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Abstract Many geoscientific applications exploit electrostatic and electromagnetic

fields to interrogate and map subsurface electrical resistivity—an important geophysical

attribute for characterizing mineral, energy, and water resources. In complex three-

dimensional geologies, where many of these resources remain to be found, resistivity

mapping requires large-scale modeling and imaging capabilities, as well as the ability to

treat significant data volumes, which can easily overwhelm single-core and modest

multicore computing hardware. To treat such problems requires large-scale parallel

computational resources, necessary for reducing the time to solution to a time frame

acceptable to the exploration process. The recognition that significant parallel computing

processes must be brought to bear on these problems gives rise to choices that must be

made in parallel computing hardware and software. In this review, some of these choices

are presented, along with the resulting trade-offs. We also discuss future trends in high-

performance computing and the anticipated impact on electromagnetic (EM) geophysics.

Topics discussed in this review article include a survey of parallel computing platforms,

graphics processing units to multicore CPUs with a fast interconnect, along with

effective parallel solvers and associated solver libraries effective for inductive EM

modeling and imaging.
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1 Introduction

At the dawn of the high-performance computing (HPC) era,1 (late 1980s to the mid-1990s),

fast approximate methods were favored among electromagnetic (EM) modelers, such as

the extended Born technique of Habashy et al. (1993) for modeling and extended by

Torres-Verdin and Habashy (1994, 1995) for inversion. Other variants of these techniques

included the quasi-linear approximation for EM modeling (Zhdanov and Fang 1999) and

approximate sensitivities for inversion (Farquharson and Oldenburg 1996), along with

rapid relaxation imaging (RRI) for magnetotelluric (MT) data (Smith and Booker 1991).

While the aforementioned techniques were fast and often produced answers in close

agreement with more rigorous integral equation (IE) and finite difference (FD) schemes,

they could also produce erroneous results. This resulted in an ultimate lack of confidence in

these methods within the EM community and their eventual abandonment.

Finite difference (FD) modeling schemes made their appearance in MT applications in

the early to mid-1990s (Mackie and Madden 1993; Smith 1992, 1996a, b). FD controlled

source time and frequency domain EM solutions were also developed during this time

(Wang and Hohmann 1993; Newman and Alumbaugh 1995). These schemes allowed for

accurate simulations of significantly greater model complexity. Such models could not be

effectively simulated with integral equation (IE) techniques (cf. Hohmann 1975; Wanna-

maker et al. 1984; Newman et al. 1986) or with the approximate methods already men-

tioned, due to accuracy issues. Nevertheless, the size of models that could be treated using

FD modeling techniques was still too limiting on single CPU machines, due to excessive

computation times and memory restrictions. Newman and Alumbaugh (1995) reported that

simulating an airborne EM profile for 29 source positions over a simple three-dimensional

(3D) dyke model required nearly 14 h of CPU time and 120 MB of memory on a single-

processer, top-of-the-line, IBM RS 6000 Workstation. This represented a significant

demand on machine resources at that time. Recognition of such limitations provided

significant motivation to migrate FD EM modeling and imaging schemes to massively

parallel (MP) computing platforms.

Application of HPC systems to the solution of large-scale EM geophysical studies first

appeared with the pioneering works of Alumbaugh et al. (1996), Alumbaugh and Newman

(1997) and Newman and Alumbaugh (1997, 1999). Exploitation of massively computing

resources showed the possibilities for solving EM problems at scales with realistic 3D

geologies, within days. Realizing that accurate solutions of the FD formulations of the EM

field equations, using HPC resources, could be obtained, within a day, for realistic, large-

scale, earth models and 3D data acquisition geometries, modelers had increasingly less use

for approximate schemes (as well as integral equation schemes) over the intervening years

(to the present). Within the last several years, parallel finite element (FE) solutions in two-

dimensions (2D) and (3D) have started to appear in the scientific literature; we refer the

interested reader to the recent works of Franke et al. (2007), Börner et al. (2008), Sch-

warzbach et al. (2011), Key and Ovall (2011), Vieira da Silva et al. (2012), Schwarzbach

and Haber (2013), and Puzyrev et al. (2013). The appeal of FE solutions compared to FD

solutions is more accurate treatment of topography and bathymetry, because unstructured

FE solutions formulated on unstructured grids can be refined to conform to geological

interfaces. Nevertheless, one significant problem for 3D FE schemes is that of robust grid

1 I consider the beginning of the HPC era circa 1988, with the development of multiple instructions multiple
data (MIMD) asynchronous computing architectures (cf. Fox 1988).
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generation. This is still an open research problem (cf. Um et al. 2010), along with the need

fast and robust iterative solvers (cf. Um et al. 2013).

