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Abstract During the last decade, tremendous advances have been observed in the broad

field of numerical modelling for geo-electromagnetic applications. This trend received

support due to increasing industrial needs, mainly caused by hydrocarbon and ore explo-

ration industry. On the other hand, the increasing reliability and accuracy of data acqui-

sition techniques further spurs this development. In this review, we will focus on advances

and challenges in numerical modelling in geo-electromagnetics. We review recent

developments in the discrete solution of the 3-D induction problem in the time and fre-

quency domains. Particularly, advantages and disadvantages of the common numerical

techniques for solving partial differential equations such as the Finite Difference and Finite

Element methods will be considered.

Keywords Numerical modelling � Finite differences � Finite elements �
Frequency-domain methods � Time-domain methods

1 Introduction

The achievements of three-dimensional modelling and inversion have recently been

reviewed in a comprehensive paper by Avdeev (2005). In this review paper, we par-

ticularly consider the numerical solution of the three-dimensional geo-electromagnetic

induction problem in the time- and frequency-domain. The most promising methods

disposable for the discretization of Maxwell’s equations in space and time will be

discussed. Deliberately, this review shall be restricted to the Finite Difference (FD) and

Finite Element (FE) spatial discretization methods, knowingly ignoring the vast field of

Integral Equation methods, thin-sheet solutions, etc. Also, 3-D inversion strategies will

only be considered as algorithms where forward modelling routines account for most of
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the total computing time. Hence, it shall be emphasized that recent developments in 3-D

modelling techniques will have a tremendous impact on the development of inversion

strategies. This paper is organized as follows: First, a brief introduction of the theory of

the continuous physical problem of geo-electromagnetic induction will be given. Second,

discretization methods in space and time will be discussed. The numerical methods

available for the solution of the large equation systems arising from the spatial

discretization of the partial differential equations will be presented in section 3.

Most challenging problems of code efficiency and speed will be addressed in the last

section.

2 Discretization in Space and Time

The behaviour of electromagnetic fields in the time domain can be described by an initial

boundary value problem for Maxwell’s equations in quasi-static approximation

r � h� re ¼ je; ð1aÞ

otbþr � e ¼ 0 ð1bÞ

r � b ¼ 0; ð1cÞ

r �d ¼ q; ð1dÞ

where we denote by e (r, t) the electric field, h (r, t) the magnetic field, b (r, t) = l h (r,

t) the magnetic flux density, d(r, t) is the electric displacement, l(r) is the magnetic

permeability, q(r) a volume charge density, and je(r, t) external source current density,

respectively. The spatial variable r is restricted to a computational domain X � R
3

bounded by an artificial boundary C, along which appropriate boundary conditions on the

tangential components of the fields are imposed, whereas t 2 R . The forcing results from a

known stationary transmitter source with a driving current which is shut off at time t = 0,

and hence of the form

jeðr; tÞ ¼ qðrÞHð�tÞ ð2Þ

with the vector field q denoting the spatial current pattern and H being the Heaviside

step function. The Earth’s electrical conductivity is denoted by the parameter r(r).

After eliminating b from (1a–1d) we obtain the second order partial differential

equation

r�ðl�1r�eÞ þ otre ¼ �otj
e in X ð3aÞ

for the electric field, which—for the sake of brevity—we complete with the perfect con-

ductor boundary condition

n� e ¼ 0 on C; ð3bÞ

at the outer walls of the model with n introduced as the outer normal vector on C.

Obviously, there are cases which require more general expressions for the electric fields at

the outer boundaries, which would then take the general form n 9 e = n 9 e0 on C
(Fig. 1).
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Switching to the frequency domain, we introduce the Fourier transform pair

eðtÞ ¼ 1

2p

Z1

�1

EðxÞeixtdx; ð4aÞ

EðxÞ ¼
Z1

�1

eðtÞe�ixtdt; ð4bÞ

with x denoting angular frequency. The representation (4a) can be interpreted as a syn-

thesis of the electric field e(t) from weighted time-harmonic electric partial waves E(x),

whereas (4b) determines the frequency content of the time-dependent electric field e. We

thus obtain the Fourier transformed version

r�ðl�1r�EÞ þ ixrE ¼ q in X; ð5aÞ

n� E ¼ 0 on C; ð5bÞ

of (3a) and (3b). Note that a simple boundary condition like (5b) may introduce errors in

the numerical solution which may severely deviate from an asymptotic behaviour at the

boundaries as it is required e.g. in the case of magnetotellurics (MT). In the MT case, the

boundary values for the electric fields can be those arising from electromagnetic induction

in a layered Earth. This approach is sufficiently accurate when the outer boundaries are

several skin depths away from lateral inhomogeneities of electrical conductivity.

In the following, the recent developments of numerical techniques for the spatial and

time discretization of either the first-order system (1a–1d), or the second-order partial

differential equations (3a, 3b) or (5a, 5b) will be reviewed.

