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Abstract. The whole subject of three-dimensional (3-D) electromagnetic (EM) modelling and
inversion has experienced a tremendous progress in the last decade. Accordingly there is an
increased need for reviewing the recent, and not so recent, achievements in the field. In the first

part of this review paper I consider the finite-difference, finite-element and integral equation
approaches that are presently applied for the rigorous numerical solution of fully 3-D EM
forward problems. I mention the merits and drawbacks of these approaches, and focus on the

most essential aspects of numerical implementations, such as preconditioning and solving the
resulting systems of linear equations. I refer to some of the most advanced, state-of-the-art,
solvers that are today available for such important geophysical applications as induction

logging, airborne and controlled-source EM, magnetotellurics, and global induction studies.
Then, in the second part of the paper, I review some of the methods that are commonly used to
solve 3-D EM inverse problems and analyse current implementations of the methods avail-
able. In particular, I also address the important aspects of nonlinear Newton-type optimisa-

tion techniques and computation of gradients and sensitivities associated with these problems.

Keywords: three-dimensional modelling and inversion, electromagnetic fields, optimisation

Abbreviations: EM: electromagnetic; 3-D: three-dimensional; FD: finite-difference;
FE: finite-element; IE: integral equation; NLCG: nonlinear conjugate gradients; QN:
Quasi–Newton

1. Introduction

Over the last decade, the EM induction community had three large
international meetings entirely devoted to the theory and practice of
three-dimensional (3-D) electromagnetic (EM) modelling and inversion
(see Oristaglio and Spies, 1999; Zhdanov and Wannamaker, 2002; Macnae
and Liu, 2003). In addition, two special issues of Inverse Problems dedicated
to the same subject have been recently published (Lesselier and Habashy,
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2000; Lesselier and Chew, 2004). As a result, a multitude of various kinds of
numerical solutions have been revealed to the community. An advanced
reader may find it interesting to browse through the above references on his
own. Here, for completeness, I must mention that several comprehensive
books, for example the work of Zhdanov (2002), have also been published on
the same subject.

In this paper, I will review the finite-difference (FD), finite-element (FE)
and integral equation (IE) numerical solutions for fully 3-D geoelectromag-
netic modelling and inverse problems. I will leave aside the variety of so-called
approximate solutions, that impose additional constrains on the conductivity
models and/or EM field behaviour, such as – thin sheet solutions (Vasseur
and Weidelt, 1977; Dawson and Weaver, 1979; McKirdy et al., 1985; Singer
and Fainberg, 1985; among others), artificial neural network solutions
(Spichak and Popova, 2000; among others) and those that are based on every
kind of approximation of the Born–Rytov type requiring a low-contrast
assumption (Habashy et al., 1993; Torres-Verdin and Habashy, 1994, 2002;
Zhdanov and Fang, 1996; Chew, 1999; Tseng et al., 2003; Song and Liu,
2004). I will also ignore solutions that are applicable only to direct current
problems (Tamarchenko et al., 1999; Li and Oldenburg, 2000; Li and Spitzer,
2002, among many others). Nevertheless, the subject still remains so vast that
it is impossible to review all material. So, in what follows I will further confine
myself to only some numerical aspects of recent developments in fully 3D EM
forward and inverse solutions, which I believe to be important.

2. Three-Dimensional Modelling

Three-dimensional (3-D) electromagnetic (EM) numerical modelling is used
today, (1) sometimes, as an engine for 3-D EM inversion; (2) commonly, for
verification of hypothetical 3-D conductivity models constructed using var-
ious approaches; and (3) as an adequate tool for various feasibility studies.

The whole field of 3-D EM modelling is now developing so fast that most
of the published results on the performances, computational loads and
accuracies of existing numerical solutions are out-of-date (sometimes even
before they are published). This is why in this review of current modeling
solutions I avoid addressing these topics, as these kinds of comparisons may
be misleading. However, the COMMEMI project of Zhdanov et al. (1997) is
entirely devoted to the comparisons of different solutions (primarily 2-D but
some 3-D solutions were included).

2.1 How We Do It

During 3-D modelling we solve numerically Maxwell’s equations (here
presented in the frequency-domain)
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r�H ¼ ~r � Eþ jext; (1a)

r� E ¼ ixl �H; (1b)

where l and e are, respectively, the permeability and permittivity of the
medium, ~r ¼ r� ixe where r is the electrical conductivity and x is the
angular frequency of the field with assumed time-dependence exp()ixt), and
where j

ext is the impressed current source. This allows us to calculate the
electric E and magneticH fields within a volume of interest, whatever it might
be. There are three commonly used approaches to obtain the numerical
solution.

2.1.1 Finite-Difference Approach
The first, probably the most commonly employed, is the finite-difference
approach (Yee 1966; Jones and Pascoe, 1972; Dey and Morrison, 1979;
Judin, 1980; Spichak, 1983; Madden and Mackie, 1989; Smith and Booker,
1991; Mackie et al., 1993, 1994; Wang and Hohmann, 1993; Weaver, 1994;
Newman and Alumbaugh, 1995; Alumbaugh et al., 1996; Smith, 1996a, b;
Varentsov, 1999; Weaver et al., 1999; Champagne et al., 1999; Xiong et al.,
2000; Fomenko and Mogi, 2002; Newman and Alumbaugh, 2002; among
others). In this approach, the conductivity (~r), the EM fields and Maxwell’s
differential equations are approximated by their finite-difference counterparts
within a rectangular 3-D grid of M=Nx � Ny � Nz size. This leads to the
resulting system of linear equations, AFDÆ x=b, where the 3M-vector x is the
vector consisting of the grid nodal values of the EM field, the 3M-vector b
represents the sources and boundary conditions. The resulting 3M � 3M
matrix AFD is complex, large, sparse and symmetric. Weidelt (1999) and
Weiss and Newman (2002, 2003) have extended this approach to fully
anisotropic media. In the time-domain, the FD schemes have been developed
by Wang and Hohmann (1993), Wang and Tripp (1996), Haber et al. (2002),
Commer and Newman (2004), among others. The main attraction of the FD
approach for EM software developers is an apparent simplicity of its
numerical implementation, especially when compared to other approaches.

2.1.2 Finite-Element Approach
In the finite-element approach, which is still not widely used, the EM field (or
its potentials) are decomposed to some basic (usually, edge and nodal) func-
tions. The coefficients of the decomposition, a vector x, are sought using the
Galerkin method. This produces a nonsymmetric sparse complex system of
linear equations, AFEÆ x=b. The main attraction of the FE approach for
geophysicists is that it is commonly believed to be better able than other
approaches to accurately account for geometry (shapes of ore-bodies,
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topography, cylindrical wells, etc.). This apparent attraction is counterbal-
anced by a nontrivial and usually time-consuming construction of the finite
elements themselves. The FE approach has been implemented by many
developers (Reddy et al., 1977; Pridmore et al., 1981; Paulsen et al., 1988;
Boyce et al., 1992; Livelybrooks, 1993; Lager and Mur, 1998; Sugeng et al.,
1999; Zunoubi et al., 1999; Ratz, 1999; Ellis, 1999; Haber, 1999; Zyserman and
Santos, 2000; Badea et al., 2001; Mitsuhata and Uchida, 2004, among others).