The application of large-scale 3D EM and MT imaging experiments continues to grow.

Driven in large part by the worldwide hunt for energy resources, EM and MT integrated

with seismic data are being used to better define hydrocarbon resources. Marine controlled-

source electromagnetic (CSEM) imaging has become a mature industry in its own right.

The CSEM method is sensitive to reservoir fluids and saturation, and thus may indicate

hydrocarbons directly, which makes it a source of data complementary to seismic data (cf.

Constable 2006; Eidesmo et al. 2002; Ellingsrud et al. 2002; MacGregor et al. 2006).

Another very important observation is that two common, problematic seismic lithologies in

hydrocarbon exploration (using seismic methods) are salt and basalt. Both materials have

fast seismic velocities and scatter the seismic energy, often resulting in poor seismic data

resolution beneath them (cf. Hoversten et al. 2000; Maresh and White 2005). Energy

exploration companies have realized the potential of EM and MT as additional data sources

to aid in determining the geological structure beneath these problematic units (cf. Jegen

et al. 2009; Colombo et al. 2012).

With these new industrial scale applications, successfully extracting and processing of

information from CSEM and MT data has proven to be a formidable computational

problem. To provide geologists with maximally consistent electromagnetic data, inter-

pretation requires dense survey coverage and multicomponent data volumes. As a con-

sequence, large-scale 3D imaging is receiving considerable attention in the interpretation

of CSEM and MT data (Commer et al. 2008; Commer and Newman 2008, 2009; Ca-

razzone et al. 2008, 2005; Gribenko and Zhdanov 2007; Newman and Commer 2009;

Plessix and Mulder 2008; Plessix and van der Sman 2007, 2008; Zach et al. 2008). Here,

exploitation of HPC systems is essential to effectively treat the resulting large-scale 3D

imaging problems that arise in industrial applications on an acceptable time scale of a few

days to a week (Fig. 1).

The recent arrival of new HPC technologies is enabling new approaches to parallel-

ization of EM modeling and imaging schemes. Modern graphics processing units (GPUs),

designed for efficiently manipulating computer graphics, have a high parallel architecture

(hundreds of independent computational threads on each GPU) that also makes them

suitable for computationally intensive scientific applications. Recent inquiries into GPU

performances for EM applications can be found in the works of Commer et al. (2011) and

Weiss and Schultz (2011). Later in this review, we discuss some performance comparisons

between multicore CPU with message–passage-interface (MPI) and GPUs. Clearly, the

field of HPC is rapidly evolving. In a decade, the HPC architectures we employ for our

problem-solving may well be vastly different, thus demanding new program and parall-

elization paradigms. To better understand where HPC is headed for our problems, it is

important to discuss platforms and software currently in use for EM modeling and imaging.

It is also important to discuss the parallel computational approaches for our applications,

including multiple levels of parallelization, and the choices one makes regarding software

and solver libraries.

2 Effective 3D Solvers for Electrical Resistivity Modeling

Before discussing HPC implementations for 3D EM and DC resistivity modeling, it is

useful to review the solvers for the Maxwell’s equations in use today. Such solvers form

the computational kernel of HPC implementation. They apply to a large class of
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geoscientific applications that involve boundary value problems for simulating EM and MT

fields for geophysical prospecting and subsurface imaging of electrical resistivity. Induc-

tive EM modeling can be done in either the frequency or time domain. In the frequency

domain, FD and FE implementations for the CSEM and MT modeling give rise to a large,

sparse linear system resulting from the discrete versions of the Maxwell equations for

complex 3D geological media; IE implementation also gives rise to a linear system, but it

is dense and not that practical for complex 3D modeling investigations. Specifically, the

linear system of N rows and columns can be written as

AN�Nx ¼ b: ð1Þ

In the time domain, explicit time-stepping solutions to the Maxwell equations work well.

