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Abstract In the last few decades, the demand for three-dimensional (3-D) inversions for

magnetotelluric data has significantly driven the progress of 3-D codes. There are currently

a lot of new 3-D inversion and forward modeling codes. Some, such as the WSINV3DMT

code of the author, are available to the academic community. The goal of this paper is to

summarize all the important issues involving 3-D inversions. It aims to show how inver-

sion works and how to use it properly. In this paper, I start by describing several good

reasons for doing 3-D inversion instead of 2-D inversion. The main algorithms for 3-D

inversion are reviewed along with some comparisons of their advantages and disadvan-

tages. These algorithms are the classical Occam’s inversion, the data space Occam’s

inversion, the Gauss–Newton method, the Gauss–Newton with the conjugate gradient

method, the non-linear conjugate gradient method, and the quasi-Newton method. Other

variants are based on these main algorithms. Forward modeling, sensitivity calculations,

model covariance and its parallel implementation are all necessary components of inver-

sions and are reviewed here. Rules of thumb for performing 3-D inversion are proposed for

the benefit of the 3-D inversion novice. Problems regarding 3-D inversions are discussed

along with suggested topics for future research for the developers of the next decades.

Keywords 3-D Inversion algorithms · Magnetotelluric · Electromagnetic induction

1 Introduction

Many three-dimensional (3-D) magnetotelluric (MT) inversion algorithms have been

developed in the past few decades (e.g. Smith and Booker 1991; Mackie and Madden
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1993; Newman and Alumbaugh 2000; Zhdanov et al. 2000; Sasaki 2001, 2004; Zhdanov

2002; Siripunvaraporn et al. 2004, 2005a; Sasaki and Meju 2006; Gribenko and Zhdanov

2007; Mackie and Watts 2007; Han et al. 2008; Lin et al. 2008, 2009; Farquharson and

Craven 2008; Avdeev and Avdeeva 2009; Siripunvaraporn and Egbert 2009; Gribenko

et al. 2010; Siripunvaraporn and Sarakorn 2011). The major factors driving progress in the

development of 3-D algorithms are the ambiguity of the two-dimensional (2-D) interpre-

tation and the increasing number of 3-D MT data acquisitions.

3-D MT inversions have been used in various studies such as ore deposit exploration

(e.g., Tuncer et al. 2006; Farquharson and Craven 2008; Türkoğlu et al. 2009; Xiao et al.

2010; Goldak and Kosteniuk 2010), waste characterization (e.g., Newman et al. 2003),

tectonic studies (e.g., Uyeshima 2007; Patro and Egbert 2008), volcano studies (e.g.,

Spichak et al. 2007; Heise et al. 2008, 2010; Jones et al. 2008; Hill et al. 2009; Ingham

et al. 2009), hydrocarbon exploration (e.g., Mackie and Watts 2007; Hautot and Tarits

2009; Zhanxiang et al. 2010) and geothermal studies (e.g., Han et al. 2008; Newman et al.

2008; Árnason et al. 2010; Cumming and Mackie 2010). Improvements in 3-D inversion

are likely to continue as long as MT data are still being acquired. New technologies,

theories, methods, and ‘new’ people with a support of ‘old’ people are all major driving

forces for the bright future of 3-D inversion.

In this paper, I start with a discussion of the importance of 3-D inversions. This section

is aimed at both users and developers. I then review the many different 3-D inversion

algorithms. Other necessary components for 3-D inversions are given next. Novice or

inexperienced developers can use this section as a guide or recipe for developing their own

codes. At the same time, it is a good idea for users to learn how the inversion and other

components work. Often, many users make simple mistakes when running 3-D inversions

which could lead to a major fault in interpretation. The next section is therefore designed to

introduce the strategy for carrying out 3-D inversion. Problems and future suggested

research will be discussed in the final section to motivate and encourage new develop-

ments. Previous 3-D electromagnetic modeling and inversion reviews can be found in

Avdeev (2005), Abubakar et al. (2009) and Borner (2010).

2 When is 3-D Inversion Useful? (Advantages of 3-D Inversion Over 2-D Inversion)

Because the Earth is 3-D, a 2-D Earth model cannot be used to explain or represent the 3-D

Earth. This is a simple and obvious reason why one needs 3-D inversion. Other reasons are

described in more detail in this section.

For several decades, MT acquisitions have usually been conducted along a profile or

several profiles parallel to each other (e.g., Unsworth et al. 2000; Tuncer et al. 2006;

Newman et al. 2008). Prior to 2-D inversion, dimensionality analyses are carried out to

determine which data are consistent with a 2-D interpretation. These analyses include skew

analysis (Swift 1967; Vozoff 1972), phase-sensitive skew analysis (Bahr 1991), the Groom

and Bailey decomposition (Groom and Bailey 1989), tensor decomposition (Chave and

Smith 1994), rotational invariant analysis (Weaver et al. 2000; Marti et al. 2009), strike

decomposition (McNeice and Jones 2001), the phase tensor (Caldwell et al. 2004), and the

Mohr circle (Lilley and Weaver 2010). A good review of 2-D techniques including

modeling, dimensional analysis and interpretation is summarized in Ogawa (2002).

Although MT profile data often demonstrate the influence of 3-D effects or show

deviations from being purely 2-D, 2-D assumptions are usually allowed (e.g., Becken et al.

2008b; Ingham et al. 2009; Hill et al. 2009; among many others). 2-D inversions are then
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performed to yield 2-D cross-sectional models for profile interpretation. The dangers of

2-D inversions being influenced by 3-D structures are demonstrated with synthetic data in

Siripunvaraporn et al. (2005b) and Ledo (2006) and with real data in Simpson and Bahr

(2005) and Newman et al. (2003). All studies indicate that if the data contains 3-D

structures, 2-D inversion can mislead an interpretation. Ledo’s analysis suggests that it is

still possible to conduct 2-D interpretation on some modes (either TM or TE). This depends

significantly on the position of the 3-D structure with respect to the regional 2-D strike

direction. A separation of data into TM and TE modes by inclusion of the vertical magnetic

transfer function to allow 2-D inversions has been demonstrated with synthetic data

(Becken et al. 2008a). However, in practice, techniques similar to Ledo’s analysis and

mode separation are not easy to justify unless the 3-D structures are already known.

The ambiguity of the data can be overcome by using 3-D inversion programs such as the

WSINV3DMT code (Siripunvaraporn et al. 2005a). With 3-D inversion it is not necessary

to make an assumption about the strike direction. 3-D inversion can immediately be

applied to the data after data processing and noise removal. This is a clear advantage of

3-D inversion over 2-D inversion. Although dimensionality analysis is not strictly neces-

sary, it is still recommended in order to determine the nature of the observed data.

In the past, most data acquisitions were conducted using one or more 2-D profiles.

