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Abstract Inverse problems are inherently non-unique, and regularization is needed to

obtain stable and reasonable solutions. The regularization adds information to the problem

and determines which solution, out of the infinitely many, is obtained. In this paper, we

review and discuss the case when a priori information exists in the form of either known

structure or in the form of another inverse problem for a different property. The challenge

is to include such information in the inversion process. To use existing known structure, we

review the concept of model fusion, where we build a regularization functional that fuses

the inverted model to a known one. The fusion is achieved by four different techniques.

Joint inversion of two data sets is achieved by using iterative data fusion. The paper

discusses four different methods for joint inversion. We discuss the use of correspondence

maps or the petrophysics of the rocks, as well as structure. In particular, we suggest to

further stabilize the well-known gradient cross product and suggest a new technique, Joint

Total Variation, to solve the problem. The Joint Total Variation is a convex functional for

joint inversion and, as such, has favorable optimization properties. We experiment with the

techniques on the DC resistivity problem and the borehole tomography and show how

model fusion and joint inversion can significantly improve over existing techniques.

Keywords Joint inversion � Model fusion � Total variation � Cross product

1 Introduction

Consider the problem of recovering a model function from the noisy incomplete data

obtained by the forward problem
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FðmÞ þ � ¼ d: ð1Þ

where Fð�Þ is a forward operator that maps the model function m(x) into the discrete data

vector d and � is random measurement noise assumed to be Gaussian independent and

identically distributed (iid) with standard deviation r2. Assume that the problem is ill-

posed, that is, the solution is not unique and discontinuous with respect to data pertur-

bations. Small perturbations in d can lead to large changes in m. Such problems are

typically solved by regularization where meaningful a priori information is added to the

inversion process. This is achieved by solving an optimization problem of the form

min
m
J ðmÞ ¼ 1

2
kFðmÞ � dk2 þ aRðmÞ ð2Þ

where R(m) is an appropriate regularization operator and a is a regularization parameter.

Typical choices for the regularization operator are based on smoothness requirements of

the solution (Jackson 1979; Parker 1994). Using ‘2 norm on the gradient of m as well as

total variation is among the popular choices (Vogel, 2001).

In geophysical applications, the operator F can be the direct current resistivity method,

the electromagnetic imaging method, or the seismic forward problem. The model m(x) can

be a conductivity or the seismic velocity of the Earth, and the optimization problem (2) can

be used to approximately recover these physical properties.

To be more concrete, in this work, we experiment with two model problems. The first is

the seismic ray tomography, and the second is the 2D DC (Direct Current) resistivity. We

now review these problems and demonstrate how non-uniqueness in the recovered model

arises.

1.1 Borehole Tomography

Assume that the Earth is probed using two boreholes. Sources are put in one borehole, and

receivers are placed in the other. Assuming straight rays, the data at the jth receiver due to

signal omitted at the ith source are given by

Dij ¼
Z

Cij

mðxÞd‘

where Cij is the (assumed straight) path from the ith source to the jth receiver and m(x) is a

function that represents the slowness. To obtain a discrete approximation, we first organize

the data, D, in a vector d where dk is one datum that corresponds to the kth ray. Next, the

model is discretized into n cells. Let Aij be the length of the ith ray in the jth cell. Then, the

discrete problem can be written as

Amþ � ¼ d

where m is the discretized slowness at each cell1. This is a linear inverse problem for the

model m given the data d.

1 Throughout the paper we somewhat abuse the notations between continuous and discrete variables. The
understanding of what type of variable should be clear from the context.
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1.2 Direct Current Resistivity

Direct Current (DC) resistivity is an imaging technique that uses static electric fields in

order to image the Earth’s interior. In the experiment, source electrodes are placed at xs1

and xs2 and direct current is injected through them into the Earth. The electric potential due

to the current can be modeled as a partial differential equation

r � expðmðxÞÞrui ¼ dðxi
s1
Þ � dðxi

s2
Þ ui 2 X rui � n ¼ 0 ui 2 oX i ¼ 1; . . .; ns

Here, m(x) is the log conductivity, and we assume to have ns sources. Given the potential

field ui, one measures the datum Dij by another set of electrodes, that is, the data are given

by

Dij ¼
Z

X

dðx j
r1
Þ � dðx j

r2
Þ

� �
uiðxÞdx

Upon discretization, one obtains a discrete forward problem of the form

D ¼ P>AðmÞ1Qþ E

where A(m) is the discretization of the differential operator and the boundary conditions,

Q is a discretization of the sources, and P is a discretization of the receivers.

The ill-posedness of these problems is demonstrated in the following examples. We

consider surface data for the DC resistivity and borehole data for the tomography (the exact

setting is described in the last section of the paper). Upon using a smooth recovery (that is

RðmÞ ¼
R

X jrmj2dx), we obtain the results shown in Fig. 1. Clearly, the recovery of each

of these models is far from perfect. While the conductivity recovery has very limited depth

recovery, the tomography ‘‘smeared’’ the model horizontally. This should not come as a

surprise; the conductivity is obtained from a DC resistivity survey that is sensitive to

variations close to the surface, while the tomography is obtained by rays that are inte-

grating the model laterally.