The explicit discrete forms of the equations in the time domain also hide an underlying

sparse matrix operator, which, at every time step is equivalent to a matrix–vector product

involving the electric or magnetic fields to be advanced to the next time step. In (1), the

matrix A [ <N3N is regular (sparse or dense), and the solution and right-hand side vectors

are x, b [ <N, respectively. Direct methods can be used to factor the matrix (Cholesky and

LU factorizations for symmetric and non-symmetric matrices; in resistivity applications,

the matrices are symmetric [DC resistivity methods] or complex symmetric [EM and MT

soundings]). Upon factorization, solution to multiple right-hand sides can be rapidly cal-

culated. However, beyond a certain problem size, depending upon the given computational

resources and acceptable time to solution, usage of direct solvers becomes prohibitive.

Thus, in these instances, iterative Krylov subspace techniques are commonly used for

solution.

Fig. 1 Illustrated is an industrial size example of large-scale CSEM imaging experiment, processed with
over 1,000 compute cores, offshore Campos Basin, Brazil. Rendered at the top is the average vertical
resistivity map from 500 to 2,500 m below the seafloor, superimposed with sail lines used to acquire the
Campos Basin data. The cross-section at the bottom shows the vertical resistivity image along the indicated
transect. The Campos Basin experiment demonstrated the necessity to incorporate electrical anisotropy into
the imaging processes for accurate results. The EM image is shown together with seismic reflection
horizons. Anomaly A is related to enhanced resistivity due to a known oil field. Anomaly B is enhanced
resistivity and may indicate a possible hydrocarbon trap above a large salt body. Enhanced conductivity at C
is likely to be related to conductive brines originating from salt below. Results presented by Carazzone et al.
(2008) and Newman et al. (2011)
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Krylov subspace methods are defined as projection (Galerkin) or generalized projection

(Petrov–Galerkin) methods for the solution of the linear system (1). The solution involves

constructing the Krylov subspace Km,

Km ¼ Km A; r0ð Þ ¼ span r0;Ar0; . . .;Am�1r0

� �
ð2Þ

Starting with the residual vector, r0 ¼ b� Ax0, Krylov methods compute the approxi-

mation xm [ x0 ? Km to the solution of (1) in an iterative manner, where at each iteration

the dimension m of K is updated; in exact arithmetic and for symmetric positive definite

systems, the iteration will produce an exact solution to Ax = b. However, because of

round-off errors in machine computation, this property is not realized in practice. For

nonsymmetric and complex symmetric linear systems, there is no guarantee of conver-

gence with the Krylov iteration, but in practice, reasonable convergence has been observed

for EM problems (cf. Newman and Alumbaugh 1995, 2000). Krylov methods are named

after the Russian applied mathematician and naval engineer Krylov (1931), whose paper

formed the basis of all Krylov methods later developed (http://en.wikipedia.org/wiki/

Krylov_subspace).

A common near-surface application is the DC resistivity method, where a DC (or a very

low frequency) current is introduced as a means of studying earth electrical resistivity, for

example in groundwater mapping. Here, depth of interrogation is controlled by source-

receiver offsets of the electrodes and earth resistivity. Readers are referred to the works of

Spitzer (1995) and Spitzer and Wurmstich (1999) for further details on DC resistivity

modeling.

Time-harmonic EM prospecting methods, including magnetotellurics, are methods in

which depth of exploration and spatial resolution can be further controlled with source

frequency. The Krylov solvers of interest for these applications are designed to handle linear

systems where A is real symmetric or complex symmetric. For the real symmetric case, the

conjugate gradient (CG) method is optimal (Hestenes and Stiefel 1952). CG is designed to be

applied to any Hermitian (complex) linear system that is symmetric positive definite; the DC

resistivity modeling problem is an example where such systems may arise. For the complex

symmetric case, where the matrix is non-Hermitian, the bi-conjugate gradient (BiCG)

method first proposed by Lanczos (1952) and quasi-minimum residual (QMR), more

recently proposed by Freund and Nachtigal (1991) and Freund (1992), are effective and cost-

efficient solvers. Another good choice for complex symmetric as well as nonsymmetric

problems is BiCGSTAB, which was introduced by van der Vorst (1992). The solvers BiCG,

QMR, and BiCGSTAB are appropriate for simulating complex EM and MT fields.

Krylov iteration also provides the basis for more sophisticated solver techniques that

can be applied to the solution of 3D geo-electromagnetic modeling problems. The spectral

Lanczos decomposition method (SLDM) (cf. Druskin and Knizhnerman 1994; Druskin

et al. 1999) and Padé-type approximations used by Börner et al. (2008) allow for rapid

solution of 3D EM fields in either the time or frequency domain, based on model reduction.