Instead of using 2-D inversion, the 2-D profile data can be inverted with 3-D inversion

code. This is demonstrated in Siripunvaraporn et al. (2005b) for synthetic data and in Xiao

et al. (2010) for real field data. The advantage of using 3-D inversion on 2-D profile data is

that it can recover anomalies correctly as demonstrated in Newman et al. (2003) with real

data. With 3-D inversion, where the number of degrees of freedom is high, the data can

force the inversion to put the 3-D effects from outside the profiles to where they belong.

These 3-D effects are in the form of structures, although their size, shape, depth and

location cannot be determined exactly. This is in contrast to 2-D inversion where the

number of degrees of freedom is significantly smaller. To accommodate the 3-D effects

required by the data, 2-D inversion can only insert the structure beneath the profiles which

could lead to misinterpretation (Siripunvaraporn et al. 2005b).

Due to many limitations such as inaccessibility by road, presence of large water res-

ervoirs or rough topography, conducting MT experiments along a profile may not be

possible. MT stations can only be sited within a broad corridor about the profile line, and

must be projected onto the profile (e.g., Ingham et al. 2009; Árnason et al. 2010; Heise

et al. 2010). 2-D inversion is possible only if the data are projected on the same profile

(e.g., Hill et al. 2009; Ingham et al. 2009). With 3-D inversion, data from the scattered

stations can be easily inverted without data projection. This could help avoid errors in

estimation of size, shape and location of the structures. 3-D inversion is helping to open a

new era in data acquisition where sites do not have to lie in a straight line.

As with 2-D inversion, 3-D inversion is usually used to construct the model that fits the

inductive responses produced by the regional conductivity structure. Another beauty of

3-D inversion is that it can be used to fit the inductive effects due to localized near-surface

structures both directly beneath and outside the station. It can also be used to obtain the

galvanic distortion or the static shift (see Newman et al. 2003; Sasaki 2004; Sasaki and

Meju 2006). This can be accomplished by finely discretizing the model near the surface.

Recently, phases of over 90° have been mentioned in many publications (e.g., Ichihara

et al. 2010; Lilley and Weaver 2010). Phases over 90° result from the L-shape structure

where the current is higher at the corners (Ichihara and Mogi 2009). 2-D inversion cannot

be used to fit phases over 90°. Other explanations must therefore be sought out. One of

them may be anisotropy (Chen and Weckmann 2010). Ichihara et al. (2010) demonstrated
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that 3-D inversion can recover the L-shape structure that produces phases of over 90°. This
is another advantage of 3-D inversion over 2-D inversion.

The drawback of 3-D inversion is the large computational cost in terms of both memory

and CPU time. This could discourage many from using 3-D inversion and in favor of 2-D

interpretation. With new technology, new theories and methods, these large requirements

will be reduced. Other current problems could be the inaccessibility of many codes. Again,

these problems are likely to be overcome in the not too distant future.

3 Mathematical Review of Magnetotelluric Inversion Algorithms

In this section, I explain how the main algorithms for 3-D inversions work. These algo-

rithms are the classical Occam’s inversion, the data space Occam’s inversion, the Gauss–

Newton (GN) method, the Gauss–Newton with the conjugate gradient (GN-CG) method,

the quasi-Newton (QN) method, and the non-linear conjugate gradient (NLCG) method.

Many other algorithms are based on these algorithms with some modifications or a

combination of these techniques and will not be described in detail here.

All inversion algorithms share the same goal of finding the ‘best’ model that is geo-

logically interpretable and fitting the data to an acceptable level. Two main functionals for

magnetotelluric data are normally minimized. The first functional is the unconstrained

functional,

U m; kð Þ ¼ k�1 d� F m½ �ð ÞTC�1
d d� F m½ �ð Þ � v2

� �þ m�m0ð ÞTC�1
m m�m0ð Þ; ð1Þ

where m is the resistivity model of dimension M, m0 is the prior model, Cm is the model

covariance matrix, d is the observed data with dimension N, F[m] is the forward model

response, Cd is the data covariance matrix, χ2 is a desired level of misfit, and λ-1 is a

Lagrange multiplier. This functional is used mostly in Occam’s inversions (Constable et al.

1987; Degroot-Hedlin and Constable 1990; Siripunvaraporn and Egbert 2000, 2009;

Siripunvaraporn et al. 2004, 2005a). In Occam’s algorithm, λ is not fixed but varies from

iteration to iteration.

Another unconstrained functional is W(m) which is sometimes called the objective

functional or the penalty functional depending on where it is used. This functional has the

form

W mð Þ ¼ k�1 d� F m½ �ð ÞTC�1
d d� F m½ �ð Þ þ m�m0ð ÞTC�1

m m�m0ð Þ; ð2Þ
where λ is a trade-off parameter controlling whether to heavily minimize the data misfit or

the model norm. For large λ, the data misfit is less important and therefore the model norm

is minimized to produce a smoother model. For small λ, the inversion tends to fit the data

better. This is closer to a least-squares inverse problem and often produces a rougher

model. The second functional is used in most algorithms, for example, in NLCG (e.g.,

Newman and Alumbaugh 2000; Rodi and Mackie 2001; Mackie and Watts 2007; Commer

and Newman 2009; Zhanxiang et al. 2010), in GN (e.g., Haber et al. 2000, Sasaki 2001,

2004, Gunther et al. 2006), in QN (e.g., Haber 2005; Avdeev and Avdeeva 2009), and in

GN-CG (e.g., Mackie and Madden 1993; Newman and Alumbaugh 1997; Gunther et al.

2006; Siripunvaraporn and Egbert 2007). In these algorithms, λ must be pre-selected and

its value remains fixed. Recently, many algorithms practically do not fix λ but start the

inversion with large λ before decreasing to a smaller value to decrease the computational
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time (e.g., Newman and Hoversten 2000; Haber et al. 2000; Kelbert et al. 2008; Avdeev

and Avdeeva 2009; and Siripunvaraporn and Sarakorn 2011).

To achieve the minimum structure of U(m,λ) with W(m), all of these algorithms (GN,

GN-CG, QN and NLCG) must be separately run with different values of pre-selected λ.
Each run should be terminated when the misfit reaches the desired level. The model norm

is then computed and compared to other norms from other runs. In this case, the minimum

model norm is then equivalent to the output of (1) if using the same definition of the norm.

This was demonstrated in Siripunvaraporn and Sarakorn (2011) and is shown again in

Fig. 1. However, if the objective of the inversion is just to minimize the objective function

(2), there is no need to terminate the run when the misfit reaches the desired level.

Other 3-D inversions that should be mentioned here, but are not elaborated upon further,

are the Bayesian Statistics method (Spichak 1999), the neural network method (Spichak

and Popova 2000), the genetic algorithm inversion (Toh and Honma 2008), and also the

imaging technique (Szarka et al. 2006).