The question that is at the core of every inverse problem algorithm is how to improve

these results. If no prior information is available, then one may claim that if the models are

geologically reasonable and fit the data, then they are a sufficiently good solution to the

problem. However, if more information exists, then the goal of the inversion algorithm is

to somehow incorporate it into the inversion. While generic regularization techniques can

Fig. 1 True and smooth recovery of slowness and conductivity
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do well for the incorporation of smoothness information, they fail to incorporate many

types of a-priori information that is often available and needs to be represented.

Our simple example in Fig. 1 above is in fact one such case. It is clear that the slowness

and the conductivity have similar ‘‘structure.’’ Each has three anomalies located in the

same area. Such information is natural if we consider that the change in physical properties

represents a change in the underlying geology. The question of how to incorporate such

structure into an inversion algorithm is at the heart of this paper.

Thus, in this work, we assume that we have structural information that needs to be

respected. Two cases are to be considered.

1. In the simpler case, we assume the availability of a known function s(x) such that the

model, m(x), has ‘‘similar structure’’ to s(x). We define the incorporation of

information in a known model s(x) into the inversion of m(x) as model fusion.

2. If the function s(x) is unknown and is obtained by a different inverse problem of the

form

y ¼ GðsÞ þ � ð3Þ

where G(s) is a different forward modeling operator that is sensitive to changes in the

parameter function s(x), then we can attempt to invert for both m and s simultaneously in a

process that is referred to as joint inversion.

The idea of model fusion commonly arises when two different imaging methods are

used. For example, in geophysical imaging, seismic methods lead to structural information

that needs to be respected by another imaging technique, say gravity. Similarly, in medical

imaging, MRI or CT images can lead to structures that should be respected and incor-

porated by other imaging techniques with lower resolution such as proton emission

tomography (PET). Generally, fusion and joint inversion are useful whenever both

methods are sensitive to different parts of the model space.

Another common use of fusion and structure arises in geophysical imaging when

geological sections and maps that are based on drilling and geological interpretation are

given. Adding such information to the inversion process is difficult when using standard

regularization techniques.

Joint inversion naturally arises when the model being used for structure is unknown;

however, it shares many properties with the model fusion problem. In fact, as we show

later in the paper, joint inversion can be achieved by iteratively considering model fusion.

The difficulty in fusing, merging, or jointly inverting m and s stems from the following

three observations

• m and s have very different physical meaning (and units). As such, for many problems,

we do not know an exact a priori relation between m and s, often referred to as a

correspondence map (that is the map m(s) or vice versa) or the petrophysics of the

rocks.

• In many cases, when s involves a geological model, it does not have physical units and

describes morphology.

• The structure of m and s can be similar at some regions but might be different at others.

Thus, a method that can honor structure when possible is needed.

The idea of using a model function s to aid the recovery of m either in a static mode, that

is, assuming known s or in a dynamic mode, that is, inverting for jointly s and m is not new.

There are three main approaches for such integration
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1. In some cases, petrophysical measurements that yield an empirical relation (corre-

spondence map) between m and s are given. In this case, it is possible to incorporate

the relations directly into the inversion algorithm of Roux et al. (2011) or Moorkamp

et al. (2011). This approach is discussed in Sect. 2

2. In medical image registration, a gold standard to fuse two imaging modalities is

Mutual Information (MI) (Pluim et al. 1999). MI can be viewed as a method to obtain

the correspondence map directly from the data. We discuss the method in Sect. 3

3. In Haber and Oldenburg (1997) and Zhang and Morgan (1996), structure was defined

by edges by using the zero crossings of second-order derivatives. This idea was

substantially improved in Gallardo and Meju (2003), Gallardo and Meju (2004, 2011),

Gallardo et al. (2012), Gallardo (2007), Jilinski et al. (2012), and Moorkamp et al.

(2007) that defined structure using the cross products of the gradient fields. Similarly,

other methods were based on variations of this method include Tryggvason and Linde

(2006), Linde et al. (2008), Hu et al. (November–December 2009), and De Stefano

et al. (2011). Other methods which depend on a model but not its edges include

Lelivre and Oldenburg (2009) which uses a Bayesian approach and Cardiff and

Kitanidis (2009) which depends on the distance from a reference model. We discuss

using morphological structure, that is, derivatives, in Sect. 4 and introduce a new

technique that we refer to as joint total variation in Sect. 5.

Throughout the paper, we discuss a number of new methodologies that can improve the

results of the different techniques. In particular, in Sect. 5, we propose a new approach to

the problem that uses a convex regularization term in both m and s. This new regularization

enables us to solve the joint inversion problem using classical optimization techniques and

has favorable numerical properties.

We discuss implementation details and suggest simple algorithms for the solution of the

optimization problems that rise from the different formulations in Sect. 6. In Sect. 7, we

perform numerical experiments on borehole tomography as well as the DC resistivity to

demonstrate and compare the different approaches. Finally, in Sect. 8, we summarize the

paper and discuss future research directions.

Throughout this paper, we move between continuous formulations where m is a

function, to a discrete formulation where the function is discretized on a mesh. For

brevity and simplicity of notations, we do not differentiate between the discrete and the

continuous cases and assume that the reader can imply the nature of the variable from the

context.

