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Abstract The magnetotelluric (MT) phase tensor is a property of the MT impedance that is

resistant to a common form of distortion due to unresolvable local structure. Review of the

theory leads to a new geometrical description that cleanly separates information about

directionality and dimensionality of regional conductivity structure. This information is widely

used to justify two-dimensional (2D) interpretation, but the case is seldom made convincingly.

In particular, errors are largely ignored and it is not understood that full data covariance is

essential for accurate error bars. It is also common to use 2D impedance tensor decompositions

when the phase tensor shows this model to be inconsistent with the data. A phase tensor-

consistent impedance tensor decomposition is introduced. Because the phase tensor is a dis-

tortion-free 3D response, it should be used as data for 3D inversions. Until codes for this

become more developed, comparison of predicted and observed phase tensors can ascertain

whether 3D aspects of the data have been adequately fit by other inversions or modeling.

Keywords Magnetotelluric phase tensor � Dimensionality � Distortion � Impedance

decomposition � Impedance covariance

1 Introduction

Magnetotelluric (MT) data sense electrical conductivity of Earth’s interior and find

application in a variety of contexts. These include exploration for economic resources

when the conductivity of the target differs from its host and tectonic processes both active

and ancient. MT is particularly useful when the target scale is large or deep because it uses

natural time-varying electric and magnetic fields which are difficult to generate artificially

over large areas and at long period. It is complementary to other geophysical techniques

because conductivity depends strongly on interconnection of spatial transport properties.
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MT is inherently more difficult than many remote sensing techniques because little can be

learned about Earth’s interior by looking at the raw time series which are dominated by

processes in Earth’s atmosphere and space environment. Additionally, Earth structure is

commonly multi-dimensional and may be anisotropic.

A major step forward in the MT method was recognition that data were often distorted

by unresolvable small-scale structure. This led to techniques to extract undistorted data.

The most widely used assumes that large-scale structure is two-dimensional (2D). Caldwell

et al. (2004) took a different approach and introduced the MT phase tensor which is

unaffected by a common form of distortion and makes no assumptions about regional

structure. Since then, Caldwell et al. have been cited by more than 80 papers.1 The majority

of applications involve justifying 2D interpretation. Few papers have taken further

advantage of the information in the phase tensor and many papers simultaneously use

techniques that violate constraints implied by the phase tensor.

This paper begins with a review of the theory that differs somewhat from Caldwell et al.

It presents an alternate parameterization of the phase tensor that I find more intuitive than

the original and more clearly separates directionality and dimensionality information.

Because error estimation is critical to most applications and is widely ignored, I discuss it

in some detail. I also describe how the phase tensor has been used (and abused) and discuss

a way to generalize the 2D impedance tensor decompositions (Bahr 1988; Groom and

Bailey 1989) that have dominated MT interpretation for the last two decades so they

become compatible with the phase tensor. Finally, I review ways the phase tensor can

contribute more widely to MT interpretation.

2 Geometry of the MT Phase Tensor

The relationship between the horizontal magnetic (H) and electric (E) field vectors at an

MT site is normally represented in the frequency domain by

E ¼ ZH ð1Þ
The MT impedance tensor Z is a complex transfer function. In Cartesian coordinates (x,

y, z), this can be written out

Ex

Ey

� �
¼ Zxx Zxy

Zyx Zyy

� �
Hx

Hy

� �
ð2Þ

E and H are driven by quasi-stationary physical phenomena outside Earth, while Z is

assumed to be a stable property of the subsurface electrical conductivity structure. Thus,

(1) is a statistical model in which fluctuations of observed Z for different time windows of

E and H are considered to be due to random fluctuations in the input fields. The details of

how best to estimate Z and its uncertainties depend on whether the average external field

can be represented as a plane wave, whether noise is in E or H or both and how non-

Gaussian residuals are dealt with (Gamble et al. 1979; Egbert and Booker 1986, Chave

et al. 1987; Chave and Thomson 1989; Jones et al. 1989; Egbert 1997; Chave 2012a). With

one exception, this paper assumes that these issues have already been adequately

addressed. The exception is that it will be shown that the full covariance matrix of Z is

more important than generally appreciated and can be critical in phase tensor applications.

1 A file of References can be obtained from a link at http://earthweb.ess.washington.edu/booker. A more up-
to-date list can be generated using the Science Citation Index or GeoRef.
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It is therefore essential that the time series processing code reports this important infor-

mation, not just the standard errors.

Major issues in inverting estimates of Z for Earth structure are distortion of Z by

unresolvable small-scale structure and the dimensionality and directionality of the

underlying regional structure. The MT phase tensor is defined by

U ¼ X�1Y ¼ Uxx Uxy

Uyx Uyy

� �
ð3Þ

where X and Y are the real and imaginary parts of Z (Caldwell et al. 2004). The phase

tensor has become an important tool because of three properties: First, U does not change

if Z is multiplied by any real two-by-two matrix (as when regional-scale impedance is

distorted by local structure); second, its matrix skew is zero when the regional structure is

2D; and third, information about preferred orientation of regional structure is easily

extracted.

It is worth emphasizing that U is a property of Z that makes no assumptions about how

the electric and magnetic fields interact with the structure. Existing applications assume

that local structure does not significantly distort the horizontal magnetic field H. An

undistorted horizontal magnetic field is not always the case. Groom and Bailey (1991)

show an example where this assumption fails and Chave and Smith (1994) extend 2D

impedance tensor decomposition to include magnetic distortion. However, the geometry of

U exists independent of the assumption of undistorted H and has meaning when the

magnetic field is distorted. Useful behavior of the phase tensor in the presence of magnetic

distortion needs investigation.

This section reformulates the presentations of Caldwell et al. (2004) and Bibby et al.

(2005). Bibby et al. add insights into Caldwell et al., but cover essentially the same

material and involve the same authors. In most cases, I refer to these formative papers

simply as Caldwell et al.

Consider a distorted horizontal electric field ED that is related to an undistorted hori-

zontal electric field E by

ED ¼ DE ð4Þ

where the two-by-two ‘‘Distortion Matrix’’ D is real. D can always be interpreted as a

rotation and a change of magnitude of the undistorted field. When D is due to deflection of

‘‘regional’’ electric current by small-scale electric charges in phase with the regional

E field, D is period-independent and the distortion is termed ‘‘Galvanic’’ or ‘‘static’’ (Bahr

1988; Jiracek 1990). I will use the term ‘‘static.’’

To make further progress, it is necessary to assume that D is not singular. When D is

singular, the direction of ED becomes independent of the direction of E and one has no

hope of extracting the undistorted field from distorted measurements. MT sites with sin-

gular D can be identified by electric signals on non-colinear dipoles that are 100 % cor-

related or finding a coordinate system in which one of the measured electric field

components is zero.

Multiplying (1) by D and assuming that the horizontal magnetic field is not distorted

gives

DE ¼ DZH � ZD H ð5Þ
The distorted impedance in the same coordinate system as Z is seen to be

ZD ¼ DZ ¼ XD þ iYD ¼ DXþ D iYð Þ ð6Þ
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Relationship (6) is not immediately useful because there are 12 unknowns—4 elements

of D and the real and imaginary parts of the 4 complex elements of Z, while there are only

8 measured data (the real and imaginary parts or the magnitudes and phases of the four

complex distorted impedance elements). On the other hand, the phase tensor of the dis-

torted impedance is easily seen to be independent of D:

UD ¼ X�1
D YD ¼ ðDXÞ�1DY ¼ X�1D�1DY ¼ X�1Y ¼ U ð7Þ

Its real elements constitute 4 undistorted data that are completely determined by the

measured data.

Impedance can be transformed to a rotated coordinate system using

Zrot ¼ RZR�1 ð8Þ

where the unitary coordinate rotation operator for vectors is

RðhÞ ¼ cosðhÞ sinðhÞ
� sinðhÞ cosðhÞ

� �
ð9Þ

Note that R rotates (in the right-hand sense) the coordinate system in which a vector is

expressed, while R-1 rotates the vector itself in a fixed coordinate system. Note also that

R-1(h) = RT(h) = R(-h) where the superscript T means transpose and that

R h1ð ÞR h2ð Þ ¼ R h2ð ÞR h1ð Þ, that is, multiple rotations can be performed in any order. I

sometimes use the notation Rh ¼ R hð Þ when the rotation angle is not obvious from con-

text. It is easy to show that Urot (the phase tensor in the rotated system) can be computed

either from Zrot or by rotating the coordinates of U.

2.1 Two-Dimensional Structure

As already noted, the action of any two-by-two real matrix such as U on a vector is to

rotate it and change its length. Applying the phase tensor (3) to a family of radial vectors

c(x) whose tip circulates around a unit radius circle as the polar angle x increases from 0

to 360� (see Fig. 1a) produces another family of radial vectors

p xð Þ ¼ U c xð Þ ¼ Uxx Uxy

Uyx Uyy

� �
cos xð Þ
sin xð Þ

� �
¼ Uxxcos xð Þ þ Uyxsin xð Þ

Uyxcos xð Þ þ Uyysin xð Þ

� �
¼ pxðxÞ

pyðxÞ

� �

ð10Þ
Consider the anti-diagonal 2D impedance when the measurement axes x and y are

aligned parallel and perpendicular to strike:

Z2D ¼ 0 Zxy

Zyx 0

� �
ð11Þ

Its phase tensor is

U2D ¼ tan /yx

� �
0

0 tan /xy

� �
� �

ð12Þ

where /xy and /yx are the phase angles of the complex impedance elements Zxy and Zyx.

When the time dependence of the electromagnetic fields is e?igt (where g is radian fre-

quency and t is time), the phase of Zyx is in the third quadrant between -180� and -90�
while the phase of Zxy is between 0 and 90�. Because tan(/yx ? 180�) = tan(/yx), the
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upper left element of U2D cannot distinguish whether /yx is in the third or first quadrant.