3.1 Occam’s Inversion (OCCAM)

Occam’s inversion searches for the stationary point of (1) through the penalty functional

(2). This is because, for a fixed λ, ∂U/∂m = ∂W/∂m. To obtain the stationary point of (1),

several λ must be used in ∂W/∂m. The OCCAM process can be divided into two phases.

Phase I is to bring the RMS misfit down to the level of χ2 by varying λ. This phase makes

the first term on the right hand side of (1) equal to zero. Phase II is to minimize the model

norm, the second term on the right hand side of (1). This is accomplished by again varying

λ to find the model with the smallest norm while keeping the RMS misfit at the χ2 level.

The algorithm used to search for the best λ can be a simple scheme like the bisection

Fig. 1 Plots to display the equivalent of (1) via (2) (after Siripunvaraporn and Sarakorn 2011). a In
Occam’s inversion where (1) is used, λ is automatically searched and varied from iteration to iteration. In
Phase I, the inversion seeks the model that produces the minimum RMS misfit. On achieving the target
misfit, Phase II of the inversion seeks the model with minimum norm. Solid squares mark the values of λ
used to calculate the sensitivity matrix for the next iterations. b In other inversion schemes where (2) is used,
λ is pre-selected. To achieve the smoothest structure goal, each λ is fixed and run separately. The model that
has the minimum norm with the target misfit is selected as an equivalent model to (1). Integers next to
symbols indicate the number of iterations
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search (see Press et al. 1992; Siripunvaraporn and Egbert 2000). An example plot of RMS

versus λ for both phases is shown in Fig. 1a.

Phase II is necessary to get rid of the spurious structures due to over-fitting the data.

Usually, χ2 is set to 1 RMS but frequently in real applications this can not be attained (e.g.,

Tuncer et al. 2006). By either decreasing the error bars or increasing the χ2 level, we

would be able to obtain the minimum norm model. The model norm is usually controlled

by the model covariance Cm in Siripunvaraporn et al. (2005a) or the roughness operator in

many others (e.g., Constable et al. 1987; Rodi and Mackie 2001). Both will be discussed in

the next section.

Currently, there are two variants of Occam’s inversion; the original or model space

Occam’s inversion and the data space Occam’s inversion. If both schemes use the same

parameters (same λ and Cm), the results will be identical.

3.1.1 The Model Space Occam’s Inversion

The OCCAM algorithm starts with the linearization of the model response F[m] using the

first order Taylor’s series expansion, i.e., F[mk+1] = F[mk] + Jk(mk+1 − mk), where

Jk = ∂F/∂mk is the N 9 M sensitivity matrix calculated with respect to the model at the kth

iteration, mk. By differentiating the linearized W with respect to the model m and setting it

to zero, i.e., ∂W/∂m = 0, the following iterative sequence of linear equations is obtained:

mkþ1 �m0 ¼ kC�1
m þ JTkC

�1
d Jk

� ��1
JTkC

�1
d
-dk; ð3Þ

where đk = d − F[mk] + Jk(mk − m0). In each iteration, (3) is solved with various values

of λ to obtain several updated models. Then, the model with the smallest misfit is chosen in

Phase I and the model with the smallest norm and misfit at the target level is chosen in

Phase II. This new model is used to compute its sensitivity for the next iteration. The

algorithm for the model space Occam’s inversion is given in Fig. 2.

The advantage of the code is its ability to converge in a small number of iterations (see

examples in Constable et al. 1987; Siripunvaraporn and Egbert 2000; and Siripunvaraporn

et al. 2005a). In addition, because it searches for the minimum structure model, the model

can be treated as a “lower bound” for interpretation indicating that the structures are

required by the data (Constable et al. 1987). The disadvantage of this scheme is the

requirement of large computational resources. Equation (3) requires inverting a M 9 M
matrix [λ Cm

−1 + Jk
TCd

−1Jk] and also computing its N 9 M sensitivity matrix Jk. Both
processes require a substantial amount of CPU time for each iteration and also a large

amount of memory. For example, to invert the EXTECH data set (Siripunvaraporn and

Egbert 2009) which has 131 stations, 16 frequencies and 12 responses, N = 25,152, and the

model parameter M = 56 9 56 9 33 = 103,488. Inversion of this data set with the model

space Occam’s inversion would require a minimum of 84 Gigabytes to store its inverted

matrix and 20 Gigabytes to store its sensitivity matrix. This type of 3-D inversion is

therefore impractical on most current computers.

3.1.2 The Data Space Occam’s Inversion

To maintain the advantages of Occam’s algorithm, Siripunvaraporn and Egbert (2000)

transformed the computational space from model space to data space. Equation (3) can be

rearranged as
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m�m0 ¼ CmJ
Tb; ð4Þ

where β is an N 9 1 unknown coefficient vector. The derivation of (4) from (3) can be seen

in Siripunvaraporn et al. (2005a) and Parker (1994). Equation (4) and the linearized F[m]

are inserted into (2) to obtain the penalty functional in data space. Differentiating the

penalty functional in data space with respect to β and rearranging, the following iterative

sequence of approximate solutions can be obtained:

mkþ1 �m0 ¼ CmJ
T
kC

�1=2
d kIþ C

�1=2
d JkCmJ

T
kC

�1=2
d

h i�1

C
�1=2
d

-dk; ð5Þ

where I is the identity matrix. The algorithm for the data space Occam’s inversion is also

given in Fig. 2.

Transforming the model space calculation to the data space calculation helps to counter

the disadvantage of the model space Occam’s inversion. Equation (5) requires only

inverting a N 9 N matrix [λ I + Cd
−½JkCmJk

T Cd
−½], rather than an M 9 M matrix as in the

model space, but still requires computing its N 9 M sensitivity matrix Jk. By decreasing

the matrix dimension, CPU time is significantly decreased (Siripunvaraporn and Egbert

2000; Siripunvaraporn et al. 2005a). But the most significant advantage is the reduction of

memory usage. Using EXTECH data as an example, in model space, we need 84 Gigabytes

to store the inverted matrix of (3). In data space, we only need about 5 Gigabytes to store

the inverted matrix of (5). However, both methods require about 20 Gigabytes to store the

sensitivity matrix. This data space method is used in the WSINV3DMT program for 3-D

(1) read initial model mk and prior model m0 and compute RMS misfit Xk from model mk

(2) start outer loop iteration k:

(2.1) form sensitivity matrix Jk from model mk

(2.2) compute k = d – F[mk] + Jk(mk – m0)

(2.3) if mOCCAM: compute  ΓΓk
m = Jk

TCd
-1Jk

if dOCCAM: compute Γk
d = Cd

-½JkCmJk
T Cd

-½

(2.4) for various values of λs

(2.4.1) if  mOCCAM : form and factorize Rk
m =[λCm

-1 + Γk
m]

if  dOCCAM :  form and factorize Rk
d = [λ I + Γk

d]