The essential idea with reduced order modeling is that only a modest number of eigen-

values and eigenvectors are necessary to accurately describe the simulated field over a

range of frequencies and decay times. These singular values and vectors can be estimated

quickly with a Krylov subspace projection. The larger the Krylov subspace, the greater the

range of frequencies and decay times that can be efficiently simulated. Finally, multigrid

methods that exploit Krylov iteration can be extremely efficient in solving linear systems

(Greenbaum 1997). In this context, the multigrid method acts as a preconditioner for the
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Krylov subspace methods. Application of multigrid methods for DC modeling problems

can be found in the works of Lu et al. (2010) and Moucha and Bailey (2004).

3 Parallel Computing Platforms

3.1 The Multicore CPU Platform

Massively parallel (MP), multiple instruction multiple data (MIMD) machines have been

the standard platform for HPC computation for nearly the last 24 years. These machines

have dedicated access to tens to ten thousands of compute cores. The smallest MIMD

machines are typically clusters of a few tens to several hundred compute cores. The largest

machines are to be found in supercomputing centers around the world, such as the National

Energy Research Scientific Computing (NERSC) center, which is a division of Lawrence

Berkeley National Laboratory, located in Berkeley California. As an example of a top-tier

machine, consider NERSC’s first peta-flop system, Hopper, which is a Cray XE6. It has

peak performance of 1.28 9 1015 floating point operations per second,2 153,216 compute

cores, 217 TB of memory, and 2 PB of disk. Large and small MIMD machines rely on a

dedicated backbone for communication among the computing cores. The standard message

passing interface (MPI) (Gropp et al. 1996) is used for interprocessor communication. MPI

provides portability so that MP software can be run across a range of MIMD platforms,

including dedicated distributed machines and/or a distributed network of machines. The

works of Alumbaugh et al. (1996), Alumbaugh and Newman (1997), Newman and

Alumbaugh (1997, 1999), and Newman and Alumbaugh (2000) were some of the first to

exploit the MIMD-MPI computing architectures for 3D EM modeling and inversion, with

some of the more recent works including those of Chen et al. (2012a, b), Oldenburg et al.

(2013) and Puzyrev et al. (2013).

Fast performance on MIMD machines depends upon the speed at which messages can

be delivered through the backbone fabric that connects all the compute cores. One of the

largest MP applications for EM modeling is the 3D CSEM imaging experiment reported by

Commer et al. (2008), in which 32,768 compute cores were employed. While this appli-

cation required extensive resources to execute, it was a demonstration that 3D EM imaging

problems could be solved in days, rather than weeks, on more modest size clusters. It

offered important verification that industrial size 3D EM imaging problems could exploit

fine- and coarse-grain parallelism to achieve solutions on a time scale acceptable to energy

exploration companies. At the fine-grain level of parallelization, a domain decomposition

is employed for each source and frequency over a fixed number of compute cores; while at

the coarse-grained level, multiple copies of the domain decomposition are employed for

the different sources and frequencies, which is perfectly scalable, resulting in an embar-

rassingly parallel computation.

3.2 GPU Processors

To provide access to the multithreaded GPU computational resources and their associated

memory bandwidth graphics, hardware manufacturers have introduced new application

programming interfaces such as CUDA and Open CL, thus enabling numerical calculations

in a fashion similar to the MIMD parallel computing paradigms discussed above. Since

2 One petaflop is equivalent to 1015 operations per second.
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2006, GPU technology has evolved rapidly for scientific applications (http://en.wikipedia.

org/wiki/Graphics_Processing_Unit), and the technology is now used extensively in pro-

cessing and imaging of seismic data in oil and gas exploration. For EM induction prob-

lems, Commer et al. (2011) and Weiss and Schultz (2011) provide studies on the feasibility

of using a single GPU for large-scale EM field simulations. (I will discuss these com-

parisons between GPUs and MIMD-MPI computing platforms at length, later in this

review.) When GPUs come with significant memory access (3–5 GB), it is possible to

simulate reasonable-sized EM field calculations on a single GPU, but memory can be an

issue with larger calculations. An obvious strategy for treating larger problems is to dis-

tribute the calculations across multiple GPUs. Unfortunately, a current bottleneck with the

GPU architecture is the performance hit observed with distributing calculations across

multiple GPUs. Such data transfers are not nearly as straightforward as using a pure MPI-

CPU interconnect. This is an area of active research; the interested reader is referred to the

works of Yang et al. (2011), Lawlor (2009), and Stuart and Owens (2009).