2 Inversion Through Correspondence Maps

In many cases, laboratory experiments are made in order to obtain an empirical relations

between physical parameters. Such relations are often referred to as petrophysics. For

example, a number of papers discuss empirical relations between seismic velocity and

electrical conductivity (Jones et al. 2009) and seismic velocity and density (Barton 1986).

Some theoretical relations such as Archie’s (1942) law are also used to build such maps.

Work that uses these maps is presented in Moorkamp et al. (2007, 2011), Zhang and

Morgan (1996), and we summarize it below.

Assuming that the correspondence map is known exactly, it is simple to use it within the

inversion process. In this case, one can write m = m(s) and simply use this relation in the

process of solving a single optimization problem, that is, no joint inversion is needed.
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Note that fusion (that is inverting for m given s) does not make sense here and, thus, we

discuss the joint inversion only. This can be done by simply setting

m ¼ mðsÞ

and solving the optimization problem

min
s

1

2
ðFðmðsÞÞ � dÞ>

X�1

m

ðFðmðsÞÞ � dÞ þ 1

2
ðGðsÞ � yÞ>

X�1

s

ðGðsÞ � yÞ þ aRðsÞ ð4Þ

The covariance matrices Rm and Rs play an important role in the inversion process as they

scale the two experiments correctly. Failing to use them may fit one inverse problem but

not the other. The regularization parameter a needs to be estimated, and this can be done

using ‘‘standard’’ techniques such as discrepancy principle or Generalized Cross Validation

(Vogel 2001).

The idea of an exact correspondence map is not practical for most realistic cases.

Consider the case of the generic correspondence map shown in Fig. 2, where direct data

collected (typically laboratory data) about s are plotted against data collected about m.

The map (the red line) is obtained from fitting experimental data, and thus it is not

certain. If one uses the map in Fig. 2, then this uncertainty is not taken into consideration

and the resulting inversion can be erroneous.

To incorporate this uncertainty into the inversion, we assume that the map, C, is char-

acterized by a few parameters, p, that is C = C(s;p). For example, Archie’s law suggests

logðmÞ ¼ p1 � p2 logðsÞ

or, given m and s

AðsÞp ¼ bðmÞ

where

AðsÞ ¼
1 � logðs1Þ
..
. ..

.

1 � logðsnÞ

0
B@

1
CA and bðmÞ ¼

logðm1Þ
..
.

logðmnÞ

0
B@

1
CA

and p ¼ ½p1p2�>:

Fig. 2 A correspondence map
between two physical properties
and the fit obtained from the map
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To recover the parameters p from laboratory measurements of m and s, in the first stage,

we compute the correspondence map by solving the total least squares (TLS) problem (Van

Huffel and Vandewalle 1991). The TLS assumes that both A and b contain noise, that is,

the relations between the properties is

ðAþ EÞp ¼ bþ g

where E and g are noise in the matrix and right-hand side, respectively. While it is possible

to use regular least squares for the estimation of the correspondence map, it is not

advisable. This is because both the matrix A(s) and the right-hand side b(m) depend on

laboratory measurements that are noisy. After the correspondence map has been estimated,

we obtain the parameter p and can write an approximate mathematical relation between

m and s. Furthermore, we can estimate the residuals, that is

ri ¼ Cðsi; pÞ � mi; i ¼ 1; . . .;# of samples

and use the residuals to build the empirical variance

Rc ¼
1

N

X
r2

i :

Using this estimate, it is possible to add the relations into the inversion in terms of a

another penalty and eliminate m from the inversion, obtaining a problem for a single model

s and the noise in the map between m and s, r.

min
s;r

1

2
ðFðCðs; pÞ þ rÞ � dÞ>

X�1

m

ðFðCðs; pÞ þ rÞ � dÞ

þ 1

2
ðGðsÞ � yÞ>

X�1

s

ðGðsÞ � yÞ þ asRsðsÞ þ
c
2
krk2

ð5Þ

The complexity of this inversion stems from the fact that we need to choose two

different regularization parameters. The choice of c can be done by using the discrepancy

principle, where c is chosen such that krk ¼ kCðs; pÞ � mk � nRc where n is the length of

the m. Numerical strategies for the solution of the problem are discussed in Sect. 6.

One major pitfall of this approach is that the correspondence map is obtained from

samples obtained from a very narrow geographical area and at very different scales. In

general, the map may not be unique, that is, two values of m may be associated with a

single value of s and vice versa. Furthermore, in many cases, the actual anomalies we are

after are not modeled within the map. In this case, joint inversion may lead to wrongly

biased results and it is difficult to detect that such errors have been made. One way to check

the consistency of the results is to make sure that the m and s obtained through the

inversion process are represented by the data. For example, if the laboratory data are

limited to 0 B m B 1, then are should be taken when applying the correspondence map to

1 � m.

3 Inversion Through Mutual Information

Mutual information (MI) is the gold standard when comparing multi-modality images in

medical image registration (Pluim et al. 1999; Viola 1995). Its roots are in information

theory, and we shortly describe the method and its implementation.
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The main idea of MI is to use the joint histogram of m and s in order to define a good

similarity measurement. Since the classical definition of MI is in vector spaces, we assume

that the inverse problem has been discretized and that m and s are vectors.