2.1.3 Integral Equation Approach
Finally, with the integral equation approach Maxwell’s differential equations
(1) are first reduced to a second-kind Fredholm’s integral equation (Dmitriev,
1969; Raiche, 1974; Hohmann, 1975; Weidelt, 1975, Tabarovsky, 1975)

EðrÞ ¼ EoðrÞ þ
Z

Vs

G
¼o
ðr; r0Þð~r� ~roÞEðr0Þdr0 ð2Þ

with respect to the electric field. This is known as the scattering equation
(SE). To derive SE the Green’s function technique is usually applied. In
Equation (2), the free term Eo is known,G¼o

is the 3 � 3 dyadic for the Green’s
function of the 1-D reference medium, and Vs is the volume where ð~r� ~roÞ
differs from zero. A discretization of the SE yields the linear system AIEÆ
x=b, provided that both conductivity ~r and the unknown electric field E are
assumed to be constant within each cell. The system matrix AIE is complex
and dense, with all entries filled, but more compact than the AFD, or AFE

matrices. The main merit of the IE approach is that only the scattering
volume Vs is subject to discretization. This reduces the size of system matrix
AIE dramatically. All other approaches require a larger volume to be dis-
cretized. However, most EM software developers refrain from implementa-
tion of the IE approach, since accurate computation of the matrix AIE is
indeed an extremely tedious and nontrivial problem itself. Yet this approach
has been implemented in several studies (Ting and Hohmann, 1981; Wan-
namaker et al., 1984; Newman and Hohmann, 1988; Hohmann, 1988; Cerv,
1990; Wannamaker, 1991; Dmitriev and Nesmeyanova, 1992; Xiong, 1992;
Xiong and Tripp, 1995; Kaufman and Eaton, 2001, among others).

2.1.4 Techniques to Improve Solutions Using the Physics of the EM Problem
The important point, regardless of what approach is employed, is that the
initial EM forward problem is always reduced to the solution of a system of
linear equations

A � x ¼ b: ð3Þ

Nowadays, the system is commonly solved iteratively by a preconditioned
Krylov method (see Appendices A and B). The properties of the matrix A
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are determined by which method (FD, FE or IE) is applied to solve the
forward problem. In this respect, only two aspects are important, (1) how
accurate the system A Æ x=b represents Maxwell’s equations, and (2) how
well-preconditioned the system matrix A is (see Appendix B). This is because
condition numbers j(A) of the unpreconditioned system matrices A may
easily be as large as 109–1012 (cf. Tamarchenko et al., 1999), and such
poorly preconditioned systems slowly converge, if indeed they are conver-
gent at all.

To address the first issue staggered-grids (see Figure 1) are commonly used
since they produce coercive approximation – conservation laws (� � (�
f)=0 and � Æ (� � f)=0) are satisfied. This approximation follows naturally
from the interaction between Ampere’s and Faraday’s laws given in Equa-
tions (1a) and (1b), respectively.

In order to address the second issue, a variety of the preconditioners have
been designed and applied. For instance, with the IE approach, to get a well-
preconditioned matrix system AIE, the modified iterative-dissipative method
(MIDM) has been successfully developed (Singer, 1995; Pankratov et al.,
1995, 1997; Singer and Fainberg, 1995, 1997) and implemented (Avdeev
et al., 1997, 1998, 2000, 2002a, 2002b; Zhdanov and Fang, 1997; Hursan and
Zhdanov, 2002; Singer et al., 2003). It is remarkable that the MIDM-pre-
conditioned system matrix AIE has such a small condition number,
jðAIEÞ �

ffiffiffiffiffi
Cl

p
, where Cl is the lateral contrast of conductivity. Comparisons

with the finite-difference solution of Newman and Alumbaugh (2002) show
similar performances for both solutions (see Table I).

Within the methodology of FD and FE approaches, the most favourable
preconditioners are, Jacobi, SSOR and incomplete LU decomposition (typ-
ical example, M =25 � 22 � 21=11550, Nbicgstab=396; tcpu =18 min on a
1-GHz Pentium 3 PC; Mitsuhata and Uchida, 2004). From moderate to high
frequencies these preconditioners work reasonably well, providing conver-
gence of Krylov iterations. However, at low frequencies, or more exactly, at
low induction numbers

k ¼ ffiffiffiffiffiffiffiffiffi
xlr
p

D� 1; ð4Þ

the convergence meets a certain difficulty, since Maxwell’s equations (1)
degenerate. In Equation (4) D stands for the characteristic grid size and other
parameters are defined elsewhere in the text. To get around this inherent
difficulty Smith (1996b) proposed a ‘‘divergence correction’’ that dramati-
cally improves convergence. His ideas have been subsequently refined in
(Everett and Schultz, 1996; LaBracque, 1999; Druskin et al., 1999). Presently,
the low induction number (LIN; Newman and Alumbaugh, 2002; Weiss and
Newman, 2003) and multigrid (Aruliah and Ascher, 2003; Haber, 2005,
M=653=274625; tcpu=2.5 min per the source position) preconditioners
demonstrate their superiority over more traditional ones. Figure 2 and
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Table II give such an example. Figure 3 demonstrates the grid-independency
of the multigrid preconditioner, when k £ 1.

Usage of the EM potentials, as in the case of Helmholtz’s potentials with a
Coulomb gauge, instead of the EM fields also helps to greatly improve and
accelerate solution convergence (Haber et al., 2000a; Mitsuhata and Ushida,
2004, among others).

The techniques presented in this section are more fundamental than mere
mathematical tricks for accelerating the solution convergence. They are
deeply rooted in the physics of the EM induction problem and so they allow
us to more precisely describe it.

2.1.5 Spectral Lancsoz Decomposition Method
Another very efficient FD approach is the spectral Lancsoz decomposition
method (SLDM) (Druskin and Knizhnerman, 1994; Druskin et al., 1999).

Figure 1. A fragment of a straggered grid of Yee (1966). The electric field is sampled at the
centers of the prism edges, and the magnetic field is sampled at the centers of the prism faces.

772 DMITRY B. AVDEEV



Figure 2. The convergence rate of FD solution for the Jacobi and LIN preconditioning (after
Newman and Alumbaugh, 2002).

TABLE I

Computational statistics for a 3-D induction logging model (after Avdeev et al. (2002a))

Method Grid

Nx�Ny�Nz = M

Frequency

(kHz)

Preconditioner Iterates-m Run timea(s)

IE 31� 31� 32= 30 752 10, 1600,

5000

MIDM 7 2950

563 328 10 LIN 17 2121

FD 435 334 160 Jacobi 6000 5686

435 334 5000 Jacobi 1200 1101

a Times are presented for Pentium/350 MHz PC (IE code) and for IBM RS-6000 590 work-
station (FD code).
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It is commonly considered as a method of choice when multi-frequency
modelling of the EM field is required. The reason is that the SLDM is able to
solve Maxwell’s equations at many frequencies for a cost that is only slightly
greater than that paid for a single frequency. But, such numerical effective-
ness of the SLDM slightly sacrifices its universality. Indeed, the SLDM

TABLE II

Number of iterations to convergence (within a tolerance of 10)7) as a function of frequencies

Number of cells x (Hz)

101 102 103 104 105 106

MM 303 3 3 3 6 12 98

403 3 3 3 6 13 116

503 3 3 3 6 12 128

MI 303 30 27 31 55 166 642

403 40 40 42 76 210 1180

503 46 48 51 97 273 1551

The results are presented for the multigrid (MM) and incomplete Cholesky decomposition
(MI) preconditioners (after Aruliah and Ascher, 2003).