2.1 Spatial Discretization

2.1.1 Finite Difference Methods

Due to their comparably low implementational effort, FD techniques have been extensively

used in solving three-dimensional time-domain, frequency-domain, and DC resistivity

modelling problems. Wang and Hohmann (1993) have presented a 3-D FD algorithm based

on a discretization of the first-order system of Maxwell’s equations on a staggered grid,

which has been introduced by Yee (1966). Staggered grids have since then been favored by

many authors (e.g. Druskin and Knizhnerman 1988; Commer and Newman 2004; Mulder

et al. 2008) for simulating the time evolution of diffusive EM fields. In the frequency

Fig. 1 Schematic representation of the continuous electric field a short time after the shut-off of a driving
electric current in the transmitter loop. The voltage induced in the receiver coil is proportional to the time
rate of change of the magnetic induction
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domain, the FD and related Finite Volume (FV) discretization techniques have been

employed for the simulation of MT (see, e.g., Jones and Pascoe 1971; Smith and Booker

1991; Mackie et al. 1993), CSEM (see, e.g., Haber et al. 2000; Haber and Ascher 2001;

Weiss and Constable 2006; Newman and Alumbaugh 1995), and DC resistivity (Dey and

Morrison, 1979; Spitzer 1995) methods.

The application of FD methods to calculate the response of anisotropic structures have

been reported by Weidelt (1999); Weiss and Newman (2002, 2003). Davydycheva et al.

(2003) have introduced a material averaging scheme (Moskow et al. 1999), that does not

only require the grid spacing to be small, but also minimizes the error at the receiver

locations and improves the approximation of the boundary conditions at infinity by

incorporating a spectrally optimal grid refinement strategy.

Haber and Heldmann (2007) developed an OcTree discretization of Maxwell’s equa-

tions in the quasi-static regime, and a multigrid solver. The benefit of such strategies is

twofold: First, an adaptive local grid refinement can be achieved; second, a generation of

nested grid hierarchies can be utilized for multigrid methods.

For the construction of a FD discretization, consider a tensor-product Cartesian grid

with nodes at positions (xk, yl, zm) with k ¼ 0; . . .;Nx , l ¼ 0; . . .;Ny , m ¼ 0; . . .;Nz . There

are Nx 9 Ny 9 Nz cells with these nodes as vertices (Fig. 2). Within a Yee cell, the electric

field components are assumed to be edge-averaged, whereas the face-averaged magnetic

field components are obtained by taking the curl of the electric field on elementary loops

(Figs. 3 and 4).

Discretization of (5a, 5b) yields a system of linear equations

Kþ ixMð Þu ¼ f ð6Þ

where K and M represent the discrete forms of the curl-curl operator r 9 r 9 (�) and the

conductivity term arising from r E in (5a, 5b), respectively. The right-hand side f arises from

the source current density q and/or enforced boundary conditions (5b). The solution vector u
finally contains the unknowns, in our case the components of the electric field distributed over

the edges of all staggered grid Yee cells. Note that the stiffness matrix K is real and sparse,

whereas the mass matrix ixM is purely imaginary and diagonal. Figure 5 display the matrix K
arising from discretizing (5a, 5b) on a tensor-product FD grid with perfectly conducting walls.

2.1.2 Finite Element Methods

The use of FE techniques in geo-electromagnetics dates back at least to Coggon (1971),

who derived solutions to 2-D DC resistivity problems using linear triangular elements.

Earth

Air

Fig. 2 A 3-D tensor-product
grid with an irregular node
spacing. The material properties
are assumed to have constant
values within each cell. To obtain
a sufficiently accurate numerical
solution, the grid spacing has to
be very dense near a source,
which in our case is located at the
center of the cube
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Since then, a number of authors have successfully used the FE method for electromagnetic

modelling (Reddy et al. 1977; Pridmore et al. 1981; Livelybrooks 1993; Zunoubi et al.

1999; Zyserman and Santos 2000; Badea et al. 2001; Pain et al. 2002; Ruecker et al.

2006). One of the difficulties in the numerical modelling of electromagnetic field problems

using FE is a possible jump of normal components across discontinuities of material

properties.

Standard Lagrange elements, sometimes called nodal elements, which force all field

components to be continuous across element boundaries, cannot reproduce the physical

phenomenon of field discontinuities. We use the term Lagrange element for an approxi-

mation that is determined by values of the function being approximated at a finite number

of points, in contrast to Hermite elements, which also depend on the interpolated function’s

derivatives.

This difficulty was resolved by the curl-conforming elements of Nédélec (Nédélec 1980,

1986), which are referred to as edge elements in the engineering literature since the lowest

order elements of this family carry their degrees of freedom (dofs) at element edges. The

FE subspaces of the Nédélec family perfectly capture the discontinuities of the electric and

magnetic fields along material discontinuities.

The first to apply the edge elements to geoelectric problems were probably Jin et al.