A new trend that has emerged recently is the pairing of CPUs with MPI interconnects,

with GPU accelerators, avoiding direct message passing between GPU accelerators.

Instead, parallelization across multicore CPUs is combined with fine-grain parallelization

of the GPU on the CPU for much faster scientific computations (approximately 5- to

10-fold). As an example, consider a domain decomposition that is distributed across the

CPUs, with internal calculations on each CPU passed to the GPU for accelerated com-

putation without significant communication overhead between CPU and GPU. Since

communication or message passing is carried out extensively on the coarse-grain level

between CPUs and infrequently on the GPUs, much faster times to solutions can be

realized with careful load balancing. In late 2012, utilizing this type of strategy, the Titan

supercomputer at Oak Ridge National Laboratory in the US—consisting of 18,688 Nvida

k20x GPUs and 18,688 AMD Opetron CPUs with 560,640 processor cores—reported a

performance of nearly 18 petaflops on the standard Linpack benchmark, making it the

world’s fastest supercomputer. Peak performance for Titan is 20 petaflops or a quadrillion

calculations per second.

4 Parallel EM Applications

Let us now discuss the range of applications in which HPC computing has impacted EM

investigations. The two applications of EM where HPC has made an impact and will

continue to make impacts are in large-scale 3D modeling and inversion studies.

4.1 Large-Scale 3D Modeling and Inversion

The size and complexity, and thus the realism, of 3D models that can be simulated on

traditional serial computers are limited by memory and flop-rate of the processor. How-

ever, with HPC, the rate at which the simulations can proceed is dramatically increased,

because thousands to tens of thousands of processors can operate on the problem simul-

taneously. Examples of EM modeling problems using finite difference techniques that

exploit such resources can be found in Newman and Alumbaugh (1999) for airborne 3D

EM simulations, Newman and Commer (2005) for 3D transient EM (TEM) modeling and

inversion, and Commer et al. (2008) and Newman et al. (2010) for 3D inverse modeling of

a deep-water EM exploration survey in the Campos Basin, offshore Brazil. The airborne

EM and marine CSEM examples can be quantified as requiring hundreds of sources in the
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simulation experiment along with large-scale model parameterizations. Other examples

can be found in the literature (cf. Plessix and Mulder 2008 and Oldenburg et al. 2013).

Typically, the 3D imaging solutions use a Cartesian mesh for the model parameterization.

Recently, however, Schwarzbach and Haber (2013) completed an unstructured finite ele-

ment solution to the 3D CSEM imaging problem, which could allow for more effective

imaging in the presence of bathymetry and topography.

Calculations that attempt to include all the physics in the simulation are highly desir-

able, for several reasons. First, they provide benchmarks on faster approximate solution

methods that explicitly ignore some of the salient physics of EM field simulation and

inverse modeling (the Born Approximation, for example), indicating their range of validity

and applicability. Note that all numerical methods involve some sort of approximations,

but these errors can be adjusted to acceptable level by mesh refinement. What I am

speaking about here are approximations whose errors cannot be reduced by higher-order

meshing and derivative and quadrature approximations. Second, the computational end-

member numerical solutions I speak of are the gold standard in EM modeling. They

include model complexities, along with a complete description of the physics of the EM

field that cannot be simulated otherwise, especially since analytical solutions do not exist

for these problems. Provided that adequate HPC resources are available, such end-member

calculations should always be considered.

4.2 Stochastic Imaging

Bayesian stochastic framework and Markov Chain Monte Carlo sampling methods may

offer (in some cases) a clear alternative to deterministic inversion methods for estimating

the resistivity of the subsurface along with the associated uncertainties. The papers of Chen

and Dickens (2009) and Chen et al. (2007) provide a good overview of the methods for

reservoir estimation problems, and a more recent work by Chen et al. (2012) applies the

stochastic inversion to MT data using a sharp 2D boundary parameterization to a geo-

thermal field site in Indonesia. For DC problems, Schwarzbach et al. (2005) applied a

genetic algorithm (also considered a stochastic imaging approach) to 2D resistivity data.

Liu et al. (2012) reported some initial results using a modified genetic algorithm allowing

for mutation in the sampling strategy of resistivity models with modest size (\15,000

parameters), relevant to small-scale 3D hydrological investigations. Reported solution

times were much slower than the traditional deterministic imaging in order to eliminate

dependence on the initial resistivity model.