Thus, the elements of the phase tensor are equal to each other when the structure is 1D.

Substituting (12) in (10) gives

p2D xð Þ ¼ U2Dc xð Þ ¼ tan /yx

� �
0

0 tan /xy

� �
� �

cos xð Þ
sin xð Þ

� �
¼ tan /yx

� �
cos xð Þ

tan /xy

� �
sin xð Þ

� �
ð13Þ

This is a parametric equation of an ellipse whose axes are along the x and y coordinate

axes. The ellipse can be visualized by plotting the points (|p(xi)|, xi) in polar coordinates

for xi distributed between 0 and 360� (see Fig. 1a). Note the right-handed coordinate

system common in geomagnetism with x north, y east, z down, and positive rotation

clockwise (i.e., east of north). A semi-axis extends outside the unit circle when the phase it

represents has a tangent greater than unity, but remains inside the unit circle when the

phase it represents has a tangent less than unity. The ellipse semi-axis in the x direction has

length tan(/yx) and is consequently associated with the electric field in the y direction. The

semi-axis in the y direction has length tan(/xy) and is associated with the electric field in

the x direction. Thus, each ellipse axis is perpendicular to the polarization of its associated

electric field.

2.2 Three-Dimensional Structure

2.2.1 The General Case

Any two-by-two matrix with real elements produces an ellipse when applied to the unit

circle. If the matrix is singular, the ellipse degenerates to a line segment. Singular U occurs

when Z causes the electric field E to point in one direction regardless of the polarization of

Fig. 1 Ellipses generated by applying a phase tensor to circulation around a unit circle. Only 270� of the
circulation is shown and arrow heads show the sense of circulation. The start and end points for each ellipse
correspond to the start and end points for each circle. a 2D impedance in a coordinate system aligned with
the x- and y-axes. The minor axis corresponds to the phase of Zyx and has length tan (30�). The major axis
corresponds to the phase of Zxy and has length tan (60�). The open point at 45� on the unit circle corresponds
to the filled point on the ellipse. The radial dashed lines through the two points are not colinear at this x, but
would be at the ellipse axes. b 3D impedance with the same size phase tensor ellipse. The normalized skew
angle w = 20� and impedance x-axis are rotated -30� from the x-axis

Surv Geophys (2014) 35:7–40 11
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H and, as in the case of singular D, one cannot extract useful structural information. In the

2D case just described, the vectors p2D and c point in the same direction only when p2D is

an axis of the ellipse (see Fig. 1a). Thus, a point circulating around the unit circle crosses

each axis of the ellipse exactly when the point circulating around the ellipse crosses the

same axis. When U is not symmetric, however, the x at which the point circulating around

the unit circle crosses each ellipse axis is not the same as the x at which the point

circulating around the ellipse touches the ends of the semi-axes. Asymmetric phase tensor

matrices are characteristic of impedances generated by 3D structure. A 3D phase tensor

ellipse with the same size ellipse as Fig. 1a is shown in Fig. 1b.

It should be clear from Fig. 1b that the family of vectors c has been rotated through an

angle w relative to the axes of the ellipse. When w is positive, the point circulating

clockwise around the ellipse is observed to lag behind the point circulating clockwise

around the unit circle. Remembering that R(w) defined by (9) rotates a vector in the

counterclockwise direction when w is positive, this circulation lag can be expressed by

pðxÞ ¼ Uellipse cðxÞ ¼ Ua 0

0 Ub

� �
R wð ÞcðxÞ ð14Þ

where Uellipse is the phase tensor in the coordinate system aligned with the ellipse axes

(‘‘ellipse coordinates’’) and |Ua| and |Ub| are the lengths of the two ellipse semi-axes. It is

then obvious from (14) that a completely general parameterization of a phase tensor in

ellipse coordinates is

Uellipse ¼
Ua 0

0 Ub

� �
RðwÞ ð15Þ

If hellipse is the angle between one of the measurement system axes and one of the phase

tensor ellipse axes, the phase tensor in measurement coordinates can finally be parame-

terized by

U ¼ R�1ðhellipseÞ
Ua 0

0 Ub

� �
R wð ÞRðhellipseÞ ð16Þ

2.2.2 Normalized skew

The angle w is easily determined. Using (9), (15) can be rewritten

Uellipse ¼
Ua 0

0 Ub

� �
cos wð Þ sin wð Þ
�sin wð Þ cos wð Þ

� �
¼ Ua cos wð Þ Ua sin wð Þ
�Ub sin wð Þ Ub cos wð Þ

� �
ð17Þ

The ratio of the matrix skew (difference of the off-diagonal elements) of Uellipse to its

trace (sum of the diagonal elements) is

Ua sin wð Þ þ Ub sin wð Þ
Ua cos wð Þ þ Ub cos wð Þ ¼

Ua þ Ub

Ua þ Ub

� �
sin wð Þ
cos wð Þ ¼ tan wð Þ ð18Þ

The skew and trace of a matrix are rotational invariants. So their ratio is also a rotational

invariant and w can be computed from the phase tensor elements in any coordinate system.

In particular, it can be computed in measurement coordinates. Thus, if (x, y) are identified

as the measurement coordinate axes,

12 Surv Geophys (2014) 35:7–40
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w ¼ tan�1 Uxy � U0yx

Uxx þ Uyy

� �
ð19Þ

Since tan(w) is the matrix skew ‘‘normalized’’ by its trace, a natural name for w is the

‘‘normalized skew angle.’’ It is twice the skew angle ‘‘b’’ introduced by Caldwell et al. and

I use a different name and symbol to avoid confusion. It is obvious from (12) and (15) that

w is zero when the structure is 2D and that hellipse is the strike (or its perpendicular).

However, w = 0 is not a sufficient condition for the structure to be 2D. On the other hand,

w = 0 is a sufficient condition for the structure to be either 3D or, as we shall see shortly,

have azimuthal anisotropy that varies with position.

2.2.3 Quasi-2D

2D structure requires zero w within its uncertainties. Accurate estimation of uncertainty is

therefore critical if w is to be used to justify a 2D interpretation. Error estimation is

discussed in Appendix 1. In summary, the so-called delta method for computing uncer-

tainties of nonlinear functions of random variables is adequate for impedances whose

errors are usefully small, while so-called Monte Carlo methods can fail unless great care is

taken. Neglect of impedance element covariance can lead to error estimates that are much

too large. Furthermore, strong static distortion leads to large impedance element covari-

ance. It is consequently important to use codes for estimating Z that provide the full

covariance matrix (for example, Egbert 1997).

A less stringent way to justify 2D interpretation is to examine the size of the 3D part of

the phase tensor. When w (expressed in radians) is small, cos (w) & 1 and sin (w) & w.

Then,

RðwÞ � 1 w
�w 1

� �
ð20Þ

Uellipse �
Ua 0

0 Ub

� �
1 w
�w 1

� �
¼ Ua wUa

�wUb Ub

� �
ð21Þ

The regional impedance that generated Uellipse is defined as ‘‘quasi-2D’’ if |w| is small

enough that the off-diagonals on the right side of (21) can be ignored. Note that sin

(180� - |w|) = –sin (|w|). Thus, skew angles near ±180� result in off-diagonal elements of

similar small magnitude as angles near 0�. There is probably no rigorous bound for how far

|w| can be from 0� before 2D interpretation of quasi-2D impedance becomes invalid, but a

useful criterion is that the phase tensor off-diagonals be an order of magnitude smaller than

the diagonals. This implies |w| B 0.1 radians or less than 6�. This is in agreement with the

recommendation of Caldwell et al. that their |b| be less than 3�. Unfortunately, maximum

permissible skew angle ‘‘inflation’’ has occurred in publications and few papers are as

conservative as Caldwell et al. There are even authors who use b = 10� (w = 20�) as an

acceptable upper limit. A normalized skew this large implies off-diagonals of Uellipse one-

third as big as its diagonals. Ignoring diagonals this large may have serious consequences.

Large skew angle is a robust test for 3D regional structure, but small skew angle is only

a necessary but not sufficient test for quasi-2D, because 3D symmetry can locally make w
small. It should also be emphasized that w can be in any quadrant. Appendix 1 includes an

example with w[ 90� that has the additional complication of ellipse circulation in the

direction opposite to the circulation about the unit circle. It is therefore important to use an

Surv Geophys (2014) 35:7–40 13
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inverse tangent function that preserves the quadrant when computing w (atan2 in most

programming languages).

2.2.4 Invariants of the Phase Tensor and Generalized Strike

Expressed in the form (16), the phase tensor consists of three parameters w and the lengths

of the ellipse axes |Ua| and |Ub| that do not depend on the coordinate system in which they

are evaluated. The ellipse axis direction hellipse (or its perpendicular) is the electrical strike

in 2D. Bibby et al. (2005) state that the ellipse axes should be parallel to the directions of

greatest and least inductive response in 3D. They do not explain why or whether they think

this is true for strongly 3D structure, but it is verified using numerical modeling by

Caldwell et al. (2004) for skew angles small enough to be quasi-2D and definitely holds as

long as the induction vectors are parallel to ellipse axes (within their uncertainties). For

strong three dimensionality, the ellipse axes are vectors whose directions relative to the

structure are fixed, although hellipse depends on the reference coordinate system in which

the conductivity structure is described. The ellipse axes are the only directional property of

Z that is free of static distortion and thus one of them can be defined as the generalized

strike. Because the phases corresponding to the ellipse axes approach the TE and TM mode

phases as w approaches zero, it is reasonable to think of the electric current flow in the

direction of the ellipse axes as being TE-like and TM-like. The TE analogy must break

down before the TM one because current flow along a conductivity gradient always

generates noninductive (i.e., Galvanic) electric fields which are not present in the TE mode.

