those

described in the southern Musgrave Province, at approximately 3 9 103–105 Xm, but

these values may be elevated by smoothing of the conductive signal associated with the

Amadeus Basin. Indeed, resistivity values of approximately 105 Xm are observed in the

southern Arunta Region, which is not overlain by the Amadeus Basin (Selway et al.

2009a). Sub-cropping rocks of the northern Musgrave Province were imaged to a depth of

only 1 km by Selway et al. (2012) and had a resistivity of 104 Xm. A survey across the

western Musgrave Province has also shown the lithosphere to be highly resistive, with

modelled resistivities greater than 104–105 Xm (M. Dentith, pers. comm., 2012).
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The resistivities observed in the Musgrave Province are all representative of dry lith-

osphere with no additional conductive component. This shows that, even though the

lithosphere has been affected by subduction and possibly two plume events, the very high-

grade metamorphic events that have subsequently affected the Musgrave Province have

removed any introduced hydrogen and carbon from the lithosphere. This behavior contrasts

with that observed in the lithosphere beneath the GRV in the Gawler Craton. That region

was impinged upon by a plume (or a subduction zone) that introduced conductive elements

to the lithosphere but has been stable since, so the lithosphere remains conductive. It is the

tectonically stable, cratonic nature of this region that has enabled this conductive signature

to remain in the lithosphere for over 1.5 billion years. In contrast, the Mesoproterozoic to

Neoproterozoic Musgrave Province is a much younger ‘‘mobile belt’’ that has experienced

multiple episodes of tectonism and would often be expected to have a lower resistivity.

However, it is the very tectonic instability of the Musgrave Province that has removed any

introduced hydrogen and carbon and has resulted in such a high-resistivity lithosphere.

Therefore, it is important to consider not only the age of the lithosphere being imaged but

whether it has experienced any enrichment events and, if so, whether that signature is

likely to remain.

4.2 Case Study 2: The Slave Craton, Canada

The Slave Craton (Fig. 12) (Davis et al. 2003) is a small, Archean Craton in central-

northern Canada that is surrounded by Palaeoproterozoic orogenic belts. The basement of

the western Slave Craton is dominated by the c. 4.0–2.9 Ga Central Slave Basement

Complex, while the central and eastern Slave Craton display younger, \2.8 Ga, isotopi-

cally juvenile crust that is enriched in Pb and Nd (Davis et al. 2003 and references therein).

Intruding the Archean basement rocks of the central and eastern Slave Craton are a

2.73–2.7 Ga tholeiitic volcanic sequence and a voluminous mafic magmatic sequence that

shows affinities to modern LIPs and may suggest a mantle plume source (Davis et al.

2003). This was followed by widespread calc-alkaline volcanism from 2.7 to 2.66 Ga in

the eastern and the western Slave Craton. Two major tectonothermal events affected the

craton between 2,640 and 2,585 Ma and involved horizontal shortening and metamorphism

up to granulite facies. This tectonism was associated with two episodes of plutonism; the

first produced [2,620–2,600 Ma granites that are interpreted to be sourced from a sub-

duction-enriched mantle and the second involved a craton-wide 2,610–2,585 Ma ‘‘granite

bloom’’ which suggests that there was a large thermal disturbance to the mantle at that

time, possibly in the form of lithospheric delamination, post-collisional extension or

interaction with a mantle plume (Davis et al. 2003 and references therein). During the

Proterozoic, the region was intruded by numerous dyke swarms, including at 2,230, 2,210,

2,190–2,180, 2,108, 2,030–2,023, 1,884 and 1,272–1,265 Ma (Heaman and Pearson 2010

and references therein). Numerous kimberlites have intruded the craton within the last

*500 Myr, including the Ekati cluster (53 Ma) and Diavik cluster (55 Ma) in the central

Slave Craton, the Jericho kimberlite (172 Ma) in the northern Slave Craton, the Drybones

Bay kimberlite (440 Ma) in the western Slave Craton and the Gahcho Kue kimberlite

(530 Ma) in the southeastern Slave Craton (Heaman and Pearson 2010 and references

therein).