The mutual information distance function between the vectors m and s is defined by

MIðm; sÞ :¼ H½qrðsÞ� þ H½qrðmÞ� � H½qrðs;mÞ�; ð6Þ

where the entropy H is defined by

H½q� :¼ �
Z

qðtÞ logðqðtÞÞdt; ð7Þ

qr(s, m) is the estimated joint density function of the vectors (s, m), and qr(s) and

qr(m) are the density functions of the two random variables s and m.

We thus have to evaluate the density function qr which depends on the discrete vari-

ables s(xj) and m(xj). Care must be taken when modeling the function qr, in particular, the

function needs to be differentiable and compactly supported. A common way to estimate q
and the associated MI function is to use the histogram method of Silverman (1986) setting

qrðs;m; g1; g2Þ :¼
X

j

Kðr; sðxjÞ � g1ÞKðr;mðxjÞ � g2Þ; ð8Þ

where K is a kernel function which integrates to one and r is a parameter controlling the

width of the kernel. The histograms are defined on the axis g1,g2 which are the dynamic

values in s and m, respectively, that is, g1 is a variable that spans the physical range of s,

min(g1) B min(s) and max(g1) C max(s) and similarly, min(g2) B min(m) and max(g2) C

max(m).

Note that qr is only an estimate of the true density q. The parameter r is a smoothing

parameter. For small r, the Kernel resembles a delta function and for a larger one, it

becomes smoother. It is possible to show that when the Kernel resembles a delta function,

we implicitly assume that our sampling is infinite (Silverman 1986). For finite sampling,

the density has to be smoothed and the value of r should not be set to 0. To find the best

smoothing parameter, various techniques have been suggested. Here, we use general cross

validation methods (GCV) as presented in Silverman (1986).

Note that, in order to evaluate the integrals in (6) numerically, a further discretization of

the joint density function qr(g1,g2) is needed over the axis g1 and g2. For a detailed

description about the discretization of MI and its implementation, see Modersitzki (2009).

After discretizing, the MI measure model fusion or joint inversion can be done in the

‘‘usual’’ way by solving the optimization problem

min
s;m

1

2
ðFðmÞ � dÞ>

X�1

m

ðFðmÞ � dÞ

þ 1

2
ðGðsÞ � yÞ>

X�1

s

ðGðsÞ � yÞ þ aMIMIðm; sÞ
ð9Þ

While MI has very nice intuitive and theoretical properties, it suffers from being highly

nonlinear. In fact, throughout our numerical experiments for joint inversion or fusion on

synthetic examples, we had very little success in getting the method to avoid local minima.

We believe that further research is needed in order to use this measure in a robust way in

geophysical inverse problems.
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4 Inversion Through Structure

In the previous sections, we used the idea of correspondence maps in order to ‘‘tie’’ two

models with different physical properties. In this section, we discuss a different approach

that has been successful in many applications. Rather than find a map, the idea is to use the

topology of the models in order to connect them. Thus, we discuss the incorporation of so

called ‘‘structural information’’ in inverse problems.

In order to use structure, we first need to define the meaning of structure similarity. Our

exact definition is as follows:

Let m(x) and s(x) be continuously differentiable functions. Then we say that m(x) has the

same structure as s(x) if the level sets of m(x) are parallel to the level sets of s(x).2

Recall that the level sets of a function are the contours (in 2D) and surfaces (in 3D)

where the function is constant.

If the structure of m and s is approximately the same then one would like to measure the

structure similarity and find models such that this measure is ‘‘small’’ by adding an

appropriate regularization. To define such a measure, we recall that if the level sets are

parallel then the normals to the level set are parallel. The (non-normalized) normals to the

level sets are given by the gradient fields rm and rs. Using this observation, it was

suggested in Gallardo and Meju (2003) to use the cross products of the gradient fields, that

is, we define the similarity measure between m and s as

Sðm; sÞ ¼ 1

2

Z

X

jrmðxÞ � rsðxÞj2dx ¼
Z

X

1

2
jS�rmj2dx ð10Þ

where

S� ¼
0 sz �sy

�sz 0 sx

�sx sy 0

0
@

1
A:

The expression (10) involves cross derivatives of s and m and, therefore using it directly

requires either low order accuracy or long differences that are notoriously unstable (Ascher

2010). This is because the vector v ¼ ð1;�1; . . .Þ> is in the null space of the long dif-

ference matrix, and thus, it does not penalize very high oscillations.

A mathematically equivalent expression that is easier to discretize is obtained by

considering the dot product.

Sðm; sÞ ¼
Z

X

jrmðxÞj2jrsðxÞj2 � jrmðxÞ>rsðxÞj2dx ð11Þ

The equivalence between (11) and (10) corresponds to the vector identity

ja� bj2 ¼ jaj2jjbj2 � ðja>bÞ2

The dot product is zero for structures that are identical. The advantage of this expression is

that it involves only normal derivatives products, and therefore, as we see next, it is easy to

discretize it using short differences. Similar expressions to this one are studied in Jilinski

et al. (2010) and Haber and Modersitzki (2006).