2.2.5 Singular-Value Decomposition

Parameterization (16) is a singular-value decomposition (SVD) of particularly simple

form. The singular values Ua and Ub are the tangents of the ‘‘principal phase angles’’ /a

and /b. The magnitudes of Ua and Ub are the lengths of the ellipse semi-axes. A com-

plication is that unlike singular values computed with standard SVD algorithms, Ua and Ub

need not be positive. Weidelt and Kaikkonen (1994) showed that TM phase responses of

2D models lie in the range 0–90� permitted by 1D models. Since 2D phase tensors have

w = 0, the singular value corresponding to TM must be positive. Parker (2010), however,

proves that 2D models exist whose TE mode phase responses are outside 0–90�. Key and

Constable (2011) on the seafloor near a coast and Selway et al. (2012) near the edge of a

sedimentary basin provide practical examples of this behavior. Both can be explained by

the arrival of energy from below as well as above. Thus, in a strictly 2D situation, one of

the singular values can be negative and its principal phase can be out of quadrant. It is not

yet known whether 3D models exist in which both singular values are negative.

Simple algorithms for computing the parameters in (16) and their uncertainties that do

not have the ambiguities of Caldwell et al. (2004) discussed by Moorkamp (2007) and

Caldwell et al. (2007) are presented in Appendix 1. A full discussion of using the phase

tensor geometry to determine the quadrants of the principal phases is also presented in

Appendix 1.

2.2.6 Other Parameterizations

Equation (16) is equivalent to Eq. (20) of Caldwell et al. (2004) and Eq. (16) of Bibby et al.

(2005):

14 Surv Geophys (2014) 35:7–40
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U ¼ R�1ða� bÞ Umax 0

0 Umin

� �
Rðaþ bÞ ð22Þ

with b ¼ w=2 and a ¼ hellipse þ w=2: However, unlike (16), the parameters in (22) do not

all have an immediate intuitive interpretation. Specifically, angle a mixes the ellipse ori-

entation (the generalized regional strike) with the measure of three dimensionality and has

been wrongly identified as the regional strike in a significant number of papers. Fortu-

nately, the error in using a instead of a� b as the strike is typically small enough that the

conclusions of the offending papers are probably not seriously compromised.

Another disadvantage of (22) is ordering the size of the principal values and by

implication assuming that they are positive (an automatic result of standard SVD algo-

rithms). Sorting out the quadrants of the angles from such an SVD can be confusing

especially since SVDs are not unique. The techniques of Appendix 1 make identifying the

correct quadrants easy. First, find hellipse closest to true North at one period and then require

it to vary continuously with period. It is then easy to follow principal phase curves when

they cross and distinguish crossing from the case where the phase curves only touch.

Similarly, it is easier to judge whether 90� ellipse rotations at the same period between two

sites are the consequence of a 90� rotation of strike (a serious 3D effect) or simply the

crossing of principal phase curves at different periods with no change in strike (which can

happen in a completely 2D situation).

Bibby et al. (2005) additionally define the phase tensor ellipticity

k ¼ Ua � Ubj j
Ua þ Ub

This is the ellipticity of the phase tensor ellipse. In my opinion, the ‘‘principal phase split’’

angle Ua - Ub is simpler and equally informative.

Weaver et al. (2004, 2006) present another interesting parameterization:

U ¼ J1 0

0 J1

� �
þ J2

cos 2a sin 2a
sin 2a � cos 2a

� �
þ 0 J3

�J3 0

� �
ð23Þ

where a is the same as in (22), J1 is the trace of U/2, J3 is the matrix skew of U/2, and

J2
2 ¼ J2

1 þ J2
3 � det U

I have used the notation of Weidelt and Chave (2012) instead of the original which

seems unnecessarily complicated. J1, J2, J3, and the determinant of U are rotational

invariants and can be computed in any coordinate system. The utility in writing U in this

form is that only the first term is present for 1D structure, only the first and second terms

are present for 2D structure and the third term is present only when the structure is 3D.

The absence of the third term is completely equivalent to w = 0. Note that even though

the matrix skew of the second term is always zero, it depends on the skew of U because

J2 depends on J3 and a depends on w. Thus, if we drop the third term when it is not zero,

we are left with a 2D phase tensor that includes a correction for nonzero w. It would be

definitely worthwhile doing 2D inversions of data generated by 3D structure to find out

under what circumstances the principal phases of this 2D approximation are more useful

estimates of TE and TM impedance phases than the principal phases of the original 3D

phase tensor.

Surv Geophys (2014) 35:7–40 15
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2.3 Anisotropic Conductivity

There is now a large body of the literature documenting tectonically caused seismic

anisotropy and a growing literature interpreting MT phase splits (/xy � /yx) as evidence

for electrical anisotropy in the same contexts (see Roux et al. 2011 for an example).

Because static distortion mixes the phases of the perpendicular polarizations, it can easily

generate impedance phase differences. It is therefore essential that an undistorted response

such as the phase tensor be used to estimate the phase split. See Häuserer and Junge (2011)

for an example.

Using the code of Pek and Santos (2002), Heise et al. (2006) demonstrate that phase

tensor principal phase splits for 1D structure are generated by vertical gradients of

anisotropy not by the anisotropy itself. Thus, circular phase tensor ellipses with no phase

split are not a sufficient argument against 1D anisotropy.

Impedance of a 1D anisotropic Earth always takes the form

Z1Da ¼ Zd Zxy

Zyx �Zd

� �
ð24Þ

(see Jones 2012a). Because its trace is zero, the diagonal elements have equal magnitudes

but opposite signs in any coordinate system. This is also true for a rotated isotropic 2D

impedance. However, the phase tensor skew angle is also zero for 2D. So to eliminate

isotropic 2D impedance as an alternative, one can simply show that w is not zero (within its

uncertainty). This is better than the test suggested by Jones to show that the diagonal

element Zd is nonzero in all rotations because his test can break down completely if (24) is

statically distorted.

The code of Pek and Santos can also be used to show that w is zero for Z1Da if the

anisotropy strike is constant with depth. Thus, nonzero phase tensor skew is a definitive

indicator for depth variation of anisotropy direction if the alternative of isotropic 3D

structure can be eliminated in some other way.

2.4 Displaying Phase Tensor Geometry

The goal of visualizing all the information in the phase tensor in a form compact enough to

plot on pseudosections or maps remains unachieved. There are still no published examples

that include the parameter errors except in single site plots of the parameters versus period.

Clever ideas are clearly needed.

Figure 2 shows three ways of plotting phase tensor information. Figure 2a makes it

clear why raw ellipses are a problem when one of the principal phases has a large range. It

also shows the utility of plotting induction arrows concentric with the ellipses. Note that it

is important to include some indication of the ellipse scale. It is common to rescale the

ellipses so that all the major axes are equal and then fill the ellipses with a color indicating

one of the principal phases. Which phase is used for the fill depends on what you want to

emphasize. To accentuate the visual effect of large rotations of the ellipses as might occur

crossing faults, minimum or maximum the principal phase can be used. Minimum phase is

the most common. A very pretty example for the Taupo Volcanic Zone on the North Island

of New Zealand (Bertrand et al. 2012) using minimum phase on top of related information

is shown in Fig. 3. To suppress color changes that involve only ellipse rotation, one can use

the phase of the geometric mean of the principal values (i.e., phase tensor determinant

phase; see Hill et al. 2009 for an example).
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The distribution of phase tensor skew angle is important in deciding whether 2D or 3D

interpretation is required. Adding a concentric ellipse with color fill to indicate w as

suggested by Ichihara et al. (2009) and shown in Fig. 2b is one way to simultaneously

present the ellipse scale and skew angle information. At this site, the normalized skew

appears too large to be consistent with 2D, but one cannot be certain without an estimate of

the uncertainty. Simple maps and histograms of skew angle and ellipse axis direction like

Fig. 4 are useful when the site density is too large to plot individual ellipses and clearly

demonstrate the need for 3D interpretation in the case shown.

Figure 2c attempts to include the uncertainties of the axes directions and the normalized

skew angle. Häuserer and Junge (2011) introduced ellipse axes ‘‘crosses’’ that were scaled

to make the major axes constant and then colored so as to indicate both the maximum and

minimum principal phase. Building on the idea of Xiao et al. (2010, 2011) to plot skew

angles as lines rotated from the ellipse major axes, I have added error ‘‘fans’’ of the skew

angle and the major axis direction to the crosses. A box at the end of the semi-axis closest

to north is ± 6� wide. To be compatible with 2D, the skew angle fan must overlap this box.

Now, it is clear that the normalized skew angle for this site is too large to be compatible

Fig. 2 Alternate ways of displaying phase tensor geometry at site pam885. a Unscaled ellipses with real
and imaginary Parkinson vectors. Axis length scales for three phase angles are to the right. b Ellipses scaled
so that all major axes are the same length. The outer ellipses are filled with color indicating the minimum
principal phase. They surround ellipses with normalized skew angle fill color. c Scaled ellipse crosses with
normalized skew angles. The skew angles and the downward pointing major axes are shown with
uncertainty fans (gray is w and magenta is h). Uncertainty fans with ± 5� are to the right for scale. The color
of the ellipse minor axis indicates the minimum principal phase. The box at the end of the major axis is ± 6�
wide. Its color indicates the maximum principal phase. For quasi-2D, the skew angle fan should overlap this
box
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with a quasi-2D interpretation at periods below 800 s and is marginally consistent at longer

periods.