Figure 3. The condition number as a function of the induction number (after Aruliah and

Ascher, 2003).
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assumes that conductivity ~r and impressed current jext of Equation (1) are
frequency-independent. However, this then means for example that the IP
effects cannot be taken so easily on board. Wang and Fang (2001) extended
the SLDM to anisotropic media. Recently, Davydycheva et al. (2003) pro-
posed a special conductivity averaging and spectral optimal grid refinement
procedure that reduces grid size and accelerates computation by the SLDM
method. These authors claim that their new scheme outperforms other
known FD schemes by an order of magnitude.

The basics of the SLDM method can be also found in Golub and Van
Loan (1996).

2.1.6 Spherical Earth Models
Numerical implementations mentioned above use Cartesian geometry, and
extensively cover such important geophysical applications, such as induc-
tion logging, airborne EM, magnetotellurics and controlled-source EM. At
the same time, a number of implementations are also available to simulate
the EM fields excited in 3-D spherical earth models, including those based
on the spectral decomposition (Tarits, 1994; Grammatica and Tarits, 2002),
finite-element (Everett and Schultz, 1996; Weiss and Everett, 1998; Yo-
shimura and Oshiman, 2002), spectral finite-element (Martinec, 1999),
finite-difference (Uyeshima and Schultz, 2000) and integral equation
(Koyama et al., 2002; Kuvshinov et al., 2002, 2005) approaches. Also, in
order to deal with the complicated spatial and temporal variability of the
satellite induction data, several time-domain techniques for computing 3-D
EM fields of a transient external source have recently been developed
(Hamano, 2002; Velimsky et al., 2003; Kuvshinov and Olsen, 2004).

2.2 Conclusion

Competition between various modelling approaches (FD, FE and IE) is today
focused entirely on the two issues mentioned above. The ultimate goal of 3-D
modellers is, first, to design a more accurate approximation to Maxwell’s
equations within a coarser grid discretization. The second important challenge
is to find a faster preconditioned linear solver. Fortunately, as a result of this
competition between methods, we now have several very effective codes for
numerical modelling of 3-D EM fields at our disposal today.

3. Three-Dimensional Inversion

3.1 Why Is It Important?

Recent huge improvements in both instrumentation and data acquisition
techniques have made electromagnetic surveys (magnetotelluric, controlled-
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source EM, crosshole EM tomography, etc.) a more common procedure.
Accordingly there is an increased need for reliable methods of interpretation
of particularly three-dimensional (3-D) datasets.

3.2 Why Is It Numerically Tough?

Even with the relatively high level of modern computing possibilities, the
proper numerical solution of the 3-D inverse problem still remains a very
difficult and computationally intense task for the following reasons. (1) It
requires a fast, accurate and reliable forward 3-D problem solution.
Approximate forward solutions (Zhdanov et al., 2000; Torres-Verdin and
Habashy, 2002; Tseng et al., 2003; Zhang, 2003; among others) may deliver a
rapid solution of the inverse problem (especially, for models with low con-
ductivity contrasts), but the general reliability and accuracy of this solution
are still open to question. (2) The inverse problem is large-scale; usually with
thousands of data points (N) to be inverted in the tens of thousands of model
parameters (M). In this case, the sensitivities are too numerous to be directly
computed and stored in memory. (3) The problem is ill-posed in nature with
nonlinear and extremely sensitive solutions. This means that due to the fact
that data are limited and contaminated by noise there are many models that
can equally fit the data within a given tolerance threshold. (4) To make the
solution unique and depend stably on the data it is necessary to include a
stabilizing functional (Tikhonov and Arsenin, 1977). This functional is a part
of the penalty functional that trades off between the data misfit and a priori
information given in the model or/and data. It may reflect any information
on the model smoothness, sharp boundaries, a static shift in the data etc. (cf.
Portniaguine and Zhdanov, 1999; Sasaki, 2004; Haber, 2005). Choice of such
a stabilizator is of extreme importance since it heavily impacts on the solution
obtained (cf. Farquharson and Oldenburg, 1998).

It is important to stress that the first encouraging examples of fully 3-D
inversion solutions have appeared only within the last 3–5 years and the
problem, in general, is currently an area of very intensive research. A typical
example of computational loads inherent in, say, the 3-DMT inverse problem
is as follows (Farquharson et al., 2002; inexact preconditioned Gauss–New-
ton method, N = 1296, M = 37 � 41 � 24 = 36408, NGN = 12;
tcpu = 24 h on three 1GHz processors.) The above example indicates why
such kind of work requires very intensive numerical calculations and, hence,
why it is preferable to solve it within a multi-processor framework.

3.3 How Is It Commonly Solved?

The first pioneering solution of the fully 3-D EM inverse problem was pre-
sented by Eaton (1989) more than 15 years ago. Yet in spite of this, until
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recently, the trial-and-error forward modelling was almost the only available
tool to interpret the fully 3-D EM dataset. Today the situation has slightly
improved, and the methods of unconstrained nonlinear optimisation
(Nocedal and Wright, 1999) are gaining popularity to address the problem.
Thus fortunately, the nonlinear optimisation methods have undergone
tremendous progress, especially in their mathematical aspects.

In standard nomenclature a solution is sought as a stationary point of a
penalty functional (Tikhonov and Arsenin, 1977).

uðm; kÞ ¼ udðmÞ þ k � RðmÞ �!
m;k

min; ð5Þ

where udðmÞ ¼ 1
2 dobs � FðmÞ
�� ��2 is the data misfit, R(m) is the stabilizing

functional, F(m) is the forward problem mapping, m=log (r) is the log con-
ductivity, and k > 0 is a regularization (Lagrange) multiplier. Traditionally,
to find a solution to this optimisation problem geophysicists apply nonlinear
Newton-type iterations (such as the classical full Newton, Gauss–Newton,
quasi–Newton iterations, or some modification thereof) in the model param-
eter space (see Appendix C). This in turn entails, at each step of a Newton-type
iteration, the computation of the sensitivity N � M matrix (J ¼ @F

@m)
and Hessian M � M matrix (H ¼ @2u

m2 ), or its approximation (such as H �
JT J). It also involves solving a large and dense system of linear equations

H � dm ¼ �g ð6Þ

in order to find a model update dm, where g ¼ @u
@m is the gradient vector.

Once dm is found, the new model is given by m(i+1)=m(i)+bÆdm,
where b (0 < b < 1) is determined by a line search.

One important feature of inverse problems, is that within the straight-
forward Newton-type methods the sensitivity N � M matrix (J ¼ @F

@m) must
be computed and stored in memory. However, even with the use of the most
efficient reciprocity techniques (McGillivray and Oldenburg, 1990; among
others), the straightforward evaluation of the sensitivity matrix J still requires
the solution of K forward (and adjoint) problems, where K=min {N,M} (see
Appendix D for details). Such a numerical procedure, while tractable for 1-D
and 2-D inverse problems, may become computationally prohibitive for
larger and more complicated 3-D inverse problems. It is, then, not surprising
that much effort has been directed towards economizing, or even bypassing,
the evaluation of the sensitivity matrix (Smith and Booker, 1991; Torres-
Verdin and Habashy, 1994; Farquharson and Oldenburg, 1996; Yamane
et al., 2000, among others).