(2.4.2)  if  mOCCAM : update model mk+1 - m0  = [Rk
m]-1 Jk

TCd
-1

k,

if  dOCCAM :  update model mk+1 - m0  =  CmJk
T Cd

-½ [Rk
d]-1 Cd

-½
k

(2.4.3)  compute RMS misfit Xk+1(λ) from model mk+1(λ) of each λ

(2.4.4)  if Phase I:  select mk+1(λ) that has minimum misfit

if  Xk+1(λ)  <    2, search for mk+1 that yield 2

if Phase II: select mk+1(λ) that yield 2 with min imum model norm

(2.5) end

(2.6) exit when misfit < 2 with minimum model norm ; else go to (2.1)

(3) end outer loop iteration 

Fig. 2 Algorithms for model space (mOCCAM) and data space (dOCCAM) Occam’s inversion (after
Siripunvaraporn and Egbert 2007)
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MT data (Siripunvaraporn et al. 2005a; Siripunvaraporn and Egbert 2009) and DASOCC

for 2-D MT data (Siripunvaraporn and Egbert 2000). It is also used in network-MT

inversion (Siripunvaraporn et al. 2004) and 2-D direct current resistivity inversion

(Boonchaisuk et al. 2008).

3.2 The Gauss–Newton (GN) Method

Occam’s inversion is actually a variant of a classical Gauss–Newton (GN) method which is

a modification of Newton’s method. In Newton’s method, the objective functional is first

approximated by a Taylor series expansion. The quadratic approximation of the objective

functional is then minimized to produce a series of the updated model (see Eq. 8). In the

GN method, the first derivative in the Hessian matrix of Newton’s method is kept but the

second-order derivative is discarded. This leads to an iterative sequence of approximate

solutions,

mkþ1 �mk ¼ kC�1
m þ JTkC

�1
d Jkþ 2k I

� ��1
JTkC

�1
d dk ��F mk½ �ð Þ � kC�1

m mk �m0ð Þ� �
;

ð6Þ
where ∈k is a damping parameter for numerical stability (Marquardt 1963). A scaling

factor can be added to the right-hand side of (6) which could help to speed up the

convergence rate. As with the model space Occam’s inversion (6) requires storing the

M 9 M inverted matrix and the N 9 M sensitivity matrix Jk and so a lot of memory is

required. The GN method is therefore mostly used for 2-D cases (e.g., Rodi and Mackie

2001). Direct implementation on 3-D problems is impossible. Recently, Li et al. (2009)

applied the adaptive cross approximation (ACA) technique to decompose the sensitivity

matrix into two smaller matrices to make the large scale 3-D GN inversion method

possible.

To get away with this large memory requirement problem and to make it possible for

3-D, the modeling mesh and inversion mesh can be discretized differently. Sasaki (2001)

and Sasaki (2004) selected a subset of the modeling mesh as the inversion mesh to reduce

the total number of model parameters. The inversion mesh is therefore larger than the

modeling mesh. However, this selection process can lead to new problems with inter-

pretation because it is difficult to know which subset is best suited for the inversion.

Although (6) computes mk+1 − mk whereas (3) computes mk+1, both (3) and (6) are

actually equivalent. A major difference is that the step length control in Occam’s inversion

is obtained from varying λ to compute the data misfits from a series of trial solutions m(λ)
in (3) in each iteration. Thus in the OCCAM inversion, λ is determined from the search

process, while in GN, λ must be pre-chosen. This is an advantage of Occam’s inversion

scheme over the GN method. The GN algorithm is also given in Fig. 3.

3.3 The Gauss–Newton with Conjugate Gradient (GN-CG) Approach

To avoid storing both large matrices of the GN method, a conjugate gradient (CG) can be

used to solve (6) and also (3) and (5). If CG is applied to (3) or (6), the algorithm is referred

to as the model space conjugate gradient method. This algorithm is used in Mackie and

Madden (1993), Rodi and Mackie (2001), Haber et al. (2004, 2007), and Lin et al. (2008).

If CG is used to solve (5), the algorithm is the data space conjugate gradient method. It is

used in Siripunvaraporn and Egbert (2007) and Siripunvaraporn and Sarakorn (2011). The

GN-CG algorithms are summarized in Fig. 4.
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With the application of CG, a large data set (like EXTECH) can be inverted even on a

desktop PC because tens of Gigabytes of memory is not need. This can be accomplished

because matrix J and the inverse matrix are never explicitly formed and stored in memory.

Only a product of J or JT with an arbitrary vector is required. Jp and JTq for each period,

where p and q are arbitrary vectors, can be computed from solving one forward problem

(see Mackie and Madden 1993; Newman and Alumbaugh 2000; Rodi and Mackie 2001;

Siripunvaraporn and Egbert 2007; Lin et al. 2008). A description of how Jp and JTq are

computed is given in the next section.

(1) read initial model mk and prior model m0 and compute RMS misfit Xk from model mk

(2) select λ

(3) start main GN iteration k:

(3.1) form sensitivity matrix Jk from model mk

(3.2) compute dk = Jk
TCd

-1(dk – F[mk])  – λ Cm
-1 (mk – m0)

(3.3) compute  ΓΓk
m = Jk

TCd
-1Jk

(3.4) form and factorize   Rk =[λCm
-1 + Γk

m + ∈kI];  in case of instability, add ∈k.

(3.5) update model mk+1 - mk = [Rk]
-1 dk,

(3.6) compute RMS misfit Xk+1 from model mk+1

(3.7) exit when misfit < 2

(4) end main iteration 

Fig. 3 Algorithm for Gauss–Newton (GN) inversion

(1) read initial model mk and prior model m0 and compute RMS misfit Xk from model mk

(2) select λ

(3) start main GN-CG iteration k:

(3.1) compute k = d – F[mk] + Jk(mk – m0) for model and data space inversion,

or     compute dk = Jk
TCd

-1(dk – F[mk])  – λ Cm
-1 (mk – m0) for GN inversion

(3.2) start CG iteration

(3.2.1) solve Rx = b with CG method 

where R = [λCm
-1 + Jk

TCd
-1Jk], b = Jk

TCd
-1

k, and mk+1-m0  = x for model space method,

R = [λ I + Cd
-½JkCmJk

T Cd
-½], b = Cd

-½
k, and mk+1 - m0 = CmJk

T Cd
-½x

for data space method,

and R = [λCm
-1 + Jk

TCd
-1Jk + ∈kI], b = dk, and mk+1-mk = x for GN method.  