2 Recall that the level sets of a function m(x) are lines (in 2D) and surfaces (in 3D) that are defined
implicitly by the equation m(x) = const.
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Given s(x) one can use S as a regularization operator and obtain a model that is close to

a desired structure. Nonetheless, for many problems, this can be insufficient. Consider the

case that |rs| is very small at some regions. An example for such a case is in our first

tomographic problem in Fig. 1. The absolute gradient of the true model is plotted in Fig. 3

Note that there are many areas where |rm| & 0 and, therefore, rough structure can be built

in these areas without any penalty. This is demonstrated when we attempt to recover the

model using the gradients obtained from the true model (that is never available in practice).

The recovered model in Fig. 3 fits the data well but generate artifacts of high oscillations

that are caused due to the lack of penalty and the long differences. As can be seen from this

example, in this case, using S as regularization does not generally lead to a stable inversion

algorithm. As a remedy, one can add a global regularization term such as smoothness to the

problem in order to obtain sufficient regularization and avoid un-physical oscillations. In

our experience, this does not yield a good regularization scheme in general, because global

smoothness of the model often conflicts with the structural information (11) that allows

non-smooth structures at some of the domain. We therefore propose the following regu-

larization that stabilizes the problem in areas where |rs| & 0.

Rðm; sÞ ¼
Z

X

jrmðxÞj2jrsðxÞj2 � jrmðxÞ>rsðxÞj2dx

þ b
2

Z

X

jrmðxÞj2vhðjrsðxÞjÞdx

ð12Þ

where b is the regularization coefficient vh(t) is a ‘‘smoothed’’ indicator function of the

form

vhðtÞ ¼
1

2
ðtanhðhtÞ þ 1Þ ð13Þ

and the parameter h is chosen based on the physical properties ofrs. The idea is that h |rs|

is large (say larger than 3) where |rs| is considered physically significant in its magnitude.

The regularization (12) uses structure whenever possible and reverts to smoothing other-

wise. Other functions can be used instead (e.g., total variation), but here, we concentrate on

smoothness only.

When we have two different observations of the same structure, generated by two

different physical experiments, we would like to jointly invert the data and thus reach a

solution that fuses m with s. Consider the joint inversion problem:

FðmÞ þ �1 ¼ d and GðsÞ þ �2 ¼ y ð14Þ

Fig. 3 The norm of the gradient |rm| for the true tomography model in Fig. 1 (left) and recovered slowness
model using the unstabilized cross product (right). Note how the unregularized area in the model yields
uncontrolled oscillations at the bottom
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In this case, information that is contained in one model is relevant to the other model and

vice versa. Therefore, the structures determined by one model can help identify structures

in the other model, and the two models can correct each other in the joint inversion

process, allowing a better solution for both. However, while we assume both models to

have similar structures at similar locations, we do not impose that they share all the

structures, and it is possible for one model to have a structure in a locations where the other

model has none (e.g.krmk � 0 where krsk ¼ 0).

We can obtain a solution to the problem using a block coordinate descent method where

the model s is the structure for m, and the model m is the structure for s. This leads to the

optimization problem

min
m;s
J ðm; sÞ ¼ 1

2
ðFðmÞ � dÞ>

X�1

m

ðFðmÞ � dÞ þ 1

2
ðGðsÞ � yÞ>

X�1

s

ðGðsÞ � yÞ

þ aRðs; mÞ þ b1

2

Z

X

jrmðxÞj2vhðjrsðxÞjÞdxþ b2

2

Z

X

jrsðxÞj2vhðjrmðxÞjÞdx

ð15Þ

The problem involves many parameters to be determined, and this is discussed in Sect. 6.

We will now shortly discuss the discretization of the structure operator. First, assume

that m is discretized at cell centers and approximate the first-order derivative using the

usual short difference

ðmxÞiþ1
2;j
¼ 1

h
ðmiþ1;j � mi;jÞ þ Oðh2Þ

ðmyÞi;jþ1
2
¼ 1

h
ðmi;jþ1 � mi;jÞ þ Oðh2Þ

ð16Þ

The approximation leads to a staggered grid given in Fig. 4, where, mx, my, and m are

discretized in different locations.

Furthermore, we define averaging operators which interpolate edge quantities to cell

centers.

Fig. 4 Staggered grid in 2D
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vi;j ¼
1

2
ðviþ1

2
;j þ vi�1

2
;jÞ þ Oðh2Þ

vi;j ¼
1

2
ðvi;jþ1

2
þ vi;j�1

2
Þ þ Oðh2Þ

ð17Þ

The differences and averages can be combined into matrices. Let

D ¼ Dx

Dy

� �

be the gradient matrix and similarly let

Av ¼ Ax Ay½ �

be the averaging matrix. Using these matrices, the structure operator can be approximated

as

Sdðm; sÞ ¼
X
ðAvðDmÞ2Þ 	 ðAvðDsÞ2Þ � ðAvððDmÞ 	 ðDsÞÞÞ2

where 	 is the Hadamard product3. It is easy to verify that this is a second-order

approximation to the continuous structure operator.