In order to solve a Newton system, given in Equation (6), more effectively
the preconditioned conjugate gradient (CG) iterative method is commonly
applied (cf.Newman andAlumbaugh, 1997;Haber et al., 2000a) since it allows
solving the system without calculating J explicitly. At each step, the CG
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method requires calculating only matrix-vector products Jv and JTw and it is
equivalent to the solution of two forward problems (see Appendix D). Thus,
the total number of forward solutions involved in whole inversion process is
proportional to NGN� (2� NCG), where NGN is the number of nonlinear
Gauss–Newton iterations, andNCG is the number of linear CG iterations. The
methodmay require extra forward problem solutions if a line search is invoked.

Mackie and Madden (1993) applied this approach to coarsely parame-
terised models (so that M remains relatively small) to invert 3-D MT data.
Newman and Alumbaugh (1997) also used it to invert crosswell EM data,
and Ellis (2002) used this approach to invert a fixed wing airborne TEM
synthetic dataset. Ellis’s solution is interesting since its engine – a forward
problem solution – uses the integral equation approach. Nevertheless, the
results demonstrated, in particular, that such a relatively straightforward
approach is nearly useless for the numerical solution of practical 3-D EM
inversion problems on a regular PC. More details on this approach can be
found in (Newman and Hoversten, 2000). Significantly in this respect NGN is
usually small, however very occasionally NCG may be relatively large. The
slower convergence of the CG iterations is reflected in a large value of NCG.
To diminish further the number of CG iterations the inexact Gauss–Newton
method (IGN; Kelly, 1999) can be applied. Haber et al. (2002) presented a
3-D frequency-domain controlled-source (CS) EM inversion based on the
IGN method with the smoothness regularization.

Alternatively, Newman and Alumbaugh (2000), Rodi and Mackie (2001)
and Mackie et al. (2001) proposed to solve the 3-D inverse problem using the
nonlinear conjugate gradient method (NLCG) by Fletcher and Reeves (1964)
and Polak and Ribiere (1969) that requires for computation only the gradient
vectors g ¼ @u

@m, rather than sensitivities J (see Appendix C for details). The
idea of applying gradient vectors to solve nonlinear geophysical inverse
problems was first suggested by Tarantola (1987) and is also related to the
EM migration technique of Zhdanov (2002; and the references therein). The
motivation for using the NLCG method is that evaluating the gradients
involves single solution of one forward and one adjoint problem at each
NLCG iteration (see Appendix D and references therein). This is almost K/2
times faster than evaluating the full Jacobian matrix J required by Newton-
type methods. Such great acceleration is slightly counterbalanced by the fact
that the NLCG approach requires the solution of the 1-D minimization
problem (so-called line search) at each iteration. Rodi and Mackie (2001)
proposed an algorithm for the line search, equivalent in computational time
to only three solutions of the forward problem. In spite of such a dramatic
increase in speed, the NLCG approach still has to be implemented either
within a massively parallel computing architecture (Newman and Alumb-
augh, 2000; Newman et al., 2002; Newman and Boggs, 2004) or with the help
of message passing interface (MPI) running on PC-clusters (Mackie et al.,
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2001). Newman et al. (2003) described an excellent application of this
approach to the synthetic and experimental 3-D radio MT dataset
(N = 25600, M = 132553; NNLCG = 68; tcpu = 120 h using 252 processors
on the Sandia Nat. Lab. Ascii Red computer; for a fixed regularization
parameter k). Recently, Newman and Commer (2005) applied the NLCG
approach to invert a transient EM dataset (N = 99 � 90 � 2 = 17820;
NNLCG = 87; tcpu = 18 days using 336 processors on the Red computer).
They advanced the original technique first introduced by Wang et al. (1994)
for casual and diffusive EM fields and subsequently implemented by Zhda-
nov and Portniaguine (1997) in the framework of iterative migration. For
synthetic examples considered in the paper of Newman and Commer (2005)
they found that the migration of the initial data error into the model as
presented by Zhdanov and Portniaguine (1997), without iteration or pre-
conditioning, is not an effective imaging strategy.

Mackie et al. (2001) also implemented theNLCGapproach to solve the 3-D
MT inverse problem (typical example,N = 2000,M=39� 44� 19 = 32604;
NNLCG = 20; tcpu = 10–12 h on a 400 MHz desktop computer). These
authors are able to invert wideband (1000–0.001 Hz) MT datasets with up to
600 MT sites and with model grids up to 70 � 70 � 40. They have inverted
probably 100 commercial datasets to date (Mackie, 2004, Private communi-
cation).

Dorn et al. (1999) have used a similar adjoint method to invert cross-well
EM data.

Zhdanov and Golubev (2003) applied the NLCG method combined with
an approximate forward modelling solution to invert the synthetic and
experimental MT datasets (typical example, N = 3120,
M=15 � 13 � 8=1560; a model with the conductivity contrast of 10). In
both synthetic examples presented in their paper, the true conductivity model
is reconstructed qualitatively. Other computational loads are not referred to.
They also applied such an approach to experimental MT data (N=25 600,
M=56 � 50 � 12 = 33 600; NNLCG=30; tcpu=14 min). To increase the
accuracy of inversion, Zhdanov and Tolstaya (2004) applied rigorous for-
ward modelling based on the IE approach at the final stage of the inversion.
Again, they considered a couple of low-contrasting models (typical example,
N=3600, M=16 � 25 � 8=3200; NNLCG=82, tcpu=200 s; a model with
the conductivity contrast of 33). For the last few inversion iterations a rig-
orous (rather than approximate) IE forward modeling code was used. This
time, the type of computer used for the calculations is not referred to.

Using the Gauss–Newton iterative approach with smoothness regulari-
zation, Siripunvaraporn et al. (2004b), however, managed to reformulate the
inverse problem for the data space so as to solve the N � N normal system of
linear equations instead of the traditional M � M normal system. In many
cases, when N<<M, it may reduce the computational loads significantly.
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They successfully inverted a synthetic 3-D MT dataset (N=1440,
M=28 � 28 � 21 = 16464; NGN=5; tcpu=84 h on a Dec 666 MHz com-
puter with 1 Gbyte of RAM). Also they applied the data space approach for
inverting anexperimental 3-Dnetwork-MTdataset (Siripunvaraporn et al., 2004a).

Sasaki (2001) applied the Gauss–Newton iteration with smoothness reg-
ularization in the model space to invert synthetic controlled-source 3-D EM
datasets. Typical computational loads in this study are, N=210, M=7 � 5 �
5=175; NGN=3; tcpu=25 h on a Pentium II PC. As I mentioned above, with
M=175 the problem is severely under parameterised, and this computational
approach may hardly satisfy the practical needs for inverting the huge
datasets of regular airborne EM surveys. Sasaki (2004) also developed a
solution of the 3-D MT inverse problem again based on the Gauss–Newton
iteration with smoothness regularization in model space solving simulta-
neously for both conductivities and static shift parameters. The diagonal
entries of the impedance are not included into inversion. Also to save com-
putational time the sensitivity matrices are computed at only a limited
number of iterations (practically only at two iterations). He tested the solu-
tion on a synthetic dataset and a real dataset for a geothermal exploration.
Respective computational loads in this study are, N=3600, M=10 � 10 �
11=1100; NGN=7; tcpu=7 h and N=3300, M=26 � 8 � 13=2704;
NGN=7; tcpu=24 h on a 2.53-GHz Pentium 4 PC. Another example of the
application Sasaki’s solution to geothermal 3-D MT exploration is given in
Uchida and Sasaki (2003); (N = 6900, M=18 � 15 � 14=3780; NGN=8).