(1999), who developed a frequency-domain and time-domain FE solution using a Spectral

Lanczos Decomposition Method (SLDM) for a small bandwidth of frequencies and very
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Fig. 3 Yee cell forming
elementary loops, where electric
and magnetic field components
are assumed to be edge-averaged
and face-averaged, respectively
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Fig. 4 The components of the
electric field associated with one
row of the discrete curl-curl
operator
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short times, respectively. Mitsuhata and Uchida (2004) have presented a FE approximation

for computing MT responses for 3-D conductivity structures using a Helmholtz decom-

position of the magnetic field into electric vector and magnetic scalar potentials with an

appropriate gauge condition. Nam et al. (2007) have applied an edge FE method on

hexahedral elements to calculate MT responses to 3-D topography (Fig. 6).

Using triangular or tetrahedral elements to mesh a computational domain allows for

greater flexibility in the parametrization of conductivity structures avoiding staircasing at

curved boundaries, such as arise with a terrain or sea-floor topography.

Fig. 5 Sparsity pattern of K arising from a FD grid consisting of Nx = Ny = 54 and Nz = 28 cells. The total
number of unknowns excluding the outer domain boundaries is 239004, i.e. roughly 3� NxNyNz. Only
2980800 (roughly 0.005%) of the 239004 9 239004 matrix elements are in fact non-zero (nz)

Fig. 6 3-D topographic model of a trapezoidal hill (Nam et al. 2007). Figure courtesy of Wiley-Blackwell
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Key and Weiss (2006), Franke et al. (2007) have demonstrated the ability of adaptive

Lagrange finite elements to approximate the MT response of complex geological 2-D

structures. The implementation of adaptive mesh refinement strategies can yet further add

to the flexibility of FE methods, since it allows for dramatic savings in the total number of

degrees of freedom hence improving computational efficiency (Fig. 7).

Kong et al. (2008) have developed a 2.5-D FE method for marine controlled-source

electromagnetic applications in stratified anisotropic media. They have adopted a scat-

tered-field approach and, in doing so, were able to reduce the size of the computational

domain and the total number of unknowns to be solved.

For the simulation of the magnetic field arising from induction in a spherical hetero-

geneous earth excited by ionospheric and magnetospheric current systems with complex

spatiotemporal characteristics, such as magnetic storms, the method of spectral-finite

elements provides a powerful tool. For this approach, two different types of parameter-

izations have been used simultaneously: A spherical harmonic parametrization of field

variables, and the parametrization of the radial dependence of field quantities by piecewise

linear functions (finite elements), hence the name spectral-finite elements (Martinec et al.

2003; Velimsky and Martinec 2005).

The issue of open, absorbing, or non-reflecting boundary conditions that have to be

implemented on a truncating boundary, is one of the most intensively researched topics in

the area of the numerical wave propagation. The most popular techniques include varia-

tions of Bérenger’s Perfectly Matched Layers (PML) technique (Bérenger 1994), the

Dirichlet-to-Neumann (DtN) method (Givoli 1992, 1999), and the method of Infinite

Elements (Demkowicz and Pal 1998). Contrary to the idea of the PML, which modify

Maxwell’s equations within the boundary layers, the Infinite Elements discretizations work

with the original equations and implement a decay function to approximate infinity for a

bounded problem that extends to infinity.

For the construction of a 3-D vector FE approximation, we first express the boundary

value problem (5) in variational or weak form (Monk 2003). The weak form requires the

equality of both sides of (5a) in the inner product sense only. The L2(X) inner product of

two complex-valued vector fields u and v is defined as

Fig. 7 Effect of an adaptive mesh refinement for the central part of a complex seafloor model. Shown is an
error which is descriptive for the mesh quality (Key and Weiss 2006). Figure courtesy of Society of
Exploration Geophysicists
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ðu; vÞ ¼
Z

X

u � �vdV ð7Þ

with �v denoting the complex conjugate of v. Taking the inner product of (5a) with a

sufficiently smooth vector field u —called the test function—and integrating over X, we

obtain after an integration by parts

Z

X

ðl�1r�EÞ � ðr��uÞ þ ixrE � �u
� �

dV

�
Z

C

ðn� �uÞ � ðl�1r�EÞ dA

¼
Z

X

q � �u dV :

ð8Þ

On C, the perfect conductor boundary condition (5b) gives no information about

(l-1r 9 E), so we eliminate this integral by choosing u such that n� u ¼ 0 on C. This

is the standard way of enforcing the essential boundary condition (5b) in a variational

setting.

Introducing the solution space E :¼ v 2 Hðcurl; XÞ : n� v ¼ 0 on Cf g in terms of the

Sobolev space H(curl; X) = { v [ L2(X)3: r 9 v [ L2(X)3 }, the weak form of the

boundary value problem finally reads:

Find E 2 E such that

Z

X

ðl�1r�EÞ � r��vþ ixrE � �v
� �

dV

¼
Z

X

q � �v dV

ð9Þ

for all v 2 E . Due to the homogeneous boundary condition (5b) the test functions can be

chosen from the same space E (Fig. 8).