In order to use this operator in a numerical optimization scheme, we need to define the

Jacobian and Hessian of this operator. It is straightforward to see that the Jacobian,

JS = rmSd and Hessian, HS = rm
2 Sd of the discretized structure operator are

J ¼ diag AvðDs	 DsÞð ÞAvdiag Dmð ÞD� diag AvððDmÞ 	 ðDsÞÞð ÞAvdiag Dsð ÞD

HS ¼ D> diag A>v AvðDsÞ2
� �

� diagðDsÞA>v AvdiagðDsÞ
� �

D
ð18Þ

5 Inversion Through Joint Total Variation

In the previous section, we have discussed a regularization term based on the geometry of

structure. In this section, we use ideas from joint sparse recovery of van den Berg and

Friedlander (2010) in order to achieve similar goals.

To do that, we use the notion of a mixed ‘1,2 norm. Let X be a n 9 2 matrix, we define

the norm kXk1;2 as

kXk1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
#;1 þ X2

#;2

q

where X;,i is the ith column of X and

X2
#;i ¼ X#;i 	 X#;i

Assume that each column of X is sparse, that is, assume that each column of X has only a

few non-zero entries. Then, it is straightforward to verify that the ‘1,2 norm of X is smaller

if the non-zero entries correspond to the same row of X. This observation is in the core of

the ideas of joint recovery of sparse signals that appeared in the work of van den Berg and

Friedlander (2010).

3 Recall that the Hadamard product of a vector y with a vector z is defined as ðz	 yÞi ¼ ziyi
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Here, we use the idea for model fusion and joint inversion. by extending the definition of the

‘1,2 to continuous variables. Assume that we have two models m and s and let |rm| and |rs| be

the absolute value of their gradients. We now define the joint total variation of the two models as

JTVðm; sÞ ¼
Z

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrmj2 þ jrsj2

q
dx ð19Þ

Note that the models are coupled through the square root function and, as can be observed

below, the gradients are completely coupled.

We can use this definition for joint inversion by solving the optimization problem

minm;sJ ðm; sÞ ¼
1

2
ðFðmÞ � dÞ>

X�1

m

ðFðmÞ � dÞ þ 1

2
ðGðsÞ � yÞ>

X�1

s

ðGðsÞ � yÞÞ

þ aJTVðm; sÞ
ð20Þ

As previously discussed, for model fusion, we fix the model s and invert for m alone, while

for joint inversion, we solve the optimization problem for both m and s.

We will now briefly discuss the discretization of the joint total variation (JTV) regu-

larization. Consider the gradient and average matrices D and Av introduced in the previous

section. Then, the absolute value of the gradient can be discretized as

krmk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AvjDmj2

q
krsk �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AvjDsj2

q

where jtj2 ¼ t 	 t: This implies that

JTVðm; sÞ � JTVhðm; sÞ ¼ v>
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AvjDmj2 þ AvjDsj2 þ �

q
ð21Þ

where v is a vector of the volume of each voxel in the models and � is a small number that

is added to address the lack of differentiability at 0 (see Ascher et al. 2005). The deriv-

atives of JTVh(m, s) are

rmJTVhðm; sÞ ¼ D>
A>v v

ðAvjDmj2 þ AvjDsj2 þ �Þ
1
2

 !
Dm

rsJTVhðm; sÞ ¼ D>
A>v v

ðAvjDmj2 þ AvjDsj2 þ �Þ
1
2

 !
Ds

Inversion through JTV has one remarkable property that is unique in comparison with other

joint inversion methodologies. While all previously introduced methods are, in general,

nonconvex, the JTV term is convex in both m and s. This allows for much better opti-

mization algorithms and for more robust convergence results. In particular, if both forward

models are convex then the complete optimization problem is convex, and a unique

solution is obtained independent of the starting point.

6 Numerical Solution of the Optimization Problems

We have introduced four different model fusion or joint inversion formulations. The first

(5) is based on correspondence maps and is noted as CM, the second, (9), is based on
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Mutual Information and is noted MI, the third, (15), is based on structure and is noted as SI,

and the last (20) is based on joint total variation and is referred to as JTV. All four

formulations lead to large scale optimization problems. In this section, we briefly review

how such optimization problems are solved and discuss some of the practical details that

arise when numerically solving these problems. We do not intend to give a full numerical

treatment to the problem and point to text-books such as Parker (1994), Vogel (2001), and

Hansen (1997) that review basic treatment of inverse problems.

6.1 Numerical Optimization for Model Fusion

Recall that, in model fusion, the model s is assumed known and m is unknown. In this case,

the optimization problems have the common form

min
m
J ðmÞ ¼ misfitðmÞ þ a regularizationðm; sÞ

where the data misfit is the difference between the observed and predicted data and the

regularization term involves the known parameter function s. The problem can be viewed

as a ‘‘standard’’ inverse problem with a different regularization term, and thus, common

strategies for the solution of inverse problems directly apply.

The problem can be solved using some descent method, where each iteration requires

four main steps.

1. Computation of J ðmÞ and rmJ ðmÞ
2. Approximation of the Hessian H � r2

mJ
3. Computation of a step that solves the linear system Hdm ¼ �rmJ ðmÞ
4. (Safe) update of the model m mþ ldm where l is a line search parameter.