Varentsov (2002) applied the Gauss–Newton iteration with various reg-
ularizations in the model space to invert a synthetic 3-D MT dataset
(N = 1176, M = 14 with one finite function describing a 3-D anomaly;
NGN = 15; tcpu=30 min on a 450-MHz Pentium II PC).

3.4 Constrained Optimisation

Constrained optimisation methods for the solution of 3-D EM inverse
problem are now underway. With these methods the forward problem and
the inverse problem are solved simultaneously in one iterative process (Haber
et al., 2000b). These authors mention that the forward problem does not
have to be solved exactly until the very end of the optimisation process. In
other words, at the first steps of the iterative inversion procedure, it is suf-
ficient to solve the forward problem approximately. The first promising
results based on such a method (so-called all-at-once approach) were dem-
onstrated by Haber et al. (2004). They successfully inverted a synthetic
CSAMT dataset (N = 3080, M = 64 � 50 � 30 = 96000), as well as a
synthetic time-domain dataset (N = 4320, M = 40 � 40 � 32 = 51200)
where receivers are put in boreholes and a transmitting square loop is put on
the surface. The computational loads enabled are not referred to.
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The simple idea that lies behind the all-at-once approach is that it is not
necessary to solve the forward problem accurately while the misfit ud of
Equation (5) is still relatively large. Obviously, this consideration does not
depend on the method selected for solution of the forward problem. The
method may be equally either FD, FE or IE approach. For instance, with an
IE approach, to get the accuracy of the forward problem solution that is
required at the initial steps of inversion, one can terminate the solution
iteration after the few first iterations. However, it is important not to be
overoptimistic with this approach and to understand that at the late stage of
inversion the proper inversion algorithm still must include a rigorous forward
problem solution. As previously mentioned, Zhdanov and Golubev (2003)
and Zhdanov and Tolstaya (2004) assert that they successfully applied such
an approach for inversion of magnetotelluric data.

3.5 Global Induction Studies

3-D EM inversion for spherical earth models is still a subject for future
investigations. At present, only one publication exists on the topic (Schultz
and Pritchard, 1999).

3.6 Static Limit

Several promising works on the numerical solution of the fully 3-D EM
problem in the static limit (so-called dc regime) have been recently published.
Haber (2005) presented a comparison between various Gauss–Newton
modifications and quasi–Newton (QN) solution for large-scale dc resistivity
surveys (synthetic dataset, N=65536, M=653=274625). The QN inversion
in total required only 92 solutions of the forward problem with tcpu=1 h for
each. The reason for such speed is that in his study the matrix J is approx-
imated by a low rank matrix. Abubakar et al. (2001) presented the results
based on the contrast source inversion (CSI) method for electrode logging in
a deviated well with invasion (typical example, N=210, M=1470;
Ncsi=1024; tcpu=4 h on a 200-MHz Pentium PC). Abubakar and van der
Berg (2000) inverted the cross-well electrical logging synthetic dataset (loads
typically are, N=448, M=28 � 28 � 28=21952; Ncsi=254; tcpu=30 h on a
400-MHz Pentium PC.)

3.7 Conclusion

As correctly stated by Newman et al. (2003), even with the recent advance-
ments in 3D EM inversion, nonuniqueness and solution uncertainty issues
remain a formidable problem.

I would like to conclude this review with the following general remark.
The most important challenge that faces the EM community today is to
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convince software developers to put their 3-D EM forward and inverse
solutions into the public domain, at least after some time. This would have a
strong impact on the whole subject and the developers would benefit from
feedback regarding the real needs of the end-users.

Time constraints have not allowed me to mention all important work on
3-D EM modelling and inversion, conducted by my colleagues. I apologize
for this and hope that you all understand.
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Appendix A. Krylov Subspace Methods

Let me first recall a couple of important notions from the theory of linear
operators (Greenbaum, 1997). In general, a linear operator/matrix A: H fi
H is called Hermitian if the equality

ðu;AvÞ ¼ ðAu; vÞ ðA:1Þ

holds for any u,v 2H, where H is the Hilbert linear space with an inner
product (Æ, Æ). There are many ways to define this inner product. In particular,
for complex-valued vectors u,v it can be defined as

ðu; vÞ ¼ uTv ¼
X
l

ulvl; ðA:2Þ

where superscript T means transpose, and u means complex conjugate of u.
Note that whether the matrix A is Hermitian, or not, depends entirely on the
definition of the inner product. FromEquations (A.1) and (A.2) it follows that

AT ¼ A; ðA:3Þ

for any Hermitian matrix A. If AT=A then the matrix A is called symmetric.
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Since the work of Hestenes and Stiefel (1952) and Lanczos (1952) for
solving linear systems AÆx=b, as given in Equation (3), the Krylov subspace
methods such as those of Lanczos, Arnoldi, conjugate gradients, GMRES,
CGS, QMR, and an alphabet soup of them are commonly applied (O’Leary,
1996). Krylov subspace methods generate successive approximations x(1),
x(2),..., so that

xðmÞ 2 xð0Þ þ span rð0Þ;A � rð0Þ; . . . ;Aðm�1Þ � rð0Þ
n o

; ðA:4Þ

where x(0) is an initial guess, and r(0)=b ) AÆx(0) is the initial residual. The linear
space span {r(0),AÆr(0) ,..., A(m)1)Ær(0) } is usually referred to as a Krylov subspace
of size m, generated by A and r(0). As a matter of fact, the Krylov subspace
methods use several, say k, previous approximations x(m)1) ,x(m)2),...,x(m)k) to
generate themth approximation x(m) (so-called k-terms recurrence). While the
methods of choice and convergence analysis for Hermitian matrices A are well
known (e.g. an algorithm that generates optimal approximations is MINRES
by Paige and Sounders (1974)), the methods for non-Hermitian matrices A
(that is our case) are not so well developed (Greenbaum, 1997). Aforemen-
tioned optimal approximations are the approximations x(m) whose residuals,

r(m)=b ) AÆx(m), have the smallest Euclidean norm, rðmÞ
�� �� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

r
ðmÞ2
i

r
. Faber

and Manteuffel (1984) proved that for most of the non-Hermitian matrices A
there is no short-term recurrence to generate the optimal approximations, and
so work and storage must grow linearly with the iteration count, m. Indeed,
the GMRES method by Saad and Schultz (1986) finds the optimal approxi-
mations, at the cost of additional work and storage, while other non-Her-
mitian Krylov methods (BSG, CGS, QMR, BiCGSTAB, GPBiCG, restarted
GMRES, hybrid GMRES, etc.) that use short-term recurrence (and so they
can be implemented with relatively low work and storage) generate non-
optimal approximations. Besides, these short-term recurrence methods usu-
ally have rather irregular convergence behaviour with oscillations and peaks
of the residual.