To construct a FE solution of the boundary value problem (5a, 5b) the domain X is

partitioned into Ne simple geometrical subdomains, e.g. triangles for two-dimensional or

tetrahedra (cf. Fig. 8) for three-dimensional problems, such that

X ¼
[Ne

e¼1

Xe: ð10Þ

The infinite-dimensional function space E introduced above is approximated by a finite

N-dimensional function space Eh � E of elementwise polynomial basis functions satisfying

the homogeneous boundary condition (5b). The approximate electric field Eh & E is

defined as the solution of the discrete variational problem obtained by replacing E by Eh in

(9) [cf. Monk (2003)].

To obtain the matrix form of (9), we express Eh as a linear combination of basis

functions fuig
N
i¼1 of Eh , i.e.
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EðrÞ ¼
XN

i¼1

EiuiðrÞ: ð11Þ

Testing against all functions in Eh is equivalent to testing against all basis functions

uj; j ¼ 1; . . .;N: Taking the j-th basis function as the test function and inserting (11) into

(9) yields the jth row of a linear system of equations

Kþ ixMð Þu ¼ f ð12Þ

for the unknown coefficients Ei = [u]i, i ¼ 1; . . .;N , where

½K�j;i ¼
Z

X

ðl�1r�uiÞ � r� �ujdV ; ð13Þ

½M�j;i ¼
Z

X

rui � �ujdV ; ð14Þ

½f�j ¼
Z

X

q � �ujdV: ð15Þ

The matrices K and M, known as stiffness and mass matrices, respectively, are large and

sparse and, since l and r are real-valued quantities, consist of real entries. Figure 9

illustrates the sparseness properties of a stiffness matrix arising from a 3-D FE dis-

cretization scheme. Compared to a FD discretization, the relative increase of the number

of non-zero elements in the stiffness matrix for the FE case arises from the fact, that

each degree of freedom is spatially linked to more neighbors than in the FD case (Monk

1993).

For a given source vector f arising from the right-hand side of (5a), the solution vector

u 2 C
N yields the approximation Eh of the electric field E we wish to determine. The

(a) (b)

Fig. 8 Position of degrees of freedom (dofs) for lowest order linear (a) and quadratic (b) Nédélec elements.
Note that in the linear case, the degrees of freedom are located at the edges of the tetrahedron, whereas in the
quadratic case, there are two dofs associated with each edge, and two dofs associated with each face of the
tetrahedron. Hence, the total number of dofs per tetrahedron is 6 in the linear case, and 20 in the quadratic
case
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elements of the solution vector u, the degrees of freedom (dofs), are associated with the

edges of the tetrahedra (cf. Fig. 8).

We note that the formulation presented here ensures the continuity of tangential

electric field components along a common edge of adjacent tetrahedra by construction.

Electric field components normal to common edges do not belong to the considered finite

element function space, hence have to be projected onto that space, and therefore exhibit

projection errors until the size of the finite elements becomes sufficiently small. There

are powerful methods available which can be successfully used to reduce the errors

generally once a finite element solution has been obtained. As the process of error

reduction depends on previous results, it is called adaptive. Adaptive methods have been

introduced in the late 1970s by Babuska and Rheinboldt (1978). Various procedures exist

for the refinement of a finite element solutions. These fall into two categories: firstly, the

h-refinement, in which the same class of elements continue to be used but are changed in

Fig. 9 Sparsity pattern of a typical stiffness matrix arising from a 3-D FE discretization using tetrahedral
elements. A four-layer model including Air halfspace is considered. The underlying FE mesh consists of
roughly 12300 tetrahedral elements, which for second-order edge elements corresponds to 75780 FE degrees
of freedom. Only 3198116 (roughly 0.05%) of the 75780 9 75780 matrix elements are non-zero (nz)

Fig. 10 On a logarithmically scaled time axis, the number of time steps required to run through a given
time interval grows with later time stages
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size, in some location made larger and in others smaller, to provide maximum economy

in reaching the desired solution. Secondly, the p-refinement strategy continues to use the

same element size and simply increases the order of polynomial used in their definition

(Zienkiewicz et al. 2005).

2.2 Time Integration Techniques

Departing from (3a, 3b) and assuming a source current shut-off at time t = 0, the time

evolution of the electric field at times t [ 0 may be written as

ote ¼ �r�1r� l�1r�e
� �

ð16aÞ

eðr; t0Þ ¼ e0ðrÞ; t0 [ 0: ð16bÞ

The field e0(r) represents the electric field known at a time t0 after current shut-off.

We seek the electric field e(r, t) due to induction caused by a shut-down of an magnetic

field associated e.g. with a DC driven transmitter loop layed out at the Earth’s surface.

There are several well suited techniques for integrating Maxwell’s equations (1a–1d) or

a diffusion equation (16a, 16b) in the time domain. The most prominent methods are

– Explicit DuFort-Frankel time-stepping schemes,

– Implicit schemes,

– Matrix exponentials and Lanczos reduction,

– Fourier transform based methods.