Roughly speaking, different algorithms differ in their approximation to the Hessianr2
mJ :

In our experiments, we use the limited memory Broyden-Fletcher-Goldfarb-Shanno (BFGS)

and the Gauss–Newton method (Nocedal and Wright 1999). We have found that these two

methods perform well for most geophysical inverse problems. Gauss–Newton is more

computationally involved, but it tends to converge faster. The regularization parameter can

be tuned such that the data fit to the discrepancy principle (Tikhonov and Arsenin 1977) or

generalized cross-validation (GCV) (Haber and Oldenburg 2000; Golub et al. 1979).

It is important to differentiate between the structural approaches, SI and JTV and the

others, namely CM and MI. The remarkable feature for SI is that it leads to a quadratic

regularization and JTV leads to convex regularization. Therefore, for convex forward

problems, we obtain a convex inverse problem that is solved using very few iterations. In

fact, solving the optimization problem does not impose any additional difficulties when

comparing to other simple regularization techniques, such as smoothness or smallness. On

the other hand, MI and, in some cases, CM can be highly nonlinear and often nonconvex

with multiple minima. Thus, model fusion can be easily performed using SI and JTV but

requires special attention when using other methods.

When using SI, it is important to use some other regularization in space in locations

where krsk � 0: In our experience, if the extra regularization is not added to the problem

then the overall optimization problem is under-regularized and is often still ill-posed, and

this can lead to unreasonable solutions. JTV on the other hand does not require any

additional terms and can be used automatically even if the gradients of s vanish.

Nonetheless, although SI has clear advantages from a computational approach, using a

map between m and s, and assuming that the relationship is well known and close to exact,
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will inject much more information into the problem. In this case, the problem can be solved

obtaining a feasible ‘‘geological’’ model that is often of better quality compared with any

other method. If on the other hand, the relations between m and s are highly inaccurate then

the injection of such information can be disastrous.

Finally, in our attempts to work with MI, we have found it to be highly nonlinear and

nonconvex. While we managed to solve some individual problems by ‘‘tweaking’’

parameters, we did not manage to obtain a sufficiently robust code that works well in

general. We believe that using MI for model fusion and joint inversion remains an

interesting area of research.

6.2 Numerical Optimization for Joint Inversion

In joint inversion, we jointly invert for m and s by solving the generic optimization

problem

min
m;s
J ðm; sÞ ¼ misfitmðmÞ þ misfitsðsÞ þ a regularizationðm; sÞ

where misfitm and misfits are the misfits for the parameters m and s, respectively. The

difficulty here stems from the fact that inverting for both models simultaneously requires

access to the computational components of each problem, and the ability to integrate them.

Since the components may have very different scales the coupling requires new codes that

jointly solve the problem. Our approach has been to utilize existing codes for the solution

of the problem by making small changes that allow for joint inversion.

To this end, we use a block coordinate descent method. While block descent may be

slow, it separates the joint inversion problem into a number of model fusion problems that

are easier to solve. A general joint inversion algorithm is as follows, at iteration k

1. Approximately solve the optimization problem

mk ¼ arg min
m

misfitmðmÞ þ a regularizationðm; sk�1Þ

2. Approximately solve the optimization problem

sk ¼ arg min
s

misfitsðsÞ þ a regularizationðmk; sÞ

At this point, we stress that working one model at a time performs actual joint inversion.

It is just an algorithmic choice and in the absence of local minima leads to the same answer

as an algorithm that simultaneously inverts for m and s.

The advantage of the block descent is that, as previously discussed, each of these

problems can be solved using ‘‘standard’’ inversion algorithms and does not require special

machinery. This makes the solution of joint inversion problems simple, if the fusion

problem can be easily solved. In particular, for SI and JTV joint inversion can be achieved

with ease since each optimization problem involves a convex regularization term. Using a

coordinate descent has another added advantage. In many if not most cases, inversion

codes are designed to obtain an individual regularization parameter. Thus, when using

coordinate descent, it is possible to use existing algorithms for the estimation of regular-

ization parameters.
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7 Numerical Experiments

We now experiment with the different algorithms on our model problems. We start by

assuming that one model is known which leads to model fusion and then experiment with

the case that both models are unknown which leads to joint inversion.

7.1 Numerical Experiments for Model Fusion

In the first part of our experiments, we experiment with the different techniques on model

fusion, where we assume that s is known and m is unknown. In our first experiment, we use

the borehole tomography problem. To this end, we simulate a data set of 32 sources and 32

receivers that are spaced 96 m apart. Each source (or receiver) is spaced one meter away

from its adjacent neighboring sources. All receivers share all sources and the data is

polluted with 1 % noise. The model is discretized on a mesh size 32 9 96.

The true model corresponds to the structural information in two structures and has an

additional new smooth anomaly. When inverting the data using smoothness (that is, reg-

ularizing by the first derivative), we obtain a smeared model where the middle anomaly is

not well represented. When using both SI and JTV, we obtain a clear improvement where

all anomalies are well represented. Finally, when using MI we obtain a result that is only

marginally better than smoothness. From a numerical perspective, the SI yields a quadratic

problem that is solved in one iteration while the JTV requires a few iterations. MI is very

unstable and the result shown here was obtained by manually changing parameters to keep

the method stable. The results clearly demonstrate the effectiveness of JTV and SI for

model fusion; see Fig. 5.