(3.2.2) stop CG when r < rtol and exit, where r = ||Rx – b||/||b|| 

and rtol is desired tolerance residual

(3.3)  end CG iteration

(3.4) compute RMS misfit Xk+1 from model mk+1

(3.5) exit when misfit < 2 

(4) end main GN-CG iteration 

Fig. 4 Algorithm for Gauss–Newton conjugate gradient (GN-CG) inversion

Surv Geophys (2012) 33:5–27 13

123



With the CG method, the inversion is divided into two main loops, the outer inversion

loop and the CG inner loop. Most computations in the outer loop are the same including the

model update for GN/OCCAM and GN-CG. The major difference in the outer loop is that

for the GN-CG method there is no construction of J or JTCd
−1J. Solving (3), (5) or (6)

inside the GN/OCCAM method with a direct method (e.g., LU-factorization or Cholesky-

decomposition) is replaced with a CG solver in the inner loop. Computational efficiency of

the CG method is then controlled by the number of CG iterations (Ncg) which can be

relatively large (Avdeev 2005; Siripunvaraporn and Egbert 2007; Siripunvaraporn and

Sarakorn 2011). A large Ncg leads to a longer runtime. A pre-conditioner can be included to

speed up the CG solver (Haber et al. 2004).

Siripunvaraporn and Egbert (2007) and Siripunvaraporn and Sarakorn (2011) use the

data space conjugate gradient method for 2-D and 3-D MT, respectively, to show that Ncg

is a function of λ. Larger λ would require smaller Ncg, while smaller λ demands larger

Ncg. In addition, they also show that to minimize Ncg, the CG solver can be terminated

earlier, for example, when the relative residual is about 10−2, instead of 10−8 or less for

more accurate solutions. The approximate solution obtained from CG can be used to update

the model. The response computed from this model usually differs from the true value by

less than 1–2%. However, if the CG solver is terminated too early (in order to have a very

small Ncg), the inversion may fail to converge (Siripunvaraporn and Egbert 2007; Siri-

punvaraporn and Sarakorn 2011)

Although CG can significantly reduce memory usage, CG could fail when used to solve

(3), (5) or (6) for small λ. This is because the orthogonality of the system matrix is broken

(Siripunvaraporn and Sarakorn 2011). This is a significant disadvantage of the CG method.

In addition, the CG method has been used to minimize the Tikhonov parametric functional

(see Zhdanov 2002; Gribenko et al. 2010).

3.4 The Nonlinear Conjugate Gradient Inversion (NLCG)

In the GN-CG section, we discussed using the CG method to minimize the quadratic form

of (3), (5) or (6). For non-quadratic cases, the non-linear conjugate gradient (NLCG)

method can be directly applied to minimize the objective functional (2). The model is

updated through

mkþ1 ¼ mk þ akuk; ð7Þ
by finding α such that W(mk + αkuk) is minimized. Because the problem is non-linear, the
line search process is introduced instead of finding the step length parameter as in the CG
approach. This line search process helps to avoid computing a large Hessian matrix. The
new conjugate gradient direction uk is updated using either the Fletcher-Reeves (Fletcher
and Reeves 1964) or the Polak-Ribiere (Polyak and Ribiere 1969) methods.

As with GN–CG, there is no need to construct any large matrices; only a product of J or
JT with any vector is required. Because of its minimal memory requirement, NLCG for MT

inversion has been gaining in popularity in the past decade as shown in many publications

(Rodi and Mackie 2001; Newman and Alumbaugh 2000; Newman and Boggs 2004;

Commer and Newman 2008; Kelbert et al. 2008; Commer and Newman 2009). Most of

these algorithms use the Polak-Ribiere formula. The NLCG algorithm with Polak-Ribiere

method is shown in Fig. 5.

As with the CG method, computational efficiency is controlled by the numbers of

NLCG iterations and line search steps. To minimize the number of forward modeling calls,
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the method of Rodi and Mackie (2001) requires only 3 calls per NLCG iteration for the 2-D

MT cases. As shown in Rodi and Mackie (2001), to converge to the desired level without a

pre-conditioner, NLCG is not as efficient as the GN method (see Fig. 1, 3, 5 and 6 of Rodi

and Mackie 2001). To improve the efficiency, a pre-conditioner can be constructed from

the approximated Hessian related to the Laplacian operator (Rodi and Mackie 2001) or

through the quasi-Newton rank two update formula (Newman and Alumbaugh 2000;

Newman and Boggs 2004). With a pre-conditioner, the number of NLCG iterations needed

to converge to the desired level is greatly reduced. However, the CPU time is comparable

to that when using the model space GN-CG method (see Fig. 1 of Rodi and Mackie 2001).

A comparison with the data space Occam’s inversion or data space GN-CG has not been

done.

3.5 The Quasi-Newton (QN) Method

Instead of applying CG as in the NLCG method, here a Newton method is directly applied

to the objective functional W. The model is then updated through

mkþ1 ¼ mk � akH
�1
k gk; ð8Þ

by finding α such thatW(mk − αk Hk
−1gk) is minimized, where Hk = ∂2W/∂m2 and gk = ∂W/

∂m determined at mk are the Hessian and the gradient, respectively.
To avoid constructing and inverting a large matrix as in the Occam’s inversion, the

quasi-Newton (QN) method approximates the inverse matrix H−1 through a recursive

update process. There are two ranks of update matrix. Rank one updates (Broyden 1967)

are simple but not robust, while rank two updates are more robust in minimizing general

nonlinear functions, and are the most widely used schemes in many practical applications.

The popular rank two updates are the Davidon-Fletcher-Powell (DFP) formula (Fletcher

and Powell 1963) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula (Shanno

1970). The main computations for each QN iteration therefore consist of just computing

the gradient g and performing the line search as in NLCG, and only a product of J or JT

with any vector is computed. The memory requirement is therefore insignificant compared

to that of the direct GN method or Occam’s inversion.

(1) read initial model mk and compute RMS misfit Xk from model mk

(2) select λ

(3) start main NLCG iteration k:

(3.1) compute rk = -∇W(mk)

(3.2) compute uk = Mk
-1 rk where Mk is a system preconditioner 

(3.3)  search for αk that minimizes W(mk + αkuk)

(3.4)  update model  mk+1 = mk + αkuk and rk+1 = -∇W(mk)

(3.5)  compute RMS misfit Xk+1 from model mk+1

(3.6)  if  ||rk+1|| is small or when misfit < 2, exit

else   βk+1 = (rk+1
T Mk+1

–1rk+1 – rk+1
TMk

-1rk)/(rk
TMk

-1rk)

(3.7)  compute uk+1 = Mk+1
-1 rk+1 +  βk+1uk

(4) end main NLCG iteration 

Fig. 5 Algorithm for non-linear
conjugate gradient (NLCG)
inversion (after Newman and
Alumbaugh 2000)
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As with NLCG, the low computational cost has motivated the use of QN. However, a

straightforward application of QN may not be successful in the case of electromagnetic

inverse problems. Some successful attempts at using the QN method for large-scale

electromagnetic problems can be found in Haber (2005) and Avdeev and Avdeeva (2009).