In the following, I will present the most important features of these approaches.

2.2.1 Explicit Schemes

The most basic explicit method for integrating ordinary or partial differential equations

with initial values is the Euler method. The time derivative in (16a, 16b) is replaced by its

first oder approximation

ote �
eðnþ1Þ � eðnÞ

tðnþ1Þ � tðnÞ

yielding

eðnþ1Þ ¼ eðnÞ � r�1r� l�1r�eðnÞ
� �

Dt;

where Dt is the time step t(n?1) - t(n). It is well known that the Euler method is stable only

if the time step Dt is sufficiently small (Fig. 10). If D denotes the grid spacing, then for a

homogeneous full space, the condition DtB lr D2 / 4 has to be satisfied.

Wang and Hohmann (1993) have overcome difficulties which might be arising in

solving the second-order equation (16a, 16b) by proposing to solve the coupled first-order

system of Maxwell’s equations

cote ¼ �reþ l�1r�b ð17aÞ

otb ¼ �r�e: ð17bÞ

Oristaglio and Hohmann (1984), Wang and Hohmann (1993), Commer and Newman

(2004) follow the method of DuFort and Frankel (1953) and introduce a non-physical
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fictitious displacement current term cqte, which has previously been neglected in the quasi-

static approximation (1a). If Dmin is the smallest grid spacing, the DuFort–Frankel stability

criterion is met if

c� 3

l
Dt

Dmin

� �2

:

The fields remain diffusive for time steps obeying

Dt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lrmint=6

p
Dmin: ð18Þ

Note that the size of the time steps can increase with time.

The relation (18) indicates that the size of the time step is proportional to the square root

of the smallest electrical conductivity rmin within the computational domain. To circum-

vent unnecessary small time steps, an integral boundary condition relating the Dirichlet

boundary condition to a Neumann boundary condition at the Earth’s surface can be

applied. Such a Dirichlet-to-Neumann (DtN) mapping restricts the size of the computa-

tional domain, or, as is the case in TEM simulations, enables the truncation of the infinite

outer domain to allow for computations in a finite domain. The DtN mapping is non-local

in space.

These non-local boundary conditions are implemented using a Fast Fourier transform

(FFT), where an infinite summation has to be approximated by a finite summation.

Since grid spacings usually grow towards the outer boundaries of the computational

domain, a FFT cannot be applied directly to the discrete field components at the Earth’s

surface. Instead, the field components given on a graded grid have to be interpolated

onto a regular, equidistant grid with an appropriate spatial sampling interval. This

procedure significantly increases the computational load required to perform a single

time step, since the numerical complexity of the required 2-D FFT operation is

Oðn2 log2 nÞ when n is the number of samples in one horizontal direction. As reported

by Commer and Newman (2004), a parallelization of the FFT does not yield the desired

savings due to the overhead resulting from passing of variables between the nodes of

the parallel architecture. However, there exists an appealing variant of the FFT on non-

equidistant grids (Potts et al. 2001), which has the potential to overcome the afore-

mentioned limitations while not exceeding the numerical complexity of a FFT. The

actual suitability of such non-equidistant FFT algorithms has yet to be proved for 3-D

TEM simulations.

2.2.2 Implicit Schemes

Haber et al. (2007) have solved the TEM forward problem using a Finite Volume

method in the spatial domain and a Backward Euler implicit method in the time

domain. The backward differentiation formula (BDF) is a family of implicit methods

for the numerical integration of ordinary differential equations. They are linear multi-

step methods that, for a given function and time, approximate the derivative of that

function using information from already computed times, thereby increasing the

accuracy of the approximation. These methods are especially useful for the solution of

stiff differential equations. An equation is stiff, if certain numerical methods require a

significant reduction of the size of the time steps to obtain a sufficiently stable solution.

Using a backward Euler in time, an update of the electric and magnetic fields can be

achieved by

236 Surv Geophys (2010) 31:225–245
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r�eðnþ1Þ þ l
hðnþ1Þ � hðnÞ

Dt
¼ 0 ð19aÞ

r�hðnþ1Þ � reðnþ1Þ � e
eðnþ1Þ � eðnÞ

Dt
¼ sðnþ1Þ: ð19bÞ

The superscripts denote the discrete time level, such that tn = n Dt, and solution quantities

at n ? 1 being unknown while those at n being known. The known time-dependent source

term s(r, t) at time step n ? 1 is indicated by s(n?1). After eliminating e(n?1) from the

above equations, a formulation for the update of the magnetic field can be derived as

follows:

r�ðrþ eDt�1Þ�1r�hðnþ1Þ � rl�1ðrþ eDt�1Þ�1r �hðnþ1Þ þ lDt�1hðnþ1Þ ¼ rhsðnþ1Þ:

ð20Þ

The term rhs is a function of the source at time step n ? 1 as well as the electric and

magnetic fields at the previous time step n, hence

rhsðnþ1Þ ¼ r� ðrþ eDt�1Þ�1sðnþ1Þ � eðnÞ
� �

þ lDt�1hðnÞ: ð21Þ

When the conductivity is very small and the time step is large, the above system can be

nearly singular. An appropriate method to stabilize the system is to introduce an additional

condition on the magnetic field, namely the divergence free condition r � l h = 0.