Two common problems in papers using color for skew angle when the goal is to justify

quasi-2D interpretation are showing too wide a range of skew angles and too weak a

gradation of colors. Together, these make it extremely difficult to judge whether |w| B 6�
(i.e., |b | B 3�). The otherwise very good examples by Thiel et al. (2009) and Yamaguchi

et al. (2010) using pseudosections of skew angle to determine what part of the data should

be interpreted using 2D suffer from this problem. The same is true for ellipse color fill

showing skew angle in the paper by Schaefer et al. (2011). I recommend that the full-scale

range of w be no more than ± 20� (± 10� for b) and avoid continuous color or gray scales.

In Fig. 2, there are very distinct color changes at 2.5� increments of w. The same color

(green) is used for the range -2.5� B w B ? 2.5� because these are values where con-

sistency of a quasi-2D interpretation is in little doubt and green is the ‘‘go-ahead’’ color.

With a gray scale, white can be substituted for green, but the quantized gradations of gray

need to be large enough to be easily distinguished.

Finally, results that one may need to show are unusual circulation about the ellipse and

the starting point for the ellipse circulation. As discussed in Appendix section ‘‘Principal

Phase Signs,’’ these are sufficient to determine the signs of the principal values. In Fig. 2c,

one could eliminate one of the short semi-axis arms when the starting point has been

reflected across the ellipse and the box around the short axis could be dashed when the

circulation is counter to the unit circle. Plotting only 270� of the ellipse perimeter and

making its perimeter dashed can convey the same information for standard ellipses.

Visualizing the distribution of phase tensor axes directions for many sites is almost

always done using a rose histogram. Figure 5 shows two examples from Wannamaker et al.

Fig. 3 Phase tensor ellipses at 3-s period scaled with major axes constant for an array of sites in the Taupo
Volcanic Zone of New Zealand. The map scale is km on the New Zealand Map Grid. The color fill is
minimum principal phase and the map background colors are DC apparent resistivity draped on digital
elevation. Low-apparent resistivities correlate with thermal areas. Solid orange lines are topographic
margins—presumably, tectonic faults and the dashed lines are inferred volcanic collapse faults. Modified
from Bertrand et al. (2012)
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(2008) and Unsworth et al. (2007). The diagrams of Wannamaker et al. are commendable

because they include uncertainties of the averages based on a statistical analysis of the

direction distribution. Most papers take no notice of the uncertainties involved.

2.5 Data Quality

The simplest application of the phase tensor is monitoring data quality. Smooth variation

of the phase tensor with period and position is a strong indicator of data consistency. The

next to longest period in Fig. 2c is much larger than the prior periods as is its error. This is

a certain indicator of deteriorating data. In his latest robust time series processing code,

Jimmy Larsen (personal communication) uses the phase tensor to verify consistency of

response estimations where processing bands overlap. Bertrand et al. (2012) also discuss

using the spatial coherence of the phase tensor as a requirement for high-quality data. This

coherence is evident in Figs. 3 and 4.

Fig. 4 Phase tensor ellipse axis directions (top) and normalized skew angles (bottom) at 1,280 s for an MT
array in central Argentina. This period penetrates more than 200 km because the crust is crystalline with thin
sedimentary cover. The uncertainties are much smaller than the variability. The sites bracketed by short
vertical lines and labeled ‘‘2004’’ were used by Booker et al. (2004). The histograms exclude the 18 sites
east of the 2004 profile. The north–south strike used by Booker et al. is supported by the mean h of 4.3� for
their sites and the broad histogram peak centered at 0� when all the sites to the west are also included.
However, only 2 of their 18 sites have |w| B 6� and 10 have |w| [ 10�. Thus, the 2D assumption of Booker
et al. is clearly problematic. The dashed green lines on the w histogram are at ± 6�. Only 47 of the 93 sites
lie in this range and 22 have |w| [ 10�. Booker et al. and a new 3D study by Burd et al. (2013) both find
deep-sourced vertical current flow where the Nazca slab rolls over from flat subduction. The 2D study
concludes the conductive channel is coincident with or just east of the plunging slab, while the 3D study
finds a cylindrical conductor that pierces any reasonable extrapolation of the slab deeper than 200 km. The
tectonic implications of the two models are very different. MT sites used elsewhere in this paper are also
shown (see Appendix 2.4 for further details)
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3 Phase Tensor Alternatives and Relatives

3.1 Induction Vectors

The vertical component of the magnetic field is commonly also measured and its relation to

the horizontal magnetic field is modeled by

Hz ¼WT H ¼ Wx Wy½ � Hx

Hy

� �
ð25Þ

W is another complex transfer function commonly called the induction vector. It is also

often called the ‘‘tipper’’ (cryptic jargon with no useful meaning). Like the impedance,

W is assumed to be a stable property of Earth’s interior. The statistical estimation issues

are more difficult than for Z because Hz with a relation to local horizontal magnetic field

identical to (25) can be generated by currents flowing above Earth’s surface. I assume that

these problems have already been addressed in the time series processing and can be

ignored.

W is usually separated into its real and imaginary parts which are plotted as separate

vectors on maps or pseudosections. When structure is 2D, these vectors are parallel and in

the ‘‘Wiese’’ convention point away from electric current concentrations and thus per-

pendicular to strike. The sign of W is often reversed so that ‘‘Parkinson’’ vectors point

toward the current.

Fig. 5 a Rose histogram of phase tensor ellipse axes in the 150–1,000 s bandwidth for five segments of an
east–west profile in Nevada and Utah. The standard deviations of the most probable strikes are based on the
statistics of circular distributions. This figure is based on Wannamaker et al. (2008) b Rose histograms and
individual site crosses for three period ranges along 3 profiles across Amchitka Island in the Aleutian Islands
of Alaska. The maps are 9.5 km on a side. The site crosses are colinear with the phase tensor axes averaged
over each sub-band but are not scaled to reflect principal phase values. The much larger variability in the
shortest period band reflects the heterogeneity of the very shallow structure. Based on Unsworth et al. (2007)
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Deviation from colinearity between the real and imaginary vectors is a simple measure

of departure from 2D structure. Plotting them with their origins coinciding with the centers

of phase tensor ellipses as in Fig. 2a is an often-used way of presenting their comple-

mentary information about structure directionality and dimensionality. Physically, the

induction vector is the direction of the horizontal magnetic field that maximizes the vertical

magnetic field, which in turn measures the induced current. As noted earlier, one of the

axes of the phase tensor ellipse is also expected to be the direction of maximum induction.

So the induction vectors and an ellipse will be colinear for 2D and should remain colinear

for moderately 3D structure.

However, in general, the induction vector and the phase tensor do not see structural

dimensionality in the same way because spatial distribution of electric current density that

determines W does not have a one-to-one correspondence to the phase of the electric and

magnetic fields that determine U. In Fig. 2a, periods shorter than 100 s have real and imag-

inary induction vectors closely colinear with the short ellipse axes. If one looks only at the

phase tensor ellipses and does not know from Fig. 2c that w is too large even when its

uncertainty is take into account, one might easily conclude that these data are compatible with

shallow 2D structure whose strike is north-northeast–south-southwest with the lower phase

corresponding to the TE mode. As period increases, the ellipses and induction vectors rotate

smoothly counterclockwise. The real induction vector remains along the short ellipse axis, but

the imaginary vector rotates more rapidly and ends up perpendicular to the real vector and thus

parallel to the long ellipse axis from 450 to 1,250 s. The normalized skew angle is decreasing

and its uncertainty is increasing so that, as I have already noted, it becomes marginally

compatible with quasi-2D at the same periods. Thus, if one discounts the direction of the

imaginary vector, one is tempted to conclude that deeper structure is still approximately 2D

albeit with a somewhat different strike than the shallow structure. In actuality, this site is

responding to a strongly 3D structure: a sharp change in direction of the edge of conductive

Paraná Basin sedimentary rocks overlying a very resistive basement near the Uruguay River

that forms the boundary between Argentina and Uruguay. The 3D nature of the response at all

periods is clear only if all the phase tensor and induction vector information are considered.

One can summarize the literature of field applications of induction vectors together with

phase tensors by saying that, when faced with conflicting information from multiple views

of the structure dimensionality and strike, authors discount the information that does not

support what they want to assume—usually that they can use a 2D interpretation. It is

hoped that the increasing access to 3D interpretation tools will change this.

Because the induction vector does not involve the electric field directly, it is not subject

to the same static distortion as Z. However, it can be distorted in a related way because

deflection of electric currents by in-phase electric fields can alter the vertical magnetic field

even when the distortion of the horizontal magnetic field is negligible. This is sometimes

called ‘‘current channeling’’ (e.g., Zhang et al. 1993; Jiracek 1990) and is discussed further

in the next section.

3.2 The Enhanced Admittance Phase Tensor

Relation (1) can be inverted and, if the horizontal magnetic field H is undistorted, one can

write

H ¼ AE ¼ ADED ¼ ADDE ð26Þ

where A is called the regional ‘‘admittance tensor.’’ D is again the distortion matrix and the

subscripts D denote distorted quantities we actually observe. From (26), we obviously have

Surv Geophys (2014) 35:7–40 21

123



A ¼ ADD ð27Þ
Letting the real and imaginary parts of A be U and V, one can define an admittance

phase tensor and use (27) to show that it is unaffected by distortion:

W ¼ VU�1 ¼ VDD UDDð Þ�1¼ VDDD�1U�1
D ¼ VDU�1

D ¼ WD ð28Þ

It is not difficult to prove that W = -U which is the tensor equivalent of reversing the

sign of the phase when the impedance is inverted. Thus, all the properties of the impedance

phase tensor carry over trivially to this admittance phase tensor and it would seem we have

gained nothing.