With stochastic sampling, the likelihood function is the link between the resistivity and

EM/MT/DC data. It is clearly an embarrassingly parallel application that can be used to

construct the joint posterior probability function defined by the Baysesian stochastic

framework. Moreover, because each sample of the likelihood function requires the solution

of a specific EM or MT boundary value problem, the solution of such a problem can be

efficiently obtained by distributing it over a number of parallel computing tasks (cf. Chen

et al. 2012a, b). Hence, multiple levels of parallelization can be exploited. Nevertheless,

the advantages of stochastic estimation come at considerable computational expense—

hence the need for HPC resources. Currently, stochastic sampling methods are viable for

simplified layered and 2D geologies. However, the case for stochastic parameter estimation

for realistically parameterized three-dimension problems is a different matter. Global-

stochastic estimation methods are still too time and memory intensive to be of practical use

in the foreseeable future.

92 Surv Geophys (2014) 35:85–100

123



4.3 Parallel Computational Approaches for EM Modeling and Inverse Problems

As has already been remarked, computational approaches to 3D EM and MT modeling

now favor finite difference and finite element implementations, because of their flexibility

in modeling complex geologies. Another consideration is the size of the data volume to be

analyzed, which can include hundreds of sources and thousands of detectors per source.

Successful approaches in dealing with large-scale model parameterization and data vol-

umes exploit multiple levels of parallelization. For example, Commer et al. (2008, 2009)

use a domain decomposition of the model across a subset of computational tasks, called a

‘‘local processor group’’ and distribute the calculation across multiple copies of these

groups, called ‘‘data planes.’’ Because the data calculations are independent on each data

plane, results are embarrassingly parallel and scale with the number of data planes

employed. Implicit solver methods take advantage of this processor topology, where

iterative Krylov solvers are ideal. Here, each source calculation is independent of other

sources, and copies of the solvers can be distributed across the different data planes; a

similar strategy can be used for explicit time-stepping TEM modeling approaches for

multiple sources. Recently, there has been interest in multifrontal direct solvers in large-

scale EM simulations (cf. Vieira da Silva et al. 2012; Streich 2009). The appeal of these

solvers is that, once the linear system operator is factored, solutions for multiple right-hand

sides can be computed quickly. Popular, parallel multifront solvers libraries include

MUMPS (Amestoy et al. 2001, 2006), Super LU (Li and Demmel 2003), and PARDISO

(Schenk and Gärtner 2004, 2006), among others. While there is much appeal in exploiting

these parallel solvers, large model parameterizations and corresponding meshes that arise

in CSEM applications limit their applicability to modest-sized problems. Airborne EM

modeling is another limited application because of the size of the grids that can be treated.

Fig. 2 Solution times for three different iterative Krylov solvers, CG (a), BiCG (b), and QMR (c); figure
replicated from Commer et al. (2011). Each GPU implementation is compared against its original parallel
FORTRAN90 version, as well as a parallel solver from an external library. All CPU solvers were run on
eight processor cores. The solid lines correspond to the left axis and show computing times in seconds
required for 1,000 iterations. Memory usage is shown on the right y axis and denote the requirements for
storing all Krylov solver data structures in memory. The curves denoted as Aztec-CPU (CG) and PETSc-
CPU (BiCG and QMR) are reported solution times using the Aztrec and PETSc external parallel solver
libraries. GPU simulations were carried out on NVIDIA Tesla C2050 (Fermi) GPU, which includes three
gigabytes of memory and 448 parallel CUDA processor cores. CPU only computations were preformed on
two Intel Nehalem 5530-2.4 GHz CPU with eight processor node. Each node consists of two CPUs
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Even though there could be thousands of sources, it is not practical to use a single mesh for

all of them. Like Krylov solvers, copies of multifrontal direct solvers can also be imple-

mented independently on different data planes, if sufficient memory is available. Thus, the

fields arising from groups of sources on each data plane can be solved efficiently.

Practical solutions of the 3D EM/TEM/MT inverse problems use some variant of

Newton, Gauss–Newton, and nonlinear/steepest decent techniques to arrive at a solution. It

is best to avoid direct formulation of the Hessian and Jacobian and its transpose. These

linear systems, which result from discretization of these operators, are dense, and the cost

of their explicit formulation is considerable, even on a distributed computational platform.