Therefore, the term rl-1(r ? eDt-1)-1r �h(n?1) in (20) does not change the solution

while numerically stabilizing the system. After discretization in space, a linear system of

the form

AðrÞhðnþ1Þ ¼ ðCðr;DtÞ þMðl;DtÞÞhðnþ1Þ ¼ rhsðnþ1Þ ð22Þ

has to be solved for h(n?1). The matrices C and M are the discretized form of the action of

the operators in equation (20) on h(n?1). While removing the stability constraint on the time

step, implicit methods require the solution of large linear system of equations at each time

step.

A Cholesky factorization of the symmetric and positive definite matrix A(r) appears to

be attractive (Haber et al. 2006), when the time step remains the same in (20). Once such a

factorization is available, multiple sources can be handled at almost no additional cost.

Thus, the approach reported is useful even for multiple sources which is most important for

a practical inversion of TEM data (Haber et al. 2007).

2.2.3 Matrix Exponentials

A suitable discretization of (16a, 16b) yields the linear inital value problem

ote ¼ Ae; eðt0Þ ¼ e0 ð23Þ

for e(t), t [ t0. The vector e0 is the discretized electric field at time t = t0 [ 0 after current

shut-off. The matrix A is the discrete action of the curl-curl operator on the right-hand side

of (16a). It has similar properties to the stiffness matrix K in (6), such as it is large, sparse,

and symmetric or symmetrizable. Therefore, matrix-vector products with A can be carried

out inexpensively. The problem (23) can be regarded as an ordinary differential equation

with a matrix A as linear coefficient. Hence, we can explicitly give the solution of the

initial value problem as
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eðtÞ ¼ exp ðsAÞe0; s ¼ t � t0: ð24Þ

The matrix exponential is defined as

exp ðMÞ ¼
X1
j¼0

Mj

j!
: ð25Þ

Recalling that A, resulting e.g. from a FD discretization as depicted in Fig. 5, has at most

13 entries per row and a dimension n of approximately 3� Nx 9 Ny 9 Nz, a direct evaluation

of the matrix exponential seems not attractive. There is, however, an extensive theory

behind the evaluation of functions involving matrices (Moler and Van Loan 2003).

For our purposes, another definition of the matrix exponential exp(A) is more useful.

Let k1; k2; . . .; kn denote the n eigenvalues of A, then it can be shown that the matrix

exponential has a representation in the form of a polynomial pn-1 of degree n - 1, which

interpolates exp(A) at the eigenvalues of A. Then

exp ðAÞ ¼ pn�1ðAÞ ð26Þ

However, this nice feature can not be exploited since n is large, and the eigenvalues of A
are unknown. We therefore approximate e(t) by

emðtÞ ¼ pm�1ðsAÞe0 ð27Þ

where pm-1 is a polynomial of low degree m - 1 � n.

A further, equivalent formulation is motivated by the appearance of the matrix product

in the series (25). Consider the m-dimensional subspace of the n-dimensional space gen-

erated by the matrix A and the initial field e0,

KmðA; e0Þ :¼ spanfe0;Ae0; . . .;Am�1e0g: ð28Þ

The construction of a Krylov subspace basis Vm :¼ ½v1; v2; . . .; vm�> of KmðA; e0Þ can be

achieved by the Lanczos process (Paige 1980), which is based on the three-term recurrence

relation A vi = bi?1vi?1 ? aivi ? bivi-1, namely:

Let b1v1 = e0. Then for i = 1, 2, ... we have

wi :¼ Avi � bivi�1

ai :¼ ðvi;wiÞ
biþ1viþ1 :¼ wi � aivi

with (�, �) denoting the scalar product. In each step, bi is determined from the condition that

(vi, vi) = 1 for i C 1. The Krylov subspace basis Vm 2 C
n�m satisfies

AVm ¼ VmTm þ bmþ1vmþ1n
>
m : ð29Þ

When A is Hermitian, Tm = tridiag(bi, ai, bi?1) is a tridiagnoal complex symmetric m 9 m
matrix. nm denotes the m-th column of the m 9 m identity matrix.

For our purposes, the matrix A is compressed by Tm ¼ V>mAVm . The initial vector e0 is

compressed in a similar way as c ¼ V>me0 . After evaluation of the low dimensional

problem, the result is lifted up to the original space by

emðtÞ ¼ Vm exp ðsTmÞc: ð30Þ

This method is known as the Spectral Lanczos Decompostion Method (Druskin and

Knizhnerman 1988, 1989, 1994; Druskin et al. 1999). The matrix exponential has to be
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evaluated only for the small matrix Tm, as depicted in Fig. 11. For a summary of available

numerical implementations of the matrix exponential for small m, see Moler and Van Loan

(2003). Since no discretization in time is necessary, the size of the time step can be chosen

arbitrarily (Fig. 12). However, the choice of s becomes critical, when the conductivity of

the medium is small, as will be explained later.