Appendix B. Preconditioning the Systems of Linear Equations

Again let me first recall some definitions (Greenbaum, 1997). Matrix A is
well conditioned if its condition number

jðAÞ ¼ jAj jj�jjA�1jj ðB:1Þ

is relatively small. Here A)1 is the inverse matrix, and Ak k ¼ max
u

Auk k
uk k ,

where uk k ¼
ffiffiffiffiffiffiffiffiffiffiffi
ðu; uÞ

p
. If j(A) is relatively large, matrix A is poorly

conditioned. In order to get a faster solution of a system of linear
equations
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A � x ¼ b ðB:2Þ

by a Krylov subspace method one can transform the original system given in
Equation (B.2) to a preconditioned form, as

ðAM�1Þ � y ¼ b; ðB:3Þ

where y=MÆx is the vector of modified unknowns and M)1 is the inverse of
M. When the modified system (B.3) is eventually solved to give an
approximate solution y

�
, the solution x

�
of the original system (B.2) is

resolved from the following system of linear equations M � x� ¼ y
�
. Matrix M

in Equation (B.3) is called the (right-)preconditioner, and, in general, it is
sought so that the matrix AM)1 turns out to be as close as possible to the
identity matrix. In other words, it is desirable to choose preconditioner M so
that the modified system (B.3) is better preconditioned than the original
system (B.2). In the terms of condition numbers this requirement is
expressed as

1 � jðAM�1Þ � jðAÞ: ðB:4Þ

If M is equal to the main diagonal of A, M is called the Jacobi precondi-
tioner. If A is decomposed as A=A1+A2, where A1 in some way dominates
over A2, then =A1 can be used as a preconditioner. In this case the pre-
conditioned system is

ð1þ A2A
�1
1 Þ � y ¼ b; ðB:5Þ

where

A1 � x ¼ y ðB:6Þ

The preconditioning as given in Equation (B.5) is typically applied to pre-
condition the EM problems in the static limit.

Appendix C. Nonlinear Optimisation for EM Problems

Let me consider here an unconstrained optimization (Nocedal and
Wright, 1999) of a Tikhonov-type regularized functional (Tikhonov and
Arsenin, 1977) of the form

u ¼ 1

2
dobs � FðmÞ
�� ��2þk � Rðm;mrefÞ �!

m;k
min; ðC:1Þ

where dobs ¼ ðdobs1 ; . . . ; dobsN Þ
T is the complex-valued vector that comprises the

observed data values, and forward problem F(m) nonlinearly maps the model
space of real-valued vectors m ¼ ðm1; . . . ;mMÞT to the space of the predicted

784 DMITRY B. AVDEEV



complex-valued data d. In Equation (C.1) mref is the reference model and
k (k > 0) is the regularization parameter that trades off between the data
misfit ud ¼ 1

2 dobs � FðmÞ
�� ��2 and model smoothness R(m,mref). It may hap-

pen that a suitable value of k may be chosen with the GCV and L-curve
criteria (see Farquharson and Oldenburg, 2004 for details), or the Akaike’s
Bayesian information criterion (Mitsuhata et al., 2002). A typical choice of
R(m,mref) is

Rðm;mrefÞ ¼ 1

2
Wðm�mrefÞ
�� ��2; ðC:2Þ

where W is a real M� M smoothing matrix (Newman and Hoversten, 2000,
among others). The norm uk k2¼ ðu; uÞ2 given in Equations (C.1), (C.2) is
induced by the L2 inner product

ðu; vÞ2 ¼
R
uvdV: ðC:3Þ

The finite dimensional form of Equation (C.3) is uk k2¼ uTu ¼
PN

k¼1 uiui,
where the upper bar means the complex conjugate, and superscript T stands
for the transpose (cf. Equation (A.2) of Appendix A).

For what follows, it is better to rewrite Equation (C.1) as

u ¼ 1

2
ðdobs � FðmÞ; dobs � FðmÞÞ2 þ k � Rðm;mrefÞ �!

m;k
min : ðC:4Þ

The necessary conditions to minimize functional (C.4) is delivered by its
stationary points

g ¼ @u
@m
¼ @u

@m1
; . . . ;

@u
@mM

� �T

¼ 0: ðC:5Þ

From Equation (C.4) and after some algebra, the gradient g ¼ @u
@m can be

found as

g ¼ �Re d obs � FðmÞ; @FðmÞ
@m

� �
2

þk � @R
@m
¼ Re JTðF� dobsÞ

n o
þ k

@R

@m
;

ðC:6Þ

where JT(m) is the transpose of the sensitivity matrix

JðmÞ ¼
@F1

@m1
. . . @F1

@mM

. . . . . . . . .
@FN

@m1
. . . @FN

@mM

0
@

1
A; ðC:7Þ

and where Re refers to the real part of the complex argument. Combining
Equations (C.5) and (C.6) yields
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�Re dobs � FðmÞ; @FðmÞ
@m

� �
2

þk � @R
@m
¼ Re JTðF� dobsÞ

n o
þ k

@R

@m
¼ 0:ðC:8Þ

C.1 Newton Method

The general technique to minimize the functional (C.1) is to use Newton’s
method for solving the nonlinear system of equations (C.8) (Dennis and
Schnabel, 1996). Given ith Newton’s approximation m(i), the next approxi-
mation m(i+1) is sought to satisfy the following

HðiÞ �mðiþ1Þ ¼ HðiÞ �mðiÞ � gðiÞ; ðC:9Þ

where gðiÞ ¼ @u
@m ðmðiÞÞ and HðiÞ ¼ @2u

@m2 ðmðiÞÞ are the gradient and Hessian both
determined at m=m(i), respectively. The Hessian M � M matrix

H ¼ @2u
@m2

¼
@2u

@m1@m1
. . . @2u

@m1@mM

. . . . . . . . .
@2u

@mM@m1
. . . @2u

@mM@mM

0
B@

1
CA ðC:10Þ

is derived from Equation (C.4) in the following form

H ¼ Re @FðmÞ
@m ; @FðmÞ@m

� �
2
� dobs � FðmÞ; @

2FðmÞ
@m2

� �
2

n o
þ k � @2R

@m2

¼ Re J
T
Jþ @2F

@m2 ðF� dobsÞ
n o

þ k @2R
@m2

; ðC:11Þ

where it is also assumed that ð @2f
@m2Þg

n o
i;j
¼
PN

k¼1
@2fk

@mi@mj
gk. For 3-D electro-

magnetic problems the gradient g(i) and Hessian H(i) need not be computed
explicitly (see Appendix D). Note that

@R

@m
¼WTWðm�mrefÞ; ðC:12Þ

@2R

@m2
¼WTW; ðC:13Þ

when R(m,mref) is as given in Equation (C.2). Substitution of Equations
(C.6), (C.11)–(C.13) into Equation (C.9) yields Newton’s iteration

Re J
T
Jþ @2F

@m2
ðF� dobsÞ

� �
þ kWTW

	 

� dmðiÞ

¼ �Re JTðF� dobsÞ
n o

� kWTWðmðiÞ �mrefÞ
ðC:14Þ

for the model update dm(i)=m(i+1) ) m(i).
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The main advantage of Newton’s method is its fast local convergence. The
drawbacks are that, (1) it does not guarantee that the generated sequence m(i)

converges to a solution of Equation (C.1), (2) it may converge locally, and (3)
it does not necessarily monotonically decrease the functional of Equation
(C.1). However, if the Hessian H(m(i)) is positive definite, then the update
dm(i) of Equation (C.14) is a descent direction, since g(i)T dm(i)=) g(i)T

(H(i)))1 g(i) < 0. In this case, to proceed to a global minimum a linear search
method may be incorporated as m(i+1)=m(i) ) a (i) dm(i), where the stepsize
a (i) is such that uðmðiÞ þ aðiÞdmðiÞÞ ¼ min

a
uðmðiÞ þ admðiÞÞ.