Instead, it is advisable to compute only the action of these discrete operators on a vector,

which correspond to a matrix–vector multiplication. The net result is that two to three

forward solves are necessary to complete the operation per source/frequency (cf. Newman

and Hoversten 2000). As a consequence, the computational bottleneck in 3D imaging

problems is the solution of the forward modeling problem. Therefore, the use of HPC

resources, effective solver strategies, and multiple levels of parallelism are essential for

large-scale problems.

5 Parallel Solver Libraries

Parallel solver libraries are an essential resource that non-computer scientists can take

advantage of when developing their own parallel modeling and imaging algorithms. The

alternative is to develop one’s own parallel solver. In certain cases, this can be achieved,

depending upon the solver type. Iterative Krylov solvers are not too hard to implement, and

substantial benefits in performance can be obtained with them, compared to external

parallel libraries (approaching a speedup of nearly a factor of two, as demonstrated below).

However, it will be necessary to write the MPI communication routines required by the

iterative solver. With explicit time-stepping methods, which arise in TEM modeling and

inverse problems, it is not too difficult to develop similar communicators to forward and

back-propagate EM fields. For direct solvers, however, this is not advisable, because of the

level of complexity and sophisticated programming structures needed to achieve the

desired efficiency (cf. Wang et al. 2012). Popular iterative Krylov solver libraries include

the PETSE (Balay et al. 2010) and the TRILINOS-AZTEC (Heroux et al. 2003, 2005;

Tuminaro et al. 1999) packages. These libraries were developed at United States

Department of Energy Laboratories, with the explicit goal of helping software developers

in implementing their applications on HPC machines. They come with the necessary

communicators to carry out the required message passing, relieving the developer of the

task of development, which is considered one of the hardest aspects of parallel pro-

gramming. For direct solver libraries, as have already been mentioned, MUMPS, Super

LU, and PARDISO are popular choices. It is outside the scope of this review to provide

specific details on the relative merits of these direct solver libraries. However, selection of

a specific solver will depend upon the available computing resources, particularly memory,

algorithm efficiency, and the size of the problem to be solved. Streich (2009), Oldenburg

et al. (2013), Swarzbach and Haber (2013), and Grayver et al. (2013) have reported success

using MUMPS or PARDISO for 3D CSEM and time domain EM modeling and inversion.

For extreme large-scale problems, typical in simulating seismic wave propagation, a new

variant of Super LU (cf. Wang et al. 2011, 2012), is worth mentioning.
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6 GPU-Multicore CPU Comparison Study

Commer et al. (2011) recently implemented efficient Krylov subspace methods for the

iterative solution of sparse linear systems on GPUs. The solvers studied were suitable for

electrical and electromagnetic simulation problems that arise in geophysical resistivity

prospecting. Timing comparisons clearly indicated the increasing efficiency of the GPU

solvers for increasingly larger matrix sizes. For the largest problems examined (16 and 7

million unknowns, respectively, for real and complex systems), the GPU performance is

equivalent to 23 CPU compute cores of the CG iteration and 19 cores for both the BiCG

and QMR iterations; the number of compute cores on a CPU typically varies anywhere

from 4 to 12. The comparisons are for the faster CPU solvers that are custom designed and

do not use external libraries (Fig. 2). A comparison of solution times for the Krylov solvers

(CG, BiCG, and QMR), using only CPU compute cores with an MPI interconnect, clearly

shows the computational efficiencies that can be obtained when carefully implementing

solver communicators oneself, compared to those supplied by the external solver libraries

(Azterc and PETSc).

While the GPU performance in these tests are clearly impressive, it is important to

remember that one still needs to distribute the solution of a single forward problem across

the order of 100 CPU cores or more, to address both computing and memory needs of

systems arising from typical large-scale CSEM exploration applications—along with

acceptable processing times. Even with considerations for grid optimization schemes to

reduce the computational burden (cf. Commer and Newman 2008; Plessix and Mulder

2008), hundreds to thousands of CPU compute cores are a necessity for realistic 3D CSEM

imaging experiments (cf. Newman et al. 2010). While Commer et al. (2011) have not yet

fully explored a corresponding GPU approach, i.e., solving one system on multiple GPUs,

currently there are constraints imposed by the amount of GPU memory, limiting the usage

of GPU solvers to maximum grid sizes as reported here. Nevertheless, one can expect

hardware and message improvements with GPUs, so the situation is likely to improve.