The voluminous kimberlites throughout the Slave Craton have brought to the surface

numerous mantle xenoliths that point to a complex mantle history. Although the surface

geology of the Slave Craton is dominated by Archean rocks, analysis of Re–Os ages for the

Slave mantle xenoliths indicates that only approximately 30 % of them were formed
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during the Archean and the bulk of the mantle formed during the Proterozoic (Heaman and

Pearson 2010). Peaks in interpreted mantle formation ages are at 2.75 Ga (interpreted to

correspond to the formation of the central and eastern Slave crust), 1.8 Ga (interpreted to

Fig. 12 Simplified geological map of the Slave Craton, Canada, showing the lithological units discussed in
the text, adapted from Davis et al. (2003) and Heaman and Pearson (2010). Between the dashed lines is the
region containing sub-calcic garnets defined by Grütter et al. (1999). Filled circles show the locations of the
xenolith suites that have undergone significant analysis. Stars show the locations of MT stations from Jones
et al. (2001, 2003) that are used in further analysis. White stars with a black outline are stations deployed on
roads, while the black star with a white outline is a station deployed on the bottom of Lac de Gras which
provides deeper-penetrating data

244 Surv Geophys (2014) 35:219–257

123



correspond to accretion of subducted lithosphere from the Wopmay Orogen to the west),

1.3 Ga (interpreted to correspond to emplacement of the Mackenzie LIP in the northern

Slave Craton) and a minor peak at 0.4 Ga which may be related to the Drybones Bay

kimberlite (Heaman and Pearson 2010 and references therein). Geochemical and isotopic

analysis of xenoliths shows extensive evidence of metasomatism and re-fertilization

throughout the craton with significant lateral variation in depth, age and character (Aulbach

et al. 2007; Davis et al. 2003; Griffin et al. 2004; Heaman and Pearson 2010). The

lithospheric mantle of the central Slave Craton is sampled by the Lac de Gras kimberlites,

which show two distinct compositional layers. An upper layer, representing xenoliths from

*B95 depth to *145 km depth, is characterized by harzburgites with highly depleted

geochemical signatures and high Mg#, whereas a lower layer, from *145 to *C155 km

depth is characterized by harzburgites and lherzolites with a more enriched geochemical

signature and lower Mg# (Griffin et al. 1999; Aulbach et al. 2007; Pearson et al. 1999). The

uppermost, depleted layer was originally interpreted as anomalously ultra-depleted (Griffin

et al. 1999), but a more recent interpretation (Griffin et al. 2009) suggests that it is instead

characteristic of Archean lithosphere that has not been re-fertilized through younger pro-

cesses. In contrast, the deeper layer in the central Slave SCLM and the bulk of the sampled

SCLM in the northern, eastern and western Slave show evidence for re-fertilization due to

enriched incompatible element concentrations and elevated iron contents (Davis et al.

2003; Griffin et al. 2004; Heaman and Pearson 2010). Given this, it would be reasonable to

expect that the upper lithosphere of the central Slave Craton lithosphere would demonstrate

the high resistivities expected for dry, depleted lithosphere and the lower lithosphere

should demonstrate lower resistivities.

Jones et al. (2001, 2003) describe results from MT surveys through the southern and

central Slave Craton (Fig. 12). A one-dimensional model created by averaging the resis-

tivities of all stations on the craton suggests that below a resistive lower crust, the litho-

spheric mantle displays resistivities of 102–103 Xm and is therefore more conductive than

dry, graphite-free lithosphere. One-dimensional and two-dimensional modelling has

imaged a very low-resistivity zone in the central Slave Craton, termed the Central Slave

Mantle Conductor (CSMC). Two-dimensional modelling shows that the depth to the top of

the CSMC increases from *80 km at its northern extent to *100 km at its southern

extent, and integrations of its conductance suggest that it is best fit by a zone of resistivity

B30 Xm and thickness *25 km (Fig. 13) (Jones et al. 2003). Due to the high conductivity

of this zone, much of the MT signal is attenuated within it and the only data that penetrate

through it are from one very long-period, lake-bottom site. These data show that the

resistivity of the lithosphere increases below the CSMC but remains at values of *50 Xm.

The exceptionally low resistivities are only observed at the CSMC, but the two-dimen-

sional modelling shows that much of the rest of the modelled Slave Craton lithospheric

mantle has resistivities in the order of several hundred to several thousand Xm (Jones et al.

2003).

Jones et al. (2001, 2003) interpret the cause of the low resistivity in the CSMC to be

grain-boundary graphite films, noting that the resistivity is too low to be caused purely by

hydrogen, but consider that the enhanced conductivity at greater depths (and outside the

stability field of graphite) may be due to hydrogen diffusion. The authors note the apparent

spatial correspondence between the CSMC and the depleted harzburgite layer (Griffin et al.