There are several modifications of Newton’s method.

C.2 Gauss–Newton Method

If the second-derivatives are discarded in Equation (C.14), one gets the
Gauss–Newton iterative method

Re J
T
J

n o
þ kWTW

h i
� dmðiÞ ¼ �Re JTðF� dobsÞ

n o
� kWTWðmðiÞ �mrefÞ:

ðC:15Þ

As was correctly mentioned by Haber et al. (2000a), the Gauss–Newton
approximation (C.15) is widely used because calculation of the second-
derivatives @2F

@m2 is commonly considered prohibitively expensive. For 3D EM
problems the first attempt to quantitatively compare the convergence rates of
the full Newton and Gauss–Newton iterations has been undertaken by Haber
et al. (2000a). Those authors demonstrated that a full Newton step does not
cost much more than a Gauss–Newton step.

For 3-D large-scale problems (which is our case) forming the Hessian
matrix and directly resolving the model update dm(i) via Equation (C.9)
(given in whatever form of (C.14) or (C.15)) is computationally prohibitive.
For this reason the system of linear equations (C.9) is usually solved by a
Krylov subspace method that requires only a sequence of relatively inex-
pensive matrix-vector products involving that Hessian (see Appendix A).
Besides, since the Hessian matrix H(i) of Equation (C.9) is real symmetric and
positive definite, the method of choice for solving the system (C.9) is clearly
the conjugate gradient (CG) method, which is commonly used for such
problems. This combination of Newton’s and CG methods is usually referred
as the Newton–Krylov/CG method for solving nonlinear inverse problems
(Newman and Hoversten, 2000).

However, sometimes the CG-solution of the linear system (C.9) may still
be computationally expensive. In order to avoid such an expensive proce-
dure it is advantageous to solve the system (C.9) by a quasi–Newton
method.
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C.3 Quasi–Newton Method

In Newton’s method, the system (C.9) is CG-solved at each step to
generate a model update dm(i)=)(H(i)))1g(i). However, as mentioned above,
for large-scale problems it may be prohibitively expensive. The quasi–
Newton method allows us to circumvent this difficulty by iteratively gen-
erating matrices G(i) that replace the inverses of the Hessian (H(i)))1 so that

dmðiÞ ¼ �GðiÞgðiÞ: ðC:16Þ

Matrices G(i) are updated recursively as (Broyden, 1969)

GðiÞ ¼ Gði�1Þ þ aði�1Þuði�1Þðuði�1ÞÞT; ðC:17Þ

where u(i)1)=dm(i)1) ) G(i)1) dg(i)1), a(i)1)=(u(i)1))T dg(i)1), dg(i)1)

=g(i) ) g(i)1), and G(0)=1. Matrices G(i) satisfy quasi–Newton condition

dmði�1Þ ¼ GðiÞdgði�1Þ: ðC:18Þ

Thus, this quasi–Newton method requires us to calculate, and possibly to
store, the gradients g(i) and update vectors u(i) only.

Alternative ways to recursively calculate matrices G(i) are delivered by the
DFP, BFGS or L-BFGS methods (Nocedal and Wright, 1999). All these
quasi–Newton methods retain the fast local convergence of Newton’s
method, although they are slower.

As it was advocated by Haber (2005), in the quasi–Newton approach it is
sometimes more effective to approximate the Hessian only in the part that
relates directly to the data misfit, rather than the full Hessian.

C.4 Nonlinear Conjugate Gradient Method (NLCG)

This is another method for minimization of the functional (C.1) that
also avoids calculation of the Hessian matrices. Originally, it was proposed
by Fletcher and Reeves (1964) for nonlinear optimization, and later
improved by Polak and Ribiere (1969). At each NLCG step, updating the
approximate solution m(i) fi m(i+1) requires (1) calculation and storage
of gradients g(i) and g(i)1) for updating the search direction d(i)1) fi d(i),
and (2) a linear search along the search direction d(i). Due to its apparent
simplicity this method has gained popularity in the EM community as the
method of choice for solving large-scale inverse problems (Rodi and
Mackie, 2000; Newman and Alumbaugh, 2000; Newman and Boggs,
2004).

Still the merits of the NLCG method over the Newton’s methods are
questionable.

788 DMITRY B. AVDEEV



Appendix D. Calculation of the Gradient and Sensitivities

Let me demonstrate how the gradient g ¼ @
@mu given in Equation (C.6)

can be directly calculated for the price of two forward modellings only
(Romanov and Kabanikhin, 1994; Dorn et al., 1999; among others).

Rewrite Maxwell’s equations (1) in operator form as

BðmÞEs ¼ jsðmÞ; ðD:1Þ

where m=log (r) is the log conductivity and the partial differential equation
(PDE) B(m) operator is

BðmÞ ¼ �10m þr� l�1

ix
r� : ðD:2Þ

For what follows, I also need to consider the adjoint Maxwell’s PDE

B�ðmÞu ¼ v; ðD:3Þ

where B*(m) is an adjoint operator, which, by definition, must satisfy the
following

ðBðmÞu; vÞ2 ¼ ðu;B�ðmÞvÞ2 ðD:4Þ

for any complex-valued vectors u,v. Brackets in Equation (D.4) represent
the L2 inner product ðu; vÞ2 ¼

R
uTvdV where the volume integration is over

the entire Cartesian space. From Equations (D.2), (D.4) it is easy to show
that

B�ðmÞ ¼ �10m �r� l�1

ix
r�; ðD:5Þ

where, as usual, the upper bar means the complex conjugate and superscript
T stands for the transpose. Comparing Equations (D.2) and (D.5), one can
conclude that B� ¼ B. This means that Equation (D.3) can be solved using
the same solver as used for solving Equation (D.1).

Further, from Equation (C.6) it follows that

g ¼ @

@m
u ¼ Re F� dobs;

@

@m
F

� �
2

� �
þ k

@

@m
R; ðD:6Þ

where

FðmÞ ¼ Q � EðrÞ; ðD:7Þ

is the predicted data and where Q is an integral, differential or interpolation
linear operator, which maps the electric field E to F(m). An explicit form ofQ
depends on the type of inverse problem under consideration. What is
important for us now is that Q does not depend on m, and so
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@

@m
F ¼ Q � @E

s

@m
ðD:8Þ:

From Equation (D.1) it follows that

@Es

@m
¼ B�1 @js

@m
� @B
@m

Es

� �
: ðD:9Þ

Substituting Equation (D.9) into Equation (D.8) yields

@

@m
F ¼ Q � B�1 � @B

@m
Es þ @js

@m

� �
: ðD:10Þ

D.1 Sensitivities

To calculate sensitivities J ¼ @
@mF one can first solve M forward problems of

the form

B @E
s

@mj
¼ @js

@mj
� @B
@mj

Es ðj ¼ 1; . . . ;MÞ ðD:11Þ

(with respect to @Es

@mj
) and substitute the result into Equation (D.8). Alterna-

tively, letting B now represent the matrix of the operator, one can solve N
adjoint problems of the form