However, (26) can be enhanced to include the induction vector W

H
Hz

� �
¼ H

WT H

� �
¼ A

WT A

� �
E ¼ AD

WT AD

� �
ED ¼

AD

WT AD

� �
DE ð29Þ

from which one can see that the Hz is subject to static distortion. The enhanced admittance

and its distorted equivalent are then defined by

~A � A
WT A

� �
¼ AD

WT AD

� �
D � ~ADD ð30Þ

Note that ~A has three rows and two columns. An enhanced admittance phase tensor ~W
which has the same shape as ~A and is immune to static distortion can be defined by post-

multiplying its imaginary part by the inverse of the real part of A (i.e., U) giving

~W ¼ Imð~AÞ Re Að Þð Þ�1¼ Im ~A
� �

U�1 ¼ Im ~ADD
� �

UDDð Þ�1

¼ Imð~ADÞDD�1U�1
D ¼ Imð~ADÞU�1

D ¼ ~WD

ð31Þ

Expanding (31) using (30), the enhanced admittance phase tensor can finally be written

using only measured quantities that may be statically distorted.

~W ¼

~Wxx
~Wxy

~Wyx
~Wyy

~Wzx
~Wzy

2
64

3
75 ¼ Imð~ADÞ U�1

D ¼ Im
AD

WT A D

� �
U�1

D

¼
VD

Im WTAD

� �
" #

U�1
D ¼

W

Im WTAD

� �
U�1

D

" #
¼
�U

T

� � ð32Þ

where I have introduced the distortion-free vertical field ‘‘phase vector’’

T ¼ ImðWTADÞ Re ADð Þð Þ�1 ð33Þ
The admittance phase tensor was first proposed in the context of a 3D inversion by

Koyama (2009). The enhanced phase tensor is due to Pankratov and Kuvshinov (2010)

who provide formulas for computing the partial derivatives of ~W with respect to a 3D

conductivity model. Applications of the geometry of the undistorted Hz phase vector T are

likely to prove a useful complement to the phase tensor geometry, but have not yet been

investigated.
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3.3 The Conjugate Impedance Transform

Cai et al. (2010) propose another function of the MT impedance that is free of static

distortion:

H ¼ Z�1Z� ð34Þ

where * denotes complex conjugation. Their notation has been changed from Zt to H to

avoid confusing it with impedance. It is in fact a phase tensor. I have not examined whether

it has any advantages over the Caldwell et al. phase tensor.

3.4 Mohr Circles

A series of papers (Lilley 1998a, b; Weaver and Lilley 2004; Marti et al. 2005; Weaver

et al. 2006; Martı́ et al. 2010 and Lilley 2012) have studied invariants of the MT impedance

that can be used to constrain the dimensionality and directionality of subsurface structure.

The Mohr circle is used to present this information in a compact geometrical form. A full

discussion is beyond the scope of this review because these invariants are subject to static

distortion except for a subset that is completely equivalent to the phase tensor parameters

(Weaver and Lilley 2004, Weaver et al. 2006; Lilley 2012). Furthermore, I find the Mohr

circle too complex to easily use in the context of a large number of sites and many periods,

although Lilley and Weaver (2010) show how to present multiple periods in a useful

format. It is best used for impedances at individual sites with complexities that are not

understood after looking at the phase tensor.

4 Inversion of the Phase Tensor

4.1 One- and Two-Dimensional Inversion

When the structure is 2D or quasi-2D, the principal phases immediately give the undis-

torted phases of the TM and TE mode impedances in the strike coordinates. It is therefore

remarkable that I found no published example where principal phase data (or their values

corrected for nonzero w as discussed in connection with parameterization (23)) are inverted

for 2D structure.

The only published example of inversion of principal phases is by Roux et al. (2011).

Building on the conclusion of Gatzemeier and Moorkamp (2005) that MT data in Central

Germany are consistent with electrical anisotropy that varies primarily with depth, Roux

et al. jointly invert Rayleigh wave dispersion curves and split phase tensor principal phases

at a single site using a 1D anisotropic genetic algorithm. They conclude that there are two

electrically anisotropic layers whose anisotropy directions differ. The anisotropy azimuth

of the crustal layer is constrained only by the MT data while that of the deeper layer is

constrained by the azimuth of the Rayleigh wave anisotropy. Phase tensor ellipses and

skews for the measurements and one of their MT models are shown in Fig. 6. The principal

phases appear well fit if the error bars, which are not shown, can be reliably estimated from

the scatter. However, the measured data have large negative skew angles at short periods

and small skew angles at long periods while the predicted skew angles are small at short

period and large and positive at long period. As discussed above, the skew is arguably at

least as important as the phase split when anisotropy direction varies with depth and this
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discrepancy implies that the depth dependence of the anisotropy direction is probably

incorrect. Skew should have been included in the inversion.

4.2 Three-Dimensional Inversion

The phase tensor is a statically undistorted 3D response and as such deserves to be directly

inverted by 3D algorithms. Before this can happen, however, it is necessary to compute the

derivatives (sensitivities) of phase tensor parameters with respect to 3D model structure

and devise optimum ways to constrain the absolute resistivity scale that is missing from the

phase tensor.

Pankratov and Kuvshinov (2010) provide derivatives for the enhanced admittance phase

tensor discussed earlier and demonstrate that their computation should be as efficient as

computing derivatives of the impedance tensor elements. Egbert and Kelbert (2012) use an

approach to the calculation of derivatives that differs from Pankratov and Kuvshinov

primarily in discretizing the model from the outset. Neither of these papers presents a

practical implementation.

Patro et al. (2012) have modified the ‘‘data space’’ code WSINV3DMT (Siripunva-

raporn et al. 2005) to incorporate the phase tensor. They linearize the derivative of (3) with

respect to the real and imaginary impedance elements and then use already computed

sensitivities of the impedance elements with respect to the model. Inversions of the phase

tensor alone, like 2D inversions of only impedance phase, are strongly affected by the

details of the method that sets the absolute scale for the conductivities. The implementation

of Patro et al. relies on the starting model to set this scale. Not surprisingly, this works well

for data generated from a model essentially the same as used by Caldwell et al. (2004)

contaminated with distortion when the starting half-space is the same as the original model

background. It produces biased results when the starting model is too conductive or too

Fig. 6 Observed and predicted
phase tensor ellipses for a site in
central Germany (modified from
Roux et al. 2011). The inversion
is 1D with anisotropy that varies
with depth. The ellipse sizes and
orientations match well.
However, the observations have
large skew magnitudes at short
period and small at long period.
The inversion has the opposite. In
1D, skew can only be generated
by depth dependence of the
anisotropy direction. The large
discrepancy in skew magnitudes
suggests that the model has
incorrect depth dependence of the
anisotropy azimuth
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resistive. They also apply the same algorithm to the large USArray MT data set in the U.S.

Pacific Northwest. The scale is determined by a 100 Ohm-m starting model plus a fixed

Pacific Ocean. The results are presented after only two iterations but are sufficient to show

that the inversion appears to be going in the right direction. A major issue that needs to be

addressed is a more geologically conditioned way of constraining the overall scale. It

would also be useful to find out whether inverting the parameterization (16) can be more

effective than inverting the elements of the phase tensor in measurement coordinates. The

reason is that data weighting based on data uncertainties and imposed error floors can then

be controlled more easily to emphasize or de-emphasize the 3D aspects embodied in the

normalized skew w.

4.3 Phase Tensor Misfit

Even if phase tensor data are not inverted, comparing predicted and observed phase tensors

is an excellent way to assess modeling success. Heise et al. (2007) introduced the idea of a

phase tensor misfit tensor defined by

D ¼ I� 1

2
Û
�1

UþUÛ
�1

� 	
ð35Þ

(where the ^ signifies the phase tensor predicted by the model) as a way to judge whether

2D inversion is systematically unable to fit data influenced by 3D structure. Note that I

have interchanged the role of the observed and predicted phase tensors compared to the

original definition of Heise et al. because the predicted tensor is not subject to noise and is

a more stable quantity to invert. Figure 7 shows their pseudosection of D ellipses. The

regions of large ellipses clearly show where 2D inversion is probably inadequate. I say

probably because issues such as data bias or 2D problems such as in incorrect choice of

strike may also contribute.

Heise et al. (2008) extended these ideas to visualizing systematic misfit when the data, a

forward modeling exercise and an inversion, are all 3D. Particularly interesting is their use

of maps of D ellipses to follow the progress of the inversion as iterations proceed.

However, the misfit tensor (35) has disadvantages. As shown in Appendix 2, it depends

on the coordinate system in which it is evaluated. Second, if the residual between the

predicted and measured skew angles is small, (35) simplifies to

D ¼ Ûa � Ua=Ûa 0

0 Ûb � Ub=Ûb

� �
ð36Þ

It is clear that the misfit ellipse shape depends on the phase magnitudes as well as

the misfits and that the smallest principal phase dominates. This is why phase residuals

used in inversions are always absolute phase differences which correspond to relative

differences in impedance element magnitudes or, equivalently, absolute differences

in log Z. Therefore, I suggest that a more appropriate phase tensor misfit tensor is

simply

Dabsolute ¼ U� Û ¼ Uobserved �Upredicted ð37Þ

which can be implemented as pseudosections and maps of the residuals of w, hellipse and

the principal phases or their phase split or as Heise et al. have done as color filled

ellipses.
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5 Impedance Tensor Decomposition

5.1 Two-Dimensional Decomposition

Considerable progress dealing with the underdetermined nature of relationship (6) (twelve

unknowns with only eight data) has been made in the case that the regional structure is 2D

(Bahr 1988; Groom and Bailey 1989; Smith 1995). The distorted, measured impedance can

then modeled by the relationship

Zobserved
D ¼ R�1

h DZ2DRh ¼ R�1
h

cosðaxÞ � sinðayÞ
sinðaxÞ cosðayÞ

� �
0 sxZxy

syZyx 0

� �
Rh ð38Þ

where h is the angle between the measurement coordinates and the strike of the regional 2D

structure and D is in the form used by Smith (1995) where ax and ay are the angles through

which the regional electric field components are rotated by the distortion and sx and sy are

their amplification factors. If desired, the Groom-Bailey distortion parameters can be

computed using

twist ¼ 1

2
ðax þ ayÞ and shear ¼ 1

2
ðax � ayÞ ð39Þ

Setting the complex diagonal elements of Z2D to zero has removed four unknowns from

(6) and it is also seen that D has only two determinable parameters. The other two multiply

the impedance elements and cannot be separated from their magnitudes. The angle h adds

an unknown and the number of recoverable parameters becomes seven to be determined

Fig. 7 An example of using the phase tensor misfit tensor D to examine how well a 2D inversion fits data
with 3D influences. Large ellipses signify poor misfit and hence failure of the 2D inversion to adequately
characterize the 3D data. The long axis of the ellipse indicates which polarization is most poorly fit. The
dashed line with gray fill encircles data that constrain a conductive zone between 10 and 20 km depth under
the Taupo Volcanic Zone (TVZ) in New Zealand. The phase tensor predicted by the inversion matches the
observed phase tensor very well in this gray region. The biggest systematic discrepancies between the 2D
prediction and the 3D data are at long period at the NW end of the profile. Modified from Heise et al. (2007)
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from the eight data in the complex measured impedance. Adding the constraint implied by

static distortion that ax, ay, and h are period-independent and fitting multiple periods

simultaneously increases the ratio of data to parameters. This can be made even more over-

constrained by assuming that h is the same at multiple sites fit simultaneously (McNeice

and Jones 2001).