1999), a geochemically defined zone of sub-calcic garnets that also imply high levels of

depletion (Fig. 12) (Grütter et al. 1999) and the zone of Eocene-aged kimberlite

emplacement (Fig. 13). They interpret that the sub-calcic garnet zone is related to the

enhanced conductivity and suggest that the graphite films were formed during imbrication
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of subducted slabs onto the base of the lithosphere at c. 2,630 Ma (Davis et al. 2003; Chen

et al. 2009). However, from the analysis presented in this review, the interpretation that a

high conductivity zone is genetically associated with a geochemically depleted zone is

problematic. By definition, depleted zones are depleted in hydrogen and carbon that could

cause enhanced conductivity. Additionally, during the interpreted imbrication, metamor-

phic temperatures at c. 2,600 Ma were[700 �C at the base of the crust, making it unlikely

that temperatures at depths of 80–120 km would have been low enough for graphite films

to be stable.

An alternative explanation for the genesis of the CSMC is that, rather than being related

to Archean zones of depletion, it is related to younger patterns of kimberlite emplacement.

Kimberlites are often spatially and temporally associated with carbonatites (Haggerty

1994). The Lac de Gras kimberlites in the central Slave Craton contain carbon-rich fluid

inclusions, showing that the source region for the melts in the lower lithosphere or upper

asthenosphere contained carbon (van Achterbergh et al. 2004). Metamorphic phase equi-

libria show that much of the carbon in carbon-rich kimberlites will be released as a vapor or

a melt at depths of approximately 80–100 km (Wyllie 1980; Hunter and McKenzie 1989),

with a characteristic interstitial angle sufficiently low to allow it to move along grain

boundaries (Hunter and McKenzie 1989). Since this behavior of carbon can produce grain-

boundary graphite films (Mathez 1987; Mathez et al. 1984), it is expected that the kim-

berlites that brought deep carbon to the surface in the Lac de Gras region would also

produce grain-boundary graphite films in the depth range 80–100 km, as observed. The

original source of the carbon that forms the graphite films may indeed have been early

subduction since much of the carbon associated with the Lac de Gras kimberlites was

sourced from subducted sediments (van Achterbergh et al. 2002). However, the high-

temperature metamorphism and voluminous magmatism that has affected the central Slave

Craton since the Archean shows that it is not plausible for grain-boundary graphite films to

have formed during these ancient subduction events and subsequently survived in the upper

mantle since that time. Instead, the carbon from the ancient subduction was stored in the

Fig. 13 Resistivity-depth
section of the MT data of Jones
et al. (2001, 2003) through the
Lac de Gras region of the Slave
Craton. The shallowest xenoliths
from the depleted harzburgite
layer are from approximately
95 km depth, and the boundary
with the underlying lherzolitic
layer is at 145 km depth
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lower lithosphere or upper asthenosphere and later re-mobilized by kimberlite emplacement

at c. 55 Ma to form the grain-boundary graphite films. This interpretation also removes the

need for contentious Paleoarchean subduction in the Slave Craton that Chen et al. (2009)

proposed, following from their interpretation that the genesis of the graphite films was

associated with the genesis of the depleted harzburgite layer. Since graphite films would not

have survived from the Paleoarchean and the carbon is more likely to have been re-

mobilized from deeper in the lithosphere, it is not relevant to interpret the age of subduction

events from the age of the formation of the harzburgite layer. Importantly, this interpretation

also removes the genetic association between the CSMC and the depleted mantle layer,

which is difficult to reconcile with the known behavior of hydrogen and carbon.

It is unknown whether the grain-boundary graphite films are on minerals in the depleted

harzburgite layer or a different lithological unit. The shallowest depleted harzburgite

xenoliths from the Ekati and Diavik pipes are from 95 km depth (Griffin et al. 2004) which

is slightly deeper than the estimated depth extent of the CSMC at this location (Fig. 13)

(e.g., Chen et al. 2009). Therefore, it is possible that the graphite-film deposition occurred

in a layer shallower than the depleted harzburgite. However, it is also possible that graphite

films deposited in the harzburgite layer are not represented in xenolith samples due to

timing of extraction or destruction of the films during eruption. Any section of depleted

harzburgite not affected by grain-boundary graphite films would be expected to be highly

resistive, but resolution of the MT data beneath the CSMC is poor and it is questionable

whether a thin, high-resistivity layer would be resolvable. The generally low-resistivity

values observed throughout the Slave Craton lithosphere are interpreted to be due to

hydrogen introduced into the lithosphere during the numerous subduction-related and

plume-related re-fertilization events.

5 Discussion

The analysis presented in this review suggests that, in general, the resistivity of stable

continental lithosphere will be related to its level of enrichment in incompatible elements.

This assertion has important implications both for MT data interpretation and for

improving our understanding of the lithosphere.