The convergence of the Krylov approximation to exp(sA) depends on the spectral

properties of A. As a rule of thumb, m should be chosen such that

m � D�1
min

ffiffiffiffiffiffiffiffiffiffiffi
s

lrmin

r
: ð31Þ

As m gets large, as would be the case when considering a low conductivity environment,

storage of Vm may become expensive. For the comparably small sample FD matrix

depicted in Fig. 5, there would be Vm 2 R
239004�m; which, for m = 600 and double pre-

cision arithmetics, would already result in a storage requirement of approx. 1 GB RAM.

The restarted Krylov subspace algorithm proposed by Eiermann and Ernst (2006) proceeds

by repeatedly generating a basis of Krylov spaces of fixed dimension m, updating the most

recent approximation to (24), and then discarding all but the last basis vector, which is

subsequently used as the initial vector for the next Krylov space. A modification proposed

by Afanasjew et al. (2008) improved efficiency by replacing the matrix exponential with a

rational approximation.

2.2.4 Fourier Transform Based Methods

An inverse Fourier transform of numerical results obtained by a frequency-domain code

can also provide time-domain solutions. Newman et al. (1986) have presented examples

for 3-D bodies embedded in horizontally layered media. Gupta et al. (1989) have com-

puted time-domain responses by transforming frequency-domain solutions obtained by the

Compact or Hybrid Finite Element Method back into the time-domain.

For a suitable number nf of logarithmically equidistant frequencies 3-D frequency

responses have to be transformed into the time-domain. As commonly agreed, the

Fig. 11 The evaluation of the low dimensional problem involves only little numerical effort

Fig. 12 Time steps in methods of SLDM type can be chosen arbitrarily, since a discretization in time is not
required
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requirement of nf 3-D forward models is a daunting feature of this approach, unless the

performance of 3-D solution would be remarkably boosted.

Mulder et al. (2008) have studied the numerical complexity of Fourier transforming

multiple frequency-domain responses into the time-domain. With a highly convergent

multigrid solver it was possible to demonstrate that the Fourier approach asymptotically

performs better than time stepping algorithms, provided that the number of desired fre-

quency-domain solutions nf is small relative to the problem size n.

Börner et al. (2008) have proposed a variant using a model reduction technique in the

frequency domain (MRFD). The inverse of the system matrix arising from a 3-D FE

discretization of the time-harmonic Helmholtz equation has been projected onto a Krylov

subspace, whose orthonormal basis has been generated using an Arnoldi process. The

frequency-domain solutions have been obtained by solving a system of linear equations

with a substantially lower dimension m� n for a sweep of frequencies required by a Fast

Hankel Transform. The transformation into the time-domain required only negligible

numerical effort.

3 Equation Solvers

There have been published a great number of successful attempts to efficiently solve

linear equation systems of the form (12) or (22) arising from the spatial discretization

of the underlying partial differential equations using FD or FE methods. However,

particularly for 3-D problems, these systems of linear equations become very large. Until

recently, only iterative Krylov subspace methods of the conjugate gradient (CG) type

were able to solve large equation systems with reasonable numerical effort. The con-

vergence of a Krylov subspace iterative method can substantially be enhanced by

applying an appropriate preconditioner, e.g. utilizing LU or Cholesky factorizations (Saad

2003). When such preconditionig techniques are applied, additional requirements for

storing these complex-valued system matrices and factors become critical. To reduce the

storage costs, Weiss (2001) successfully implemented a matrix-free variant of a conjugate

gradient type solver. All Krylov subspace iterative solvers have in common that they do

not need explicit storage of the system matrices. In fact, only the action of the matrix on a

vector is required. The only tradeoff is the one between floating point operations for

computing the necessary matrix elements versus memory management efficiency for large

matrix arrays.

Recently, a revival of efficient direct solvers has been observed (Gould et al. 2007).

These sparse matrix solvers are essentially of the Gauss elimination type, but highly

optimized in terms of speed and memory requirements. Sparse direct methods solve sys-

tems of linear equations by factorizing the coefficient matrix, generally employing graph

models to try and minimize both the storage needed and work performed. Sparse direct

solvers have a number of common phases, which may be subdivided into

1. an ordering phase that exploits structure,

2. an analysis phase that investigates the matrix structure to determine a pivot sequence

and data structure for efficient factorization,

3. a factorization phase that uses the previously determined pivot sequence to factorize

the matrix,

4. a solve phase that performes forward elimination followed by back substitution using

the stored factors.
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The factorization is usually the most time-consuming phase, while the solve phase is

significantly faster.