7 Future Trends: The Cloud

Computing is ubiquitous. Large server farms serviced by companies such as Amazon,

Microsoft, and Google allow for the possibilities of carrying out modeling and inversion

work in the Cloud, alleviating the need for the EM geophysicist to support in-house

computational clusters and corresponding operating systems software. In a recent work,

Mudge et al. (2011) discussed the evolution of inversion methods, focusing on MT, with

Cloud computing. This work shows us new possibilities for distributed geophysical

modeling and inversion computations. Nevertheless, there are some issues that need to be

addressed before this approach to computation can really take off. First is security. If data

cannot be made secure on remote server farms, industrial applications will not drive the

shift away from in-house computing to that in the Cloud. Second, large-scale EM field

simulation and inversion requires a dedicated interconnect between different processor

cores. Mudge et al. (2011) report that MPI so far does not map well to the cloud archi-

tecture. Because MPI has become the most popular programming model for HPC, it will be

necessary to improve its efficiency in the Cloud, particularly for computations that are

tightly coupled, requiring fast and efficient message passing.
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8 Conclusions

This review has discussed the importance of HPC on 3D modeling and imaging of earth

resistivity properties, be it DC, EM, or MT resistivity soundings. In the 1980s, the most

complex models that we could simulate were simple prismatic bodies in layered geological

media. As software and hardware have progressed, over nearly 30 years, we have wit-

nessed the maturation of EM modeling and inversion methods, which has allowed their

application to complex 3D geologies once inconceivable. HPC resources have played a

significant role in this advancement of EM modeling and imaging technologies. What will

the next 30 years bring? With distributed cloud computing on the near horizon, assuming

that the present limitations described above are overcome, the possibility exists for freeing

EM geophysicists from supporting in-house computer clusters, associated software

maintenance, and cumbersome supercomputer centers. The simple idea of uploading data

and input into web-based 3D modeling and imaging applications, anywhere there is

connectivity, has significant appeal, provided security and interconnect issues can be

resolved. With calculations done remotely, securely, and quickly in the Cloud, solution

times will contract, resulting in new breakthroughs in our EM modeling and imaging of the

earth’s subsurface, with important implications in the exploration of energy resources,

environmental site characterization, and geological hazard studies.

High-performance computing (HPC) and scientific computation are inexorably linked.

New algorithms and computational approaches are constantly being developed to allow for

faster and more accurate large-scale EM modeling. Initially, these numerical approaches

are developed using convenient scientific software framework, such as MATLAB, on a

single-core/CPU processor for quick and easy proof of concept testing. On the other hand,

efficient implementation on a distributed computing system requires careful considerations

of algorithm scalability, along with memory considerations and message passing, along

with the optimal approach for utilizing computing resources.

In closing, I believe the forefront HPC EM modeling and associated imaging research

now focus on finite element solutions to Maxwell’s equations and the associated DC

equations on unstructured meshes. The linear systems that result from unstructured meshes

are large, sparse, and highly ill-conditioned. Schwarzbach and Haber (2013) proposed

using parallel direct solvers on these irregular meshes because they can be substantially

smaller than the matrices produced by finite difference discretization on regular meshes.

Nevertheless, efficient and scalable iterative solutions to these types of matrix systems are

an area of active research (cf. Um et al. 2013, Puzyrev et al. 2013). While Krylov iterative

solvers can be effective for these types of problems, efficient preconditioning is necessary.

(Scalability of the solver is also an ongoing concern.)

Finally, it is interesting to note that algebraic multigrid (AMG) solvers have not

received much attention for these types of problems. AMG is reportedly the optimal

iterative solution method (Greenbaum 1997) that can be applied to sparse linear systems.

While AMG (as well as geometric multigrid solvers) has been successfully developed for

real systems (DC type problems—for example, Lu et al. 2010; Moucha and Bailey 2004),

application to complex, and complex symmetric systems, have proven more difficult. One

possible reason may be attempts to use AMG libraries designed for real systems on

complex systems, which are expressed in terms of equivalent real forms (ERF). Interest-

ingly, Freund (1992) warned that Krylov solvers designed for real systems, such as

GMRES, were not very effective when applied to complex symmetric linear systems

expressed in ERF. Freund claimed that it is better to solve such systems directly in the

complex domain and developed the QMR and the transpose-free QMR methods for that
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task. One reason for poor performance on ERF is the resulting complex eigenvalue dis-

tribution, which is folded about the real axis, and this folding could cause problems with

the Krylov iteration. From my own experience, a similar problem is observed when AMG,

designed for real systems, is applied to complex symmetric systems. Development of AMG

solvers formulated specifically for complex symmetric systems thus appears warranted.
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