Because of its Hessian approximation, Haber (2005) demonstrated that a direct application

of QN method is not efficient. It converges slowly or could even fail to converge. To

improve its efficiency, some modifications are necessary such as approximating only the

Hessian related to the data misfit instead of the full Hessian (Haber 2005) or introducing an

additional regularization (Avdeev and Avdeeva 2009). Often the approximate inverse

Hessian of the QN method is used as a pre-conditioner in the CG solver in the GN method

(Haber et al. 2007) or in the non-linear conjugate gradient (NLCG) method described in the

previous section (Newman and Boggs 2004). Because of its sophistication, I do not include

the basic QN algorithm in this paper.

3.6 Comparisons of Algorithms

All algorithms have both advantages and disadvantages (Table 1). All have limitations. The

convergence rate (CPU time) and memory usage depend on the algorithms used. Parameters

used in the model covariance and roughness operator control the smoothness of the inverted

model. Different parameters should be tested before proceeding to the interpretation.

4 Other Necessary Components for 3-D MT Inversion

To start developing an inversion code, developers should pay particular attention to these

necessary components, as well as the inversion algorithms, in order to obtain a reliable and

efficient inversion.

Table 1 Comparisons of inversion algorithms

Inversion
algorithm

Advantages Disadvantages

Model space
Occam’s
inversion

Small number of iterations to converge;
Robust; λ is obtained automatically;
obtain minimum model norm

Large CPU time and memory usage; often
impractical to apply

Data space
Occam’s
inversion

Same as the model space Occam’s inversion
but faster and uses significantly less
memory; Can even be run on a PC

May require large memory for large
problems

GN method Small number of iterations to converge Same as the model space Occam’s inversion;
convergence depends on λ; must use
several values of λ

GN-CG
method

Same as GN method but small amount of
memory usage

Convergence depends on λ; Must use several
values of λ; Can fail to converge for some
λ; Can be slower than GN method

NLCG
method

Small amount of memory usage Convergence rate depends on λ, but
comparable to GN. Must run with several
values of λ; Can fail to converge for some
λ

QN method Small amount of memory usage Convergence rate is slower than others
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4.1 Magnetotelluric Forward Modeling

The 3-D MT forward modeling (FWD) routine is the most important element for efficient

3-D inversion. It is used to compute the model responses in most inversion schemes. It is

heavily called to construct the sensitivity matrix J in the OCCAM or GN methods, or to

compute its products with any vectors in the CG or QN or NLCG methods. An inaccurate

forward routine can mislead the interpretation, while an inefficient routine can lead to an

inefficient 3-D inversion. A fast and accurate routine would be an ideal for 3-D inversion

which as of now is still unreachable, particularly when the model is complicated.

3-D MT responses at the observed sites can be obtained by solving the second order

Maxwell’s equation in either the magnetic field (Mackie et al. 1994) or the electric field

(Smith 1996; Siripunvaraporn et al. 2002;) from a known electrical conductivity (σ) or
resistivity (ρ) model. Starting with an e−iωt time-dependence, the electric field E can be

solved from

r�r� E ¼ ixlrE; ð9Þ
where ω is an angular frequency and μ is the magnetic permeability. For more complicated

models, staggered grid finite difference (FD) or finite element (FE) are the most two

commonly used methods for solving (9). The advantage of FD is that it is easy to apply and

is fast. However, topography inclusion can be difficult. In contrast, FE is difficult to apply

and slow to converge but topography inclusion is more natural (Vachiratienchai et al.

2010). In addition to FD or FE, another technique is the integral equation (IE) formulation

(Weidelt 1975; Hohmann 1975; Wannamaker 1991; Zhdanov 2002, 2009).

After grid discretization, the application of either FD or FE to (9) yields a system of

equations for a given period or frequency,

Se ¼ b; ð10Þ
where e represents the unknown internal electric fields, and b is a vector containing the

terms associated with the boundary electric fields. The coefficient matrix S is large, sparse,

symmetric, and complex. The difference between FE and FD is that S for FE has about 3

times more elements than that of FD. This larger S therefore requires significantly more

computational time. Comparisons of accuracy and computational time of magnetotelluric

forward modeling can be found in Han et al. (2009).

For 3-D problems, S is relative large, and almost impossible to solve with any direct

methods (Streich 2009). It is therefore commonly solved with iterative solvers, for

example, the bi-conjugate gradient (BiCG) method (Smith 1996), the quasi minimum

residual (QMR) method (Siripunvaraporn et al. 2002), and the minimum residual method

(MRM; Mackie et al. 1994). A divergence correction (see Mackie et al. 1994; Smith 1996)

is intermittently imposed inside the iterative solver, particularly when solving for long

period responses. After obtaining the interior electric fields, the surface impedance

responses can be obtained from a linear combination of a vector a associated at a mea-

surement site and the computed electric fields using

F m½ � ¼ aTe ¼ aTS�1b: ð11Þ
Vector a is derived from the combinations of the first order Maxwell’s equations with some

approximation.
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4.2 Sensitivity Calculation

To obtain the sensitivity J = ∂F/∂m of all sites at a given period, we start with the

differentiation of (11) with respect to the model m. We obtain

J ¼ oF=om ¼ o aTe
� �

=om ¼ aTS�1HþW; ð12Þ
where Θ = ∂b/∂m − (∂S/∂m)e and Ψ = (∂aT/∂m)e.

Rodi (1976) demonstrated that there are two algorithms to compute (12) and these are

summarized in Fig. 6. The first method is a straightforward application of (12) to generate

each column of J. This requires looping over M to obtain the entire matrix J. In the outer

loop from 1 to M, we start by constructing Θ and evaluating S−1Θ. This therefore requires

solving (10) M times per period and per polarization. The result of S−1Θ is then used in the

inner loop from 1 to Ns, where Ns is the number of station, by multiplying it by aT and

adding the result to Ψ. Because this method requires calling the forward code M times, it

can be very computationally costly for 3-D case and is therefore not a popular technique in

recent 3-D codes.

Another method is to construct each row of J. This requires looping over Ns to obtain

the full matrix J. In the outer loop from 1 to Ns, we only evaluate (aTS−1)T which therefore

requires solving (10) only Ns times per period per polarization. In the inner loop from 1 to

M, (aTS−1)T is multiplied by ΘT and the result is added to ΨT. The second method is

equivalent to the reciprocity property of the electromagnetic fields (see Rodi 1976; Mackie

and Madden 1993; Siripunvaraporn and Egbert 2000). The reciprocity theorem helps to

significantly decrease the computational time of the program.