Consider the solution of the sparse system Ax = b. Using an explicit LU factorization

into the product of a lower triangular matrix L and an upper triangular matrix U given by A
= LU, the solution vector x may be obtained by a forward elimination followed by an

inexpensive back substitution step given by

Ly ¼ b ð32aÞ

Ux ¼ y: ð32bÞ
An appealing feature of this approach is that multiple right-hand sides may easily be

handled by sparse direct solvers. In terms of efficiency, there is little to distinguish between

the leading competitors, e.g. PARDISO (Schenk and Gärtner 2004), and MUMPS

(Amestoy et al. 2006).

In many cases, direct methods are the method of choice because finding and computing

a good preconditioner for an iterative method can be computationally more expensive than

using a direct method.

While iterative methods seem daunting for 3-D problems, recent advances in multigrid

(MG) methods for the curl-curl operator (Reitzinger and Schoeberl 2002; Aruliah and

Ascher 2003; Hiptmair and Xu 2006; Greif and Schötzau 2007; Mulder 2008; Haber and

Heldmann 2007) may make this a viable option for large scale electromagnetic problems.

Multigrid methods solve partial differential equations on a hierarchy of nested spatial

discretizations. MG methods are among the fastest solution techniques known today

(Hackbusch 1985). Common feature of MG methods is that a hierarchy of grids is con-

sidered. The important steps of MG are Smoothing, Restriction, and Prolongation.

Consider a linear system given on a fine grid. Usually, a few iterations of a Gauss–

Seidel relaxation method effectively damp out high-frequency residual error components.

The residual error associated with this approximate smooth solution will be downsampled

(restricted) onto the next coarser grid. Since low-frequency error components on the fine

grid correspond to high-frequency errors on the coarse grid, a structure similar to the

original problem defined on the finer grid, but with essentially lower dimension, can be

established on the coarse grid. This cycle (the V-cycle) will be repeated until the coarsest

grid is reached. On the latter, the resulting small linear equation system can finally be

solved using a direct solver. The obtained residual error has to be prolonged back to the

finer grids. Eventually, with the approximation of the residual error on the finest grid the

solution can be corrected.

Despite their promising optimality, MG methods are not common in the geophysical

literature. A possible reason for this observation may be the fact that the MG methods are

rather young, and their numerical implementation is not trivial. Coarse grids, prolongation

and restriction operators have to be adjusted thoroughly with respect to the nature of the

discretized region and the discretized differential equation.

4 Outlook

As has been stated by Avdeev (2005), the ultimate goal of 3-D modellers is the design of a

highly accurate approximation to Maxwell’s equations without adding more and more grid

nodes within a computational domain under consideration. However, even for moderately

dense grids, a typical 3-D modelling requires huge memory and remarkable computational
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capacities. There are three possible ways to increase the performance of a given software

code:

1. Increase the computing performance by use of faster processors.

2. Use better and optimized algorithms.

3. Use resources of many computing systems at a time.

Most modern CPUs already offer multi-core architecture, however, using today’s

conventional technology, the gain in performance is physically limited.

Over the last decade we have witnessed a dramatic boost in the performance and

efficiency of numerical algorithms which evolved from huge efforts made in the theory of

numerical mathematics.

With the availability of inexpensive desktop computers, software tools for the imple-

mentation of parallelized codes have been on the rise. The setup of ad-hoc clusters on the

basis of conventional network connections requires only little technical and administrative

effort. Software tools for the development of parallel codes are freely available. The

Message Passing Interface (MPI) has become the de facto standard for communication

among processes that model a parallel program running on a distributed memory system as

well as on computing clusters (Snir et al. 1995). There are many points of departure for

parallelization strategies:

– Solve Maxwell’s equations for several frequencies and/or several transmitter positions

independently in parallel.

– Decompose the computational domain into subdomains, solve small scale subproblems

in parallel, and pass variables between nodes using message passing routines.

– Make use of parallel linear system solvers such as MUMPS and PARDISO.

Doubtlessly, there is much to be expected in the field of numerical methods in geo-

electromagnetics, particularly when considering the recent boost in hardware speed and

performance. Across the board, 3-D inversion codes are valuable interpretation tools.

However, the numerical engine driving those inversion algorithms is mostly dominated

by the forward operator. To efficiently solve a large number of linear equation systems

arising from the problem discretization as well as for the sensitivity calculation, excellent

libraries for the direct solution of linear systems using a matrix factorization are avail-

able. Some of these libraries are already prepared for parallel applications. Moreover, for

a flexible discretization of geometries such as bathymetry or topography, the finite

element method together with adaptive mesh refinement strategies will probably gain

wide influence.

It is beyond question that the near future requires a change of paradigms in the

development of numerical applications for the solution of geo-electromagnetic problems.

Particularly, huge effort in the parallelization of existing codes will be expended, which is

not only a challenging approach but also an ambitious task to meet both scientific and

industrial requirements.
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