The fact that the magnitudes of Zxy and Zyx can be determined only within multiplicative

constants sx and sy means that their logarithms have an offset called ‘‘static shift’’ that is

not constrained by the measured impedance. The literature is full of techniques to constrain

these shifts and they will not be considered further.

The model (38) is commonly called ‘‘impedance tensor decomposition’’ or simply

decomposition. I will call it ‘‘2D decomposition’’ to distinguish it from alternates to be

described.

5.2 An Inconvenient Fact

There is a fundamental problem with fitting the 2D decomposition model (38) to field data

that are not generated by a strictly 2D regional structure. The normalized skew of 2D

impedance is always zero. Multiplication by any real matrix D does not alter the phase

tensor, and arbitrary rotation does not change its skew. Thus, model (38) always has

w = 0, and assuming the misfit between the 2D decomposition predictions and the mea-

surements is due to random noise is a false premise unless the observed impedance has w
equal to zero within its uncertainty (i.e., regional impedance is 2D or quasi-2D). Then,

solving the over-constrained problem presented by (38) using any variant of least squares

always results in systematically incorrect (i.e., biased) estimates of strike h and sxZxy and

syZxy. Standard statistical arguments based on misfit of the predicted and measured data are

not appropriate because the residuals cannot be zero for perfect data.

This issue was raised in the initial papers of Caldwell et al. but appears to have had

almost no impact on the MT community. Of the 50 papers that use the phase tensor to

justify 2D data interpretation, 17 simultaneously apply 2D decomposition. Only 6 of these

try to show that the measured impedances are quasi-2D. One otherwise excellent paper

uses |w| B 8� (|b| B 4�) to exclude data from a phase tensor strike average but not from 2D

decomposition (Pous et al. 2011). If one insists on using 2D decomposition, one should at

least use the phase tensor skew angle to eliminate data for which this model is clearly

invalid.

A reason put forward for adding horizontal magnetic distortion to the 2D decomposition

was its failure to fit important aspects of the data. Since failure is guaranteed when phase

tensor skew is not zero even when the distortion is not magnetic, I argue that one should

first look at the phase tensor-consistent decompositions that follow before adding the

complexity of horizontal magnetic field distortion discussed by Chave and Smith (1994).

5.3 Phase Tensor-Consistent Decomposition

There are many geological contexts in which regional structure is approximately 2D.

Furthermore, when it is justified, impedance tensor decomposition extracts more infor-

mation than the phase tensor. It is therefore clearly worth considering whether the original

ideas of Bahr and Groom and Bailey can be re-formulated to be consistent with the phase

tensor. The conceptual difficulty just discussed can be overcome using a generalization of

2D tensor decomposition: Instead of forcing the diagonal elements of the regional

impedance to be zero, seek to make them as small as possible while still satisfying w. The
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off-diagonal elements are then an estimate of quasi-2D impedance that is compatible with

the phase tensor. How useful this estimate is depends on how big the diagonal elements

are. Even if they turn out to be too large to ignore, the decomposed impedance is the 3D

response that absorbs as much of its 3D nature into a real distortion matrix as possible.

The 2D decomposition model (38) is replaced with

Zobserved
D ¼ R�1

h ZDRh ¼ R�1
h DZregionalRh

¼ R�1
h

cosðaxÞ � sinðayÞ
sinðaxÞ cosðayÞ

� �
sxZxx sxZxy

syZyx syZyy

� �regional

Rh

ð40Þ

plus the constraints

Qx ¼
Zxx

Zxy











regional

¼ min Qy ¼
Zyy

Zyx











regional

¼ min ð41Þ

The static shift factors sx and sy are still not determinable separately from the magni-

tudes of the impedance elements they multiply. This model has 11 parameters to be

determined by the 8 data plus 2 constraints. To close the problem, we need one more

constraint. An obvious choice is to set

h ¼ hellipse ð42Þ

We can then solve for all parameters exactly. Thus, (40) to (42) is actually a property of

the measured impedance not a model. Because a real distortion matrix and rotation do not

alter w, the regional and observed impedances in (40) have the same w.

The constraints (41) turn out to be surprisingly easy to implement. In Appendix 3, it is

shown that

Zxx

Zxy










 ¼ Qx ¼

ZDxx þ ZDyx tanðayÞ
ZDxy þ ZDyy tanðayÞ










 ð43Þ

and

Zyy

Zyx










 ¼ Qy ¼

ZDyy � ZDxy tanðaxÞ
ZDyx � ZDxx tanðaxÞ










 ð44Þ

where ZD is the observed impedance in ellipse coordinates. Thus, satisfying constraints

(41) is a simple matter of rotating the observed impedance to ellipse coordinates and

searching for the angles amin
y and amin

x that minimize the right sides of (43) and (44). These

two searches are decoupled and involve only distorted impedance elements. They would be

coupled and more difficult if the Groom-Bailey distortion parameters twist and shear were

used.

Figure 8 shows 80-s period curves of QxðayÞ and QyðayÞ at site pam606 (see Appendix

section ‘‘Site Locations and Data’’). hellipse is 5.09� ± 0.24. The normalized skew angle w
is 9.68� ± 0.32 and thus too large for the phase tensor to be obviously quasi-2D. The

minima associated with the optimum distortion angles are deep and narrow with

amin
x ¼ �32:1� 	 0:3 Qy amin

x

� �
¼ 0:049 amin

y ¼ 44:9o 	 0:8 Qx amin
y

� 	
¼ 0:12

The Groom-Bailey parameters are twist = 6.4� and shear = –38.5�. This impedance is

strongly distorted, but Qx and Qy (the ratios of the undistorted diagonal to the off-diagonal
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element magnitudes) are small enough that the quasi-2D assumption in which they are

ignored appears quite reasonable.

Figure 9a and b plot phase tensor crosses, induction vectors, skew angles, and phase

tensor distortion angles from 13 to 1,230 s at the same site. By typical standards, site

pam606 appears 2D with a strike close to north–south. The induction vectors are mostly

east–west and the major axes of the ellipses are nearly north–south. However, hellipse

rotates 30� across the bandwidth, the skew angle is not zero within its uncertainty at short

periods, and, in Fig. 9c, the distortion angle ay for the regional electric field perpendicular

to hellipse rotates significantly at longer periods.

The period dependence of ay seems to imply failure of the assumption of static dis-

tortion. However, distortion angles computed in different coordinate systems cannot be

directly compared. If the regional electric field rotates, the electric charges that distort it to

produce the observed field also change and so do the distortion angles. Thus, period

independence of distortion angles can only be tested if they are all computed in the same

coordinate system. Consequently the observed period dependence of ay may be due

entirely to the period dependence of hellipse and not to failure of the static distortion

assumption.

To test this, constraint (42) can be replaced with the requirement that h and the dis-

tortion angles do not depend on period. Specifically, seek an optimum ho that minimizes

the mean-square misfit between the distortion angles and their period average. Figure 9d

shows the result. The strike h0 = - 10.4� makes D very close to the goal of period

independence. We can conclude that the distortion is compatible with the static assumption

over the full bandwidth.

Fig. 8 Ratio of the diagonal to off-diagonal regional impedance elements as the distortion angles rotate
through 180�. Each angle has a sharp minimum ratio of the diagonal to off-diagonal magnitudes that is much
smaller than the ratio of the original magnitude (the dot at angle 0). Note that the optimum distortion angles
are large
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The undistorted impedance (within static shift factors) is recovered by inverting (40) to

give

Zregional ¼ D�1Rðh0ÞZobserved
D R�1ðh0Þ ð45Þ

This does not mean, however, that this regional impedance is quasi-2D, which depends

on whether the diagonal elements are small enough to ignore. The ratios (43) and (44) of

the diagonal to off-diagonal magnitudes for the undistorted impedances in both ellipse

coordinates and the optimum period-independent strike are plotted in Fig. 9e. In general,

but not always, there is an increase in the diagonal elements between ellipse and h0

coordinates. Zxx appears small enough to ignore in both coordinate systems. However, at

the shorter periods, Zyy is almost certainly too large to ignore in the h0 system.

Note that h0 is needed only to compute the undistorted impedance. Once the undistorted

regional impedance is known, it can be rotated to any coordinate system convenient for

regional 3D interpretation. It can be rotated to other coordinates for quasi-2D interpretation

in which one ignores the diagonal elements as long as the diagonal elements remain small

enough. I leave further discussion of these results to a paper in preparation.