In our next experiment, we repeat the model fusion experiment but with the DC

problem. The results are shown in Fig. 6. DC resistivity has a limited resolution at depth,

and this is clearly seen in the smooth inversion, where the anomalies are smeared toward

depth. Using SI and JTV yield slightly different results but, overall, both known structures

are well represented while the unknown structure is recovered with some depth smearing.

Model fusion using both SI and JTV works well for this problem as well. On the other

hand, MI did not converge to any reasonable result (and thus we avoid showing the result).

This problem clearly demonstrates the power of convex structural regularizers over the

nonconvex ones.

7.2 Joint Inversion

In this section, we demonstrate our experiments of joint inversion techniques. Here, we

compare between CM (Correspondence Maps) where the maps are obtained from noisy

data, SI, and JTV. Our attempts to use MI fail for this experiment as well.

For the experiment, we generate a slowness model and use the simple relation

m ¼ logðrÞ ¼ �s

to define both slowness and conductivity. We then recover the slowness and log con-

ductivity models using the different techniques. The different inversions are plotted in

Fig. 8. All three variants experimented with here gave a substantial improvement over

individual inversions, which indicates the usefulness of joint inversion.

When analyzing the results, it is important to realize that in SI and JTV we do not use

the direct expression that links between m and s but rather assume that the models have
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similar structure. In CM we assume to have additional 129 noisy laboratory measurements

of m and s. The relations between m and s are then approximated from these measurements

by total least squares. Since all measurements contain noise, we obtain only an approxi-

mate relation that contains errors. The data used to obtain the m-s curve are plotted in

Fig. 7. Here, we assume a linear relation m = a s ? b and compute a and b from the

curves. As can be seen, for data that has only 5 % noise, we obtain a fairly accurate

estimation while for the data polluted with 20 % noise, the estimation has substantial

Fig. 6 Numerical experiment for model fusion of conductivity. a True slowness model, b structural
information, c structural inversion using SI, d smooth inversion without structural information e structural
inversion using JTV, f MI did not converge for this problem

Fig. 5 Numerical experiment for model fusion of slowness. a True slowness model, b structural
information, c structural inversion using SI, d smooth inversion without structural information, e structural
inversion using JTV, f structural inversion using MI
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errors. We then use the estimated a and b to jointly invert the DC and tomography

problems. We observe that when the errors are significant, the quality of the joint inversion

deteriorates significantly.

We record the mean square error (MSE) in the recovery for each of the methods in

Table 1. For the problems solved here, SI was superior to other joint inversion modalities.

This can be visibly observed in the results as well as in the MSE of the recovery.

From an optimization point of view, JTV was the most robust and (as theoretically

guaranteed) converged to the same point independent of the starting model. We have found

that, when using SI, care must be taken to start from a reasonable model and to add

sufficient smoothing in areas where the gradient of the model at the current iteration is

small. We have found that if this is not dealt with then SI can be highly unstable and may

give erroneous results.

In Table 1, we also show the number of iterations that each method performed to

achieve its minimum. The correspondence map is the least expensive method compared to

any other inversion. This is not surprising as the map used here is not very nonlinear. As

expected from the theory, JTV that is convex did better (in terms of convergence) and SI

was the most expensive.

8 Conclusions and Future Work

In this paper, we presented four methods for joint inversion. These methods are based on

either correspondence maps or structure. Three new techniques have been introduced in the

paper. Mutual information (MI) which performed poorly in all our experiments, a struc-

tural inversion based on the dot product of the gradients, which is similar to the well used

cross-gradient product, and a new methodology of joint total variation reconstruction. We

have introduced the concept of model fusion, when a new model is fused to a known

model. We also explored joint inversion when the two models are jointly inverted. For

model fusion, using the structural information and joint total variation leads to a convex

regularization which is a significant advantage over other possible techniques. In partic-

ular, the structural information measure leads to a quadratic problem that can be solved

using standard software packages.

Fig. 7 Simulated laboratory s versus m data with various degrees of noise
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The problem of joint inversion is significantly more complex. Correspondence maps are

very much problem dependent and depend on available laboratory information and its

extrapolation to field data sets. On the other hand, structure can be easily used whenever

we believe that the structure of two models fully or partially align. We have explored two

methods to incorporate structural information. We propose a new method, the joint total

Table 1 Number of iterations for each joint inversion technique

Method Iterations DC MSE (%) Tomography MSE (%)

Smooth recovery 1 63 45

JTV 16 36 29

SI 45 28 22

CM 5 % noise 8 49 34

CM 20 % noise 7 61 41

Fig. 8 True, smooth recovery, JTV recovery, SI recovery and CM recovery
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variation, that uses a convex functional for joint inversion. This functional is the only

convex functional known to us that can achieve this goal, and thus it has significant

advantages over other regularization techniques, in particular for nonlinear problems.

We have also explored optimization techniques for the solution of the problems. For

joint inversion, we advocate the use of block coordinate descent where one model is fixed

and the other is fused to it, changing the models at each sub-iteration. This approach has a

significant advantage as it can use existing optimization packages changing only the

regularization term.

Finally, the techniques developed and discussed in this paper are applicable to a wide

range of problems, and we expect that model fusion and joint inversion will be often used

in practice whenever data is available.
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