In interpreting MT data, the simple paradigm which states that Archean, cratonic

lithosphere should be more resistive than Proterozoic or younger lithosphere should not be

relied upon. Conduction in stable lithosphere of any age will be determined primarily by its

temperature, the presence of hydrogen in NAMs and the presence of grain-boundary

graphite films. Each individual region being surveyed should be considered independently

for each of these factors. On average, Archean lithosphere has experienced more high-

temperature events which will melt mantle rocks and remove hydrogen and destroy grain-

boundary graphite films than younger lithosphere. However, the examples shown from the

Gawler Craton, Musgrave Province and Slave Craton show that this is not universally true.

A subduction or plume event may have introduced hydrogen and carbon into Archean

lithosphere as much as several billion years ago and, if no subsequent high-temperature

events have occurred to remove those species, they will remain to produce a conductive

anomaly. In contrast, younger lithosphere may have experienced numerous high-temper-

ature events that will result in it having low hydrogen content in NAMs, no grain-boundary

graphite films and a high resistivity.

The possibility that MT can image regions of enrichment in incompatible elements in

the lithosphere has important implications for interpreting lithospheric structure and
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evolution. As described by Griffin et al. (2009), even in those few regions where mantle

xenoliths are available, inferred SCLM compositions are often biased by sampling and by

the tectonic environments likely to produce xenoliths. The idea that hydrogen in NAMs can

be used as a broad proxy for enrichment in other incompatible elements raises the pos-

sibility that MT can be used to ‘‘map’’ the enrichment state of the lithosphere. This can be

useful for developing our understanding of many geological processes such as the rela-

tionship between crustal and mantle evolution, lithospheric rheology and the growth and

stabilization of cratonic lithosphere (Hirth and Kohlstedt 1996; Karato and Wu 1993) as

well as for interpreting geological histories of specific regions. In addition, many styles of

ore deposit require a lithosphere that is enriched in incompatible elements to form (e.g.,

Hedenquist and Lowenstern 1994; Ohmoto 1986) and the ability to map these zones of

enrichment in the lithospheric mantle may assist in identifying prospective areas for

mineral exploration.

6 Conclusions

MT studies, regardless of their resolution or depth penetration, can only provide a measure

of one physical property of the Earth: its electrical resistivity. To make meaningful

interpretations of MT data, it is necessary to combine MT results with an understanding of

the mineralogical features that control resistivity and the geological processes that produce

those mineralogies. While melt and fluid can produce conductive anomalies in tectonically

active lithosphere, such features are not expected to be present in tectonically stable

lithosphere. Instead, results from a growing body of mineral physics data show that in

stable tectonic regimes, resistivity will be controlled primarily by temperature and mineral

composition and that the most important compositional factor is hydrogen content in

nominally anhydrous minerals (NAMs). Iron content in (Fe, Mg) silicates can also be an

important factor in the crust, but the range of iron contents in mantle minerals is suffi-

ciently small that it will not have a measureable effect on most MT results. In contrast,

hydrogen content is an important variable from at least the mid-crust to the asthenosphere.

Graphite films on the grain boundaries of minerals will also dramatically increase con-

ductivity but are only stable from the crust to uppermost mantle temperatures of approx-

imately 900 �C.

In seeking to make geological interpretations from MT data, several of the variables that

can affect conductivity are often known. The thermal regimes of stable lithosphere are

generally well understood and can be further constrained by utilizing heat flow data from

the region being investigated. Furthermore, mineral proportions and iron content of the

SCLM change systematically with lithospheric tectonic age. In most cases, the only two

unknown variables that could dramatically influence electrical conductivity in tectonically

stable regions are the presence of grain-boundary graphite films and hydrogen content in

NAMs. Both of these species will be controlled by past tectonic events in the lithosphere.

Hydrogen behaves as an incompatible element in NAMs and will preferentially partition

into melt during melting events. As noted above, grain-boundary graphite films are

unstable at temperatures greater than *900 �C. Therefore, lithosphere that has undergone

high-temperature tectonothermal and melting events is likely to have little or no remaining

hydrogen or grain-boundary graphite films and will be highly resistive (*104–105 Xm). In

contrast, lithosphere that has undergone events in which it will be enriched in incompatible

elements such as interaction with fluids from a subducting slab or a plume will contain

more hydrogen and carbon, leading to lower resistivities (\*104 Xm). Electrical
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resistivities of stable lithospheric regions that have been surveyed with MT show that it is

not necessarily valid to assume that older lithosphere should be more resistive than

younger, stable lithosphere. The most important factor to consider when interpreting MT

data from stable lithosphere is whether past geological events will have resulted in a

lithosphere that is enriched in incompatible elements and contains hydrogen and grain-

boundary graphite films or whether past geological events will have heated and melted the

lithosphere, removing hydrogen and destroying grain-boundary graphite films. Electrical

conductivity measured in MT surveys can therefore be considered to be a proxy for

measuring the state of enrichment in incompatible elements of the lithosphere.
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