Fig. 9 a Phase tensor crosses for site pam606. See Fig. 2c for a detailed description of this type of
presentation. b Real and imaginary Parkinson vectors with true north up. c Period-by-period phase tensor-
consistent distortion angles in ellipse coordinates Note that x and y at each period are parallel and
perpendicular to hellipse which depends on period. The angles at 80 s are the same as in Fig. 8. d Phase
tensor-consistent distortion angles in the coordinate system which minimizes their period dependence.
e Ratios of the diagonal to off-diagonal magnitudes for the regional impedances in ellipse coordinates (open
symbols) and in the optimum regional strike (filled symbols)
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6 Concluding Remarks

This paper has revisited the basic theory of the magnetotelluric phase tensor. By devel-

oping its geometry in an intuitive way, I hope it becomes easier to apply to the important

problems of ascertaining the dimensionality and directionality of MT data. When correctly

used, which means not inflating the limits on skew angle and taking into account the

uncertainties, the phase tensor will often lead to the conclusion that 2D interpretation is not

justified for many data sets for which this assumption is presently being made. This should

be considered an opportunity not an impediment to progress in this field because it will

help prevent unwarranted conclusions and focus interpretation on three dimensionality

when it is essential.
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Appendix 1

Computing phase tensor parameters

All standard SVD algorithms easily compute the magnitudes of the tangents of the prin-

cipal phase angles, but SVDs are not unique and so extracting an ellipse axis direction h
and determining the correct quadrant for the phases is a problem. A practical way to

compute h follows directly from the geometrical development above. With x measured in

the right-hand sense from the x-axis of the measurement coordinates, find the angle x0

such that either the vector

pðx0Þ ¼ U cðx0 þ wÞ ð46Þ

is parallel to the vector c(x0 - w) or that

o

ox
jpðxÞj2

� �
x¼x0

¼ 0 ð47Þ

The first condition is probably easier to code in lower-level languages such as C or

FORTRAN and should be more stable in nearly degenerate cases. The second is coded

easily in high level languages such as Matlab that have built-in routines to find the zero of a

function. Then, h = x0 and the lengths of the semi-axes are

jUaj ¼ Uellipsecðhþ wÞ


 

 ð48Þ

jUbj ¼ Uellipsecðhþ wþ 90oÞ


 

 ð49Þ

where Uellipse is computed using Eq. (15). The direction of circulation around the ellipse

relative to the unit circle is determined by computing p(x) for two slightly increasing

values of x and seeing which direction the vector p rotates. Finally, determining the signs

of Ua and Ub from the circulation of the ellipse is summarized in Table 2 in Section A.3.
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Estimating Uncertainties

The phase tensor is a nonlinear function of the impedance, and the phase tensor decompo-

sition parameters are nonlinear functions of the phase tensor. The situation is made worse by

the fact that the phase tensor and derived parameters such as normalized skew are ratios of

random variables. This can lead to distributions with formally infinite second moments. In a

rigorous sense, the variance is then undefined (see Chave 2012b). This does not mean,

however, that the uncertainties are unbounded or even that they are difficult to estimate.

Statisticians have invented what is commonly called the ‘‘delta method’’ that is applicable to

such situations (see Freedman, http://www.stat.berkeley.edu/*census/ratest.pdf and Efron

1982, chapter 6). Operationally, it amounts to linear propagation of errors.

In the context of phase tensor parameters, the N-parameters by 4 complex matrix J of

derivatives of the parameters with respect to the complex data are computed and then the N

by N covariance of the parameters is given by

Rparameters ¼ J RobsJ
T ð50Þ

where Robs is the 4 by 4 complex covariance of the impedance (see Efron 1982, p43, eq 6.22

for the real case). The error estimates of the parameters are the square root of the diagonal of

Rparameters. For most parameters, computing the derivatives is only practical numerically. The

real and imaginary parts of the impedance elements are separately perturbed up and down by

a small amount, and changes in the computed parameters are divided by twice the magnitude

of the perturbation. Care is needed to detect and correct for parameter quadrant jumps

between the positive and negative perturbations. The complex derivative is

J ¼ Jreal þ iJimag ð51Þ

Monte Carlo simulations can be used to verify the delta method results and illustrate the

problems. I concentrate here on w because Jones (2012b, p265) singled it out for poor

statistical performance. A very large number of realizations (104 is generally much too

small; I use 106) are generated by adding random noise to the real and imaginary

impedance elements using eight independent normal distributions. This generates circu-

larly symmetric Gaussian noise in each complex element. The distributions are scaled so

that their standard deviations equal the standard errors estimated from the observations.

The parameters are calculated for each realization and their means and standard deviations

are computed from all the realizations. It is important to point out that this does not

simulate the effect of covariance and can only be compared to delta method results with the

off-diagonals of Robs set to zero.

Table 1 compares w and its uncertainties using the Monte Carlo and delta methods. For the

highly distorted impedance used in Sect. 5.3 and ignoring the off-diagonal covariance, the error

estimates are essentially identical with no significant bias. However, including the full

covariance in the delta method decreases the error estimate by more than a factor of three!

Figure 10a is a Quantile–Quantile (Q–Q) plot of the w Monte Carlo realizations versus a

normal distribution. Both distributions are normalized so that their means are 0 and their

standard deviations are 1. The plot is constructed by sorting the realizations of w by size.

Then, the number of points with values in fixed intervals are counted and plotted against

the number expected for the normal distribution. If the points lie on a straight line with

slope 1, the distributions are identical. They are clearly extremely close. Strictly speaking,

angles like w should be compared to a ‘‘wrapped’’ Gaussian. However, even with a million

points, the probability of one point outside of 4.5 standard deviations (±5�) is too small for
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any such points to exist. With such a small total angle spread, the wrapped and standard

Gaussian are indistinguishable.

The situation is more complicated for data with larger errors. To simulate this, the

estimated errors of the off-diagonal impedance phases are increased to 1.5� (10 % of their

apparent resistivity or 5 % of their magnitude). The error estimates of the diagonal element

magnitudes are set equal to the error estimate of the off-diagonal in the same row on the

premise that the noise is from the electric field. The Monte Carlo estimate of the uncer-

tainty in Table 1b is now much larger than the delta method ignoring the off-diagonal

covariance. Comparison with the full covariance is not shown because I know of no

consistent way to alter the off-diagonal covariance. To see what has happened, look at the

histogram of the w realizations in Fig. 10b. There are secondary outlier peaks near ± 180�.

These are due to realizations that have pushed w out of quadrant and produced a distri-

bution that is clearly not a wrapped Gaussian. The poor performance of the ‘‘High Noise

3D’’ error simulation reported by Jones (2012b), Table 6.5a) may be the same problem. As

noted in Sect. 2.2.3 and Fig. 11b of Appendix section ‘‘Principal Phase Signs,’’ values of w
near ± 180� have the same degree of three dimensionality as values near 0. Thus, for a

moderately 3D impedance with wmean about 10�, outliers near ±180� are much more likely

than highly 3D values of w near ±90�. A rigorous study of how this quadrant wrapping

should be ‘‘unwound’’ is needed, but it is reasonable to suppress the influence of these

‘‘antipodal’’ outliers by simply ‘‘trimming’’ (i.e., dropping) angles outside of ±90�. Doing

so (see Table 1b) brings the ‘‘trimmed’’ Monte Carlo standard deviation into close

agreement with the delta method. The bias is only 1 % of the error. To avoid spurious

asymmetry in the w distribution, one can make the region of included data symmetric about

the mean. This reduces the already negligible bias a bit and so is not worth the effort.

The large impact of the covariance in Table 1a is a common, but not general, situation.

Table 1c also shows results for a site that has a larger normalized skew and is thus more

3D, but has less distortion (ax = 23.8�; ay = - 22.7�). The effect of covariance is much

Table 1 The phase tensor skew angle w (deg) and its 1 standard deviation uncertainty at two MT sites using
Monte Carlo (MC) with 106 realizations and Delta (D) methods

Method R w dw

(a) Site Pam606 with observed impedance errors

MC Diagonal 9.684 1.092

D Diagonal 9.685 1.092

D Full 9.685 0.317

(b) Site Pam606 with 5 % |Z| errors (see text)

MC Diagonal 8.859 57.243

D Diagonal 9.685 25.409

‘‘Trimmed’’ MC (see text) Diagonal 10.063 25.745

(c) Site Pam604 with observed impedance errors

D Diagonal 14.083 0.261

D Full 14.083 0.207

(d) Site Pam604 with 5 % |Z| errors (see text)

MC Diagonal 14.080 6.585

D Diagonal 14.089 6.525

Entries in the column headed R indicate whether the full covariance matrix or only its diagonal is used in the
error estimate
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smaller for this site. Inflating the errors at this second site by the same amount as in

Table 1b leads to a w distribution with only 7 out of 106 antipodal values with essentially

no impact on the Monte Carlo mean or error estimate (see Table 1d).