To speed up the inversion, many developers use approximate sensitivities by using the

electric fields from the previous iteration (Han et al. 2008) or from the half-space model

(Farquharson and Oldenburg 1996). Sasaki (2001) calculated the sensitivity at every other

iteration to update the model. Siripunvaraporn et al. (2005a) used a higher tolerance level

to terminate solving (10) to obtain the incomplete or approximate sensitivities. All of these

techniques can significantly reduce computational time but one must be cautious. If the

approximate sensitivity differs greatly from the actual sensitivity, it could result in failure

of the inversion code to reach the target misfit.

for i = 1 to M
solve  Sx = 
for j = 1, Ns

J(j,i) = a
T
x + ΨΨ

end
end 

a) a direct method to compute the sensitivity matrix J.

for j = 1 to
solve  Sx = a 
for i = 1 to M

J(j,i) = 
T
x + Ψ

end
end

b) reciprocity technique to compute the sensitivity matrix J.

Ns

Fig. 6 Two algorithms used to
form the sensitivity matrix J. a a
direct method. b reciprocity
technique
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4.3 Multiplication of Vectors by J or JT

CG, QN or NLCG do not require explicitly forming J, but only a product of it with any

vector. By not explicitly forming J, memory usage is significantly reduced. To compute the

product of J with a given vector p, (12) becomes

Jp ¼ aTS�1HpþWp: ð13Þ

The process to obtain (13) is similar to the first method of Rodi (1976) except there is no

looping overM (Fig. 6a). Θp is computed first followed by S−1p. The result is then used in
the loop over Ns by multiplying it with aT and the result is added to Ψp.

To compute the product of JT with a given vector q, Eq. (12) becomes

JTq ¼ HT ST
� ��1

aqþWTq: ð14Þ

The process to obtain (14) is the same as the second method in Rodi (1976) except there

is no looping over Ns (Fig. 6b). aq is computed first. Because S = ST, we can then proceed

to evaluate S−1aq. Looping over M, S−1aq is multiplied by ΘT before the result is added to

ΨTq.
Both processes show that computing the product of J or JT requires solving (10) only

once per period and per polarization. This is the main reason why inversion algorithms

relying on the product of J with a vector are gaining in popularity. However, this must be

done with care. Through detailed investigation, Siripunvaraporn and Sarakorn (2011) have

shown that one forward modeling call to construct one row of J uses less CPU time than a

call to compute Jp or JTq. Although they solve the same system of equations (10), the

right-hand sides are different. Forming one row of J has a as its right hand side, while

computing Jp and JTq have Θp and aq, as their right-hand sides, respectively. All vectors

(a, Θp and aq) are sparse, but Θp and aq involve more non-zero terms than a. Conse-
quently, solving (10) with Θp and aq as the right-hand sides will require a larger number of

QMR iterations than with just a as the right-hand side. Thus, one forward call to compute

Jp or JTq requires more CPU time than just one call to construct one row of J. Comparing

the efficiency of the inversion algorithms by counting the number of forward modeling

calls can be misleading (e.g., Siripunvaraporn and Egbert 2007).

4.4 Model Covariance

The model covariance Cm is a matrix that describes the expected magnitude of the

resistivity variations relative to the prior model m0. It can also be used as a smoothness

operator. Because Cm itself is a full M 9 M matrix, it is very computationally expensive to

explicitly form and store the whole matrix. Siripunvaraporn and Egbert (2000) and Siri-

punvaraporn et al. (2005a) compute its product with each column of JT or CmJ
T by solving

a series of 1-D diffusion equations. The smoothness is controlled by the diffusion

parameter γ. A large γ produces smoother structures, while a small γ yields localized

structures. In addition, γ can be defined differently in each direction. For example, it can

be defined as a function of depth which is in agreement with the loss of resolution of MT

data at greater depth (Siripunvaraporn and Egbert 2000). Kelbert et al. (2008) also use the

same concept of Cm but defined the smoothness differently to be consistent with their

global EM induction problem.
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In the model space calculation, (3) and (6) require Cm
−1, not Cm. The direct benefit of

havingCm in the data space is its ability to directly include the prior information such as faults

or oceans. These features can be easily incorporated by setting different parameters across

these features (Siripunvaraporn and Egbert 2000). FindingCm
−1 is not practical due to the size

and singularness of the matrix. Many therefore use roughness, the inverse of the smoothness,

to define the model norm (Constable et al. 1987; deGroot-Hedlin and Constable 1990). The

roughness is usually sparse and easy to apply. It can be defined in many different ways.

However, many define it as the finite difference approximation to the Laplacian (∇2) operator

(e.g., Constable et al. 1987; Rodi and Mackie 2001; Newman and Alumbaugh 2000).

4.5 Parallel Implementation for PC Clusters

To speed up the inversion, many developers implement their codes on a parallel system

which can be run directly through the software provided by the parallel system manu-

facturer or manually. One of the most popular parallel machines is the PC cluster which is

easy to build and operate, and is also cheaper than a massive parallel machine. Imple-

mentation of the inversion code for the PC cluster is straightforward. Solving (10) for each

frequency is independent of the results from other frequencies. Therefore, the calculation

for each frequency (to solve for its response or its sensitivity or the product of sensitivity

with any vectors) can be computed separately on different nodes. This parallelizing over

frequencies is done via MPI (Message Passing Interface) libraries. This type of parallel-

ization is used in many algorithms (e.g., Siripunvaraporn et al. 2004; Han et al. 2008; Lin

et al. 2009; Siripunvaraporn and Egbert 2009; Siripunvaraporn and Sarakorn 2011). For

multi-core desktops, OpenMP is another choice for parallelizing the 3-D inversion codes

(Virginie and Wanamaker 2010).

In the OCCAM/GN algorithms, all nodes must send their sensitivity calculation to the

master node to compute the cross-product matrix in (3), (5) or (6). This step can be performed

efficiently using a cyclic data distribution and was demonstrated in Siripunvaraporn and

Egbert (2009). To solve (3), (5) or (6), one can solve the system of equation on just one node,

usually the master node, by using a direct method (Siripunvaraporn et al. 2004). Another

option is to distribute the system to many nodes and use an iterative solver which is easy to

implement on a parallel system (Siripunvaraporn and Egbert 2009).

5 Dos and Don’ts When Performing 3-D Inversion

As seen in previous sections, inversion is just a mathematical tool to convert the observed or

collected data to a more meaningful model structure. Because of the non-uniqueness of the

inversion, the same data set with the same error bars can generate different models that fit the

data at the same level. Here is a list of “dos” and “don’ts” to help prevent simple mistakes

which could lead to major misinterpretations when using any 3-D inversion schemes.

● Do check your observed data and try to remove biased or bad data. Often, inversion of a

large number of frequencies is almost impossible. A subset of the data is therefore used

in the inversion. Select the frequencies that have less biased or bad data. Bad data can

be excluded from a frequency band by allowing very large error bars. Bad data and very

small error bars can affect the convergence of the inversion which can produce a large

misfit and can generate artifacts within the inverted models. Bad data should be

removed before any inversions are carried out.
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● Do look at the actual data misfit between the observed data and the calculated data after

the inversion. Relying on a statistical RMS value can be misleading.