In my experience, large effects of covariance and strong distortion go together, but should

never be assumed absent. Rotation always introduces covariance, and rotation of the vari-

ances alone will not in general give correct variances in the rotated frame. A rotation of 45� is

the worst case. For example, ignoring the off-diagonals of the covariance at site pam604

Fig. 10 a Q–Q plot of 106 random realizations of phase tensor skew angle w generated using observed
impedance and error estimates at 80 s for site pam606. The realizations have been normalized so that they
have zero mean and unit standard deviation. They are plotted against a normal distribution with the same
mean and standard deviation. The axes units are standard deviations. If the w distribution is normal, the
points should all fall on the straight line. b Histogram of 106 realizations of phase tensor normalized skew
for the same impedance, but whose error estimates have been inflated as described in the text. The reason for
the non-Gaussian secondary hump at ±180� and the justification for suppressing it are discussed in the text

Fig. 11 Phase tensor ellipses with axes lengths and coordinate rotation identical to Fig. 1b. The normalized
skew angle in (a) is the same as Fig. 1b, but the sign of the principal value Ua is negative and thus its
principal phase is out of quadrant. Note that ellipse circulation is counter to that of the unit circle and that the
ellipse starting point has moved to the opposite side of the origin. Note also that w is still measured from the
original ellipse axis direction. This remains true when w is increased from 20 to 160� in (b)
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(which is almost unaffected by covariance in Table 1(c)), the uncertainty at 80 s after a

rotation of 45� is 32 % too small for |Zxy| and 34 % too large for |Zyx|. Paraphrasing the title of

Jones and Groom (1993): ‘‘rotate [ignoring covariance] at your peril.’’ It is conceivable that

their conclusions were actually the result of ignoring covariance.

One should not expect delta method uncertainties to be accurate for angles when the

standard errors are greater than about ± 20� (4.5 standard deviations = 90�). Since angles

with larger errors are of little use, this is not a practical problem. However, impedance

covariance should never be ignored, especially for strongly distorted data. Computation of

skew angle errors using a Monte Carlo method is clearly problematic. Not only must one

identify and compensate for quadrant-flipped tails, but one cannot easily incorporate error

covariance. Both can lead to grossly incorrect error estimates.

Principal Phase Signs

The sgn function is ?1 when its argument is positive and -1 when its argument is

negative. It can be used to rewrite (14) as

p ðxÞ ¼ jUaj 0

0 jUbj

� �
S RðwÞ cðxÞ ð52Þ

where

S ¼ sgnðUaÞ 0

0 sgnðUbÞ

� �
ð53Þ

is a ‘‘reflection’’ matrix. When Ua and Ub have opposite signs, this reflection reverses the

circulation about the ellipse. Additionally, when Ua \ 0 and Ub [ 0, the starting point for

the ellipse circulation moves to the opposite side of the origin. These relationships are

summarized in Table 2 and examples are shown in Fig. 11. Plotting only 270� of the unit

circle and ellipse and starting x at h ? w (the semi-axis in the h direction) makes it easy to

see these relationships. Note that w is always measured from the ‘‘unreflected’’ semi-axis

direction h.

Site Locations and Data

The locations of the three MT sites used in this paper are shown in Fig. 4. They were

collected in cooperation with Argentine colleagues. Site pam885 (31.724�S 58.627�W)

used in Fig. 2 is in Entre Rios Province near the border between Argentina and Uruguay at

the Uruguay River. It was collected using a Narod NIMS system sampling at 4 Hz. Site

pam606 (31.531�S 68.839�W) is used in Figs. 8, 9, and 10 and in Table 1 is about 25 km

Table 2 Signs of phase tensor principal values as a function of circulation directions for the unit circle and
phase tensor ellipse and x0, the starting angle of ellipse circulation

Unit circle Ellipse x0 Ua Ub

Clockwise Clockwise hellipse ? ?

Clockwise Counterclockwise hellipse ? 180� – ?

Clockwise Counterclockwise hellipse ? –

Clockwise Clockwise hellipse ? 180� – –
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west of the city of San Juan in a side valley of the San Juan River canyon in the Pre-

Cordillera mountains of San Juan Province, Argentina. Site pam604 (31.509�S 68.999�W)

also used in Table 1 is 15 km up the main canyon west of pam606. They were collected

using LRMT systems (Phoenix clones of the Canadian Geological Survey LIMS) sampling

at 5 s. All sites used lead–lead chloride electrodes separated by about 100 m. These data

are available from a link at http://earthweb.ess.washington.edu/booker and will become

available from the IRIS DMC (http://www.iris.edu/data/).

Appendix 2

The misfit tensor defined by Heise et al. (2007) is

D ¼ I� 1

2
Û
�1

UþUÛ
�1

� 	
ð54Þ

(where the ‘‘hat’’ ^ signifies the phase tensor predicted by the model) with the exception

that the role of the observed and predicted phase tensors have been interchanged. Rewriting

D using the rotationally invariant parameters of the phase tensor parameterization (16), we

can show that (54) depends on the coordinate system in which it is computed.

D is the average of ‘‘right-handed’’ and ‘‘left-handed’’ relative misfits

Dright ¼ Û�U
� �

U�1 ¼ I�UÛ
�1 ð55Þ

Dleft ¼ Û
�1

Û�U
� �

¼ I� Û
�1

U ð56Þ

It is now clear why interchanging the roles of the observed and model phase tensors is a

good idea. The predicted phase tensor is not subject to random noise and makes a more

stable quantity against which to compare the phase tensor principal values residual.

Choosing the coordinate system aligned with the predicted phase tensor, we can use the

more compact notation

K̂ � Ûa 0

0 Ûb

� �
ð57Þ

and (16) to write the predicted phase tensor

Û ¼ K̂Rŵ ð58Þ

The observed phase tensor ellipse axes do not necessarily align with the predicted

ellipse. Defining dh as the angle of the observed ellipse axes to the predicted ellipse

coordinate system, we can again use (16) to write the observed phase tensor in the pre-

dicted phase tensor coordinates

U ¼ Rdh KRw
� �

R�1
dh ¼ RdhKR�1

dh

� �
Rw � L Rw ð59Þ

where L is the observed principal value matrix rotated to the predicted ellipse frame.

Finally, in the predicted ellipse coordinate frame, the right-handed misfit tensor (55)

becomes

Dright ¼ I� L RdwK̂
�1 � I� ~L K̂

�1 ð60Þ

where the skew angle residualdw � w� ŵand
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~L � LRdw ¼ RdhKRdh�dw ð61Þ

In the same coordinate frame, the left-handed misfit tensor (38) is

Dleft ¼ I� R�1

ŵ
K̂
�1

L Rw ð62Þ

This can be simplified by rotating its coordinates by normalized skew angle ŵ relative to

the axes of the predicted ellipse and using the fact that K̂ is diagonal. The rotated misfit

tensor is given the new name

~Dleft � RŵDleftR
�1

ŵ
¼ I� K̂

�1
L Rdw ¼ I� K̂

�1 ~L ¼ I� ~L
T
K̂
�1 ð63Þ

The first thing to notice about (60) and (63) is that they differ only in the transpose of ~L.

Thus, Dright and Dleft contain the same coordinate-invariant information. Averaging them

confuses the situation because their difference is a consequence of the coordinate systems

in which they are evaluated (which are rotated w relative to each other). If one wants to

plot a phase tensor misfit tensor using relative residuals, it is better to choose one of the

definitions (56), (57), (60) or (63), and not (54).

The second thing to notice is that, when the skew angle residual is small, the net rotation

due to Rdw will be negligible even when w itself cannot be ignored. Thus, these misfit

tensors are only weakly dependent on the magnitude of w and hence on the parameter that

is unambiguously 3D. Better and far simpler ways of addressing how much a 2D or 3D

inverse or model is violating 3D aspects of the data are pseudosections and maps of the

normalized skew residual dw and the angles dh between the predicted and observed phase

tensor ellipses.

Finally, if both dw and dh are negligible, (60) and (63) reduce to the result discussed

earlier:

Dleft ¼ Dright ¼ I� K K̂
�1 ¼ Ûa � Ua=Ûa 0

0 Ûb � Ub=Ûb

� �
ð64Þ

Appendix 3

Smith (1995) showed that any static distortion matrix can be parameterized by

D ¼ a c

b d

� �
¼ cos ðaxÞ � sin ðayÞ

sin ðaxÞ cos ðayÞ

� �
gx 0

0 gy

� �
ð65Þ

where

tan ðaxÞ ¼
b

a
tan ðayÞ ¼

�c

d
gx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
gy ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ d2

p
ð66Þ

‘‘Distortion angle’’ ax is the rotation and the ‘‘gain’’ factor gx multiplies the magnitude

of the x-component of the regional electric field; ay is the rotation and gy is the gain of the

y-component of the regional electric field. It is then easy to show that the distorted regional

impedance in regional coordinates can be expressed
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ZD ¼ DZ ¼
1 � tanðayÞ

tanðaxÞ 1

� �
cosðaxÞ gxZxx cosðaxÞ gxZxy

cosðayÞ gyZyx cosðayÞgyZyy

� �

� ~D~Z

ð67Þ

where ~D and ~Z are just rescaled versions of D and Z.

Multiplying (67) by ~D
�1

gives

~D
�1

ZD ¼
1

det ~D
� � 1 tanðayÞ

� tanðaxÞ 1

� �
ZDxx ZDxy

ZDyx ZDyy

� �

¼ 1

det ~D
� � ZDxx þ ZDyx tanðayÞ ZDxy þ ZDyy tanðayÞ

�ZDxx tanðaxÞ þ ZDyx �ZDxy tanðaxÞ þ ZDyy

� �

¼
cosðaxÞ gxZxx cosðaxÞ gxZxy

cosðayÞ gyZyx cosðayÞgyZyy

� �
ð68Þ

The magnitude of the ratio of the elements in the first row of (68) gives

cosð axÞ gxZxx

cosð axÞ gxZxy










 ¼ Zxx

Zxy










 ¼ Qx ¼

ZDxx þ ZDyx tanðayÞ
ZDxy þ ZDyy tanðayÞ










 ð69Þ

The magnitude of the ratio of the elements in the second row of (68) gives

cosð ayÞ gyZyy

cosð ayÞ gyZyx










 ¼ Zyy

Zyx










 ¼ Qy ¼

ZDyy � ZDxy tanðaxÞ
ZDyy � ZDyx tanðaxÞ










 ð70Þ

Thus, satisfying constraints (42) is a simple matter of searching for the angles amin
y and

amin
x that minimize the terms on the right of (69) and (70).
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