● Do test the accuracy of your grid discretization. Grid discretization can generate errors

in the responses. The user should know the level of the error arising from his/her grid

discretization first. The error level must be used to account for the fitting to the data by

either increasing the size of the error bars or setting a higher desired misfit. To find the

error level, a simple strategy is to test the grid discretization with a half-space model

but with different resistivities covering all resistivities expected in the area. In addition,

the test should be conducted at all frequencies. This strategy is good for testing the

vertical grid discretization which is very important. In half-space cases, the apparent

resistivities should equal the true resistivity, and phases should be 45°. If the error is

high, repeat the process. After obtaining a good vertical grid discretization, a simple

way to test the horizontal discretization is to add some conductors or resistors at the

depth of interest in the models. An additional mesh is generated by doubling the

number of grid points in the horizontal direction. Both meshes on the same model are

tested with the forward modeling routine at various frequencies. If both grids produce a

large discrepancy, use a finer grid (assuming that a finer mesh is better) and repeat the

horizontal grid discretization process again until the discrepancy is acceptable.

● Boundary conditions used inside the forward modeling routines are usually derived

from simple 1-D or 2-D cases. It is necessary to construct the initial models that have

the boundaries far away from all of the sites so that the boundaries will not affect the

area of interest.

● Do check the units of the observed data and the time-dependence. Data processing and

inversion program can use different units and time-dependence. The difference in units

comes from using different definitions. The MT transfer function measures E over B
and has a unit of mV/km/nT, while the impedance is defined as E over H, and has units

of ohms. Notice that 1Ω = 796 mV/km/nT. The time-dependence is either e−iωt or e+iωt.

If the data processing and the inversion use different time-dependences, then to make it

consistent, replace the impedance responses by their complex conjugates.

● Do know capability of your inversion program and how the inversion works and do

know your hardware. Some code has memory limitations. The user needs to determine

how large the data set and model discretization can be before inverting the data.

● Do not proceed to the interpretation right away after just one inversion. Do run with

different parameters, different initial models with different grid discretizations, and, if

possible, with different algorithms. This is necessary because of the non-uniqueness of

the inversion. Features which appear on all runs are likely to be required by the data.

● Do feasibility studies with the inversion codes both before and after obtaining the

inverted model to test for artifacts or suspicious features generated from the inversion.

This process could be conducted by building a synthetic model from the main features

obtained from the inversion. The calculated response of the synthetic model is then

used for the inversion. Comparison of the inverted models from the synthetic model

and the real data can be used to distinguish the main features from any artifacts.

6 Outstanding Problems and the Future of 3-D Inversion

3-D MT inversion has made significant progress over the past decade. The biggest problem

is the speed of the inversion which is the result of the slow convergence of the forward
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modeling routines. The forward modeling code is at the heart of all inversion schemes. In

order for 3-D inversion to progress significantly, substantial improvements in the speed and

accuracy of the 3-D forward modeling code are needed. This problem is not easy, but can

be overcome in many different ways.

Future technology will significantly increase the speed of computers. One approach

would be to hang on to the current forward modeling routines and wait for improvements

in computers. Another is to adapt the current routines to fit with the new technologies.

Currently, a PC Cluster is cheap and easy to build and is as efficient as a massively parallel

system. Many adapt the forward routines to run each frequency on a different processor via

MPI or OpenMP as described earlier. However, this technique does not speed up the

forward routine, it just distributes the workload. Using graphics processing units (GPU)

could be a new trend for future research to significantly increase the speed of MT forward

modeling through technology (Schultz et al. 2010).

There are so many different ways to speed up the forward modeling routines without

using new technology. Preconditioners for iterative solvers could be another topic for

future research. Most of the preconditioners in forward routines are still based on the

incomplete factorization of the diagonal blocks of the coefficient matrix S (Siripunva-

raporn et al. 2002; Smith 1996; Mackie et al. 1994). In addition, a divergence correction

which significantly helps speed up the code (Smith 1996) could retard the code as well if

improperly applied. A better preconditioner and a more efficient divergence correction

process could help greatly speed up the forward routine. In addition, transforming a large

system into smaller system such as in the domain decomposition technique (Rung-Arun-

wan and Siripunvaraporn 2010) can further decrease the CPU time and significantly lower

the memory requirement. In addition, a direct solver instead of the iterative solvers can be

used to solve (10).

In addition to speeding up the forward routine, there are also several ways to improve

the efficiency of the inversion. This can be divided into improving or combining the

existing algorithms as reviewed above or inventing a new scheme. Improvements in the

existing algorithms could include a new preconditioner for the CG/NLCG algorithms and a

reduction in the number of equations in the OCCAM/GN methods. A hybrid of different

schemes would be achieved by combining the advantages of each method and discarding

the disadvantages (Siripunvaraporn and Sarakorn 2011; Egbert 2010). Approximate sen-

sitivities are another issue but should be treated with caution. There are currently many

new variants of the mathematical algorithms. These new algorithms should be tested with

MT problems, but significant improvements may not occur unless the other parts men-

tioned earlier are efficient. In addition, new algorithms for large scale electromagnetic

problems are currently being developed, particularly the marine controlled-source elec-

tromagnetic surveys (e.g., Abubakar et al. 2009; Li et al. 2009).

Another major problem for MT inversion is to efficiently incorporate topography/

bathmetry into the inversion. Currently, using finite elements (FE) is the most efficient

method to incorporate the topography/bathmetry. However, the FE technique leads to a

much larger system of equations than with FD. Consequently, the computational time

needed for the FE method at each frequency is still a lot more than for FD. This would lead

to a very inefficient inversion. Using FD to model the topography/bathmetry is not efficient

because the grid must be finely discretized in order to account for the geometry of the

topography/bathmetry sufficiently well to obtain an accurate response. This would again

lead to a larger system of equations and require much more CPU time to obtain the same

accuracy as with FE. An efficient hybrid FE–FD method has been successfully used to

incorporate the topography for 2-D direct current (DC) resistivity codes (Vachiratienchai
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et al. 2010). It has been shown to be as accurate as the FE method but requires less CPU

time than the FD method for the same grid discretization size. The hybrid technique could

again be applied to MT problems.

7 Final remarks

Inversion is just a mathematical tool to convert observed data to a resistivity model. In a

field survey, it can be used as a quick and easy way to look at the anomalies which could

then be used as the basis for adding more sites. However, in a laboratory, users must invert

the data with different parameters with a lot of feasibility studies to distinguish the artifacts

generated by the inversion from the “true” structure recovered from the inversion. To

significantly improve the 3-D MT inversion, I confirm the conclusion in Avdeev (2005)

which recommends that developers make their codes available for others to test and use.

However, the users should also obey the copyright law and should not treat other people’s

code as their own. Doing so discourages the developers which consequently would slow

the progress of 3-D inversion. The future is bright for 3-D inversion.
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