BT � V ¼ QT; ðD:12Þ

(with respect to columns of the M � N matrix V) and then obtain the sen-
sitivities as (cf. Rodi and Mackie, 2000)

J ¼ VT � @B
@m

Es þ @js

@m

� �
: ðD:13Þ

D.2 Gradient

Substituting Equation (D.10) in Equation (D.6) one can obtain

g ¼ @

@m
u ¼ Re F� dobs;Q � B�1 � @B

@m
Es þ @js

@m

� �� �
2

� �
þ k

@

@m
R

¼ Re B��1Q�ðF� dobsÞ;� @B
@m

Es þ @js

@m

� �
2

� �
þ k

@

@m
R

ðD:14Þ
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Here Equation (D.4) and the well-known property of adjoint operators,
B��1 ¼ B�1� , were used. From Equation (D.14) it is seen that

g ¼ Re U;
@js

@m
� @B
@m

Es

� �
2

� �
þ k

@

@m
R; ðD:15Þ

where vector U is a solution of the adjoint equation

B�U ¼ Q�ðF� dobsÞ: ðD:16Þ

It is clear, however, that the most cumbersome calculations that are pre-
sented in Equation (D.15) are those of U and E

s, since @B
@m ;

@js

@m and @
@mR can be

calculated analytically. Thus, computational loads to calculate the full gra-
dient g ¼ @

@mu are nearly the same as those for one solution of the original
forward problem (to get Es) and one solution of the adjoint forward problem
(to get U).

References

Abubakar, A., and Berg, P.van der: 2000. ‘Non-Linear Three-Dimensional Inversion of Cross-

Well Electrical Measurements’, Geophys. Prosp. 48, 109–134.
Abubakar, A., and Berg, P.van der: 2001. ‘Nonlinear Inversion of the Electrode Logging

Measurements in a Deviated Well’, Geophysics 66, 110–124.
Alumbaugh, D. L., Newman, G. A., Prevost, L., and Shadid, J. N.: 1996. ‘Three-Dimensional

WideBandElectromagneticModelingonMassivelyParallelComputers’,RadioSci. 31, 1–23.
Aruliah, D. A., and Ascher, U. M.: 2003. ‘Multigrid Preconditioning for Krylov Methods for

Time-Harmonic Maxwell’s Equations in 3D’, SIAM J. Scient. Comput. 24, 702–718.

Avdeev, D. B., Kuvshinov, A. V., Pankratov, O. V., and Newman, G.A.: 1997. ‘High-
Performance Three-Dimensional Electromagnetic Modeling Using Modified Neumann
Series. Wide-band Numerical Solution and Examples’, J. Geomagn. Geoelectr. 49, 1519–

1539.
Avdeev, D. B., Kuvshinov, A. V., Pankratov, O. V., and Newman, G. A.: 1998. ‘Three-

Dimensional Frequency-Domain Modelling of Airborne Electromagnetic Responses’,

Explor. Geophy. 29, 111–119.
Avdeev, D. B., Kuvshinov, A. V., Pankratov, O. V., and Newman, G. A.: 2000, ‘3D EM

Modelling Using Fast Integral Equation Approach with Krylov Subspace Accelerator,
in Expanded abstracts of the 62nd EAGE Conference, Glasgow, Scotland, pp. 195–198.

Avdeev, D. B., Kuvshinov, A. V., Pankratov, O. V., and Newman, G. A.: 2002a. ‘Three-
Dimensional Induction Logging Problems. Part I. An Integral Equation Solution and
Model Comparisons’, Geophysics 67, 413–426.

Avdeev, D. B., Kuvshinov, A. V., and Epova, X. A.: 2002b. ‘Three-Dimensional Modeling of
Electromagnetic Logs From Inclined-Horizontal Wells, Izvestiya’, Phys. Solid Earth
38, 975–980.

Badea, E. A., Everett, M. E., Newman, G. A., and Biro, O.: 2001. ‘Finite-Element Analysis of
Controlled-Source Electromagnetic Induction Using Coulomb-Gauged Potentials’, Geo-
physics 66, 786–799.

Boyce, W., Lynch, D., Paulsen, K., and Minerbot, G.: 1992. ‘Nodal Based Finite Element
Modeling Maxwell’s Equations’, IEEE Trans. Antennas Propagat. 40, 642–651.

THREE-DIMENSIONAL ELECTROMAGNETIC MODELLING AND INVERSION 791



Broyden, C. G.: 1969. ‘A New Double-Rank Minimization Algorithm’, Notices Am. Math.

Soc. 16, 670.
Cerv, V.: 1990. ‘Modelling and Analysis of Electromagnetic Fields in 3D Inhomogeneous

Media’, Surv. Geophys. 11, 205–230.

Champagne, N. J., Berryman, J. G., Buettner, H. M., Grant, J. B., and Sharpe, R. M.: 1999,
‘A Finite-Difference Frequency-Domain Code for Electromagnetic Induction Tomogra-
phy’, in Proc. SAGEEP, Oakland, CA, pp. 931–940.

Chew, W. C.: 1999, Waves and Fields in Inhomogeneous Media, Wiley-IEEE Press, Piscataway,

NJ.
Commer, M., and Newman, G.: 2004. ‘A Parallel Finite-Difference Approach for 3D

Transient Electromagnetic Modeling with Galvanic Sources’, Geophysics 69, 1192–1202.

Davydycheva, S., Druskin, V., and Habashy, T.: 2003. ‘An Efficient Finite Difference Scheme
for Electromagnetic Logging in 3D Anisotropic Inhomogeneous Media’, Geophysics
68, 1525–1536.

Dawson, T. W., and Weaver, J. T.: 1979. ‘Three-Dimensional Electromagnetic Induction in a
Non-Uniform Thin Sheet at the Surface of Uniformly Conducting Earth’, Geophys.
J. Roy. Astr. Soc. 59, 445–462.

Dennis, J. E., and Schnabel, R. B.: 1996, Numerical Methods for Unconstrained Optimization

and Nonlinear Equations, SIAM, Philadelphia.
Dey, A., and Morrison, H. F.: 1979. ‘Resistivity Modelling for Arbitrary Shaped Three-

Dimensional Structures’, Geophysics 44, 753–780.

Dmitriev, V. I.: 1969, Electromagnetic Fields in Inhomogeneous Media, Moscow State
University, Moscow (in Russian).

Dmitriev, V. I., and Nesmeyanova, N. I.: 1992. ‘Integral Equation Method in Three-

Dimensional Problems of Low-Frequency Electrodynamics’, Comput. Math. Model. 3,
313–317.

Dorn, O., Bertete-Aguirre, H., Berryman, J. G., and Papanicolaou, G. C.: 1999. ‘A Nonlinear

Inversion Method for 3D Electromagnetic Imaging Using Adjoint Fields’, Inv. Prob. 15,
1523–1558.

Druskin, V., and Knizhnerman, L.: 1994. ‘Spectral Approach to Solving Three-Dimensional
Maxwell’s Equations in the Time and Frequency Domains’, Radio Sci. 29, 937–953.

Druskin, V., Knizhnerman, L., and Lee, P.: 1999. ‘A New Spectral Lanczos Decomposition
Method for Induction Modeling in Arbitrary 3D Geometry’, Geophysics 64, 701–706.

Eaton, P. A.: 1989. ‘3D Electromagnetic Inversion Using Integral Equations’, Geophys. Prosp.

37, 407–426.
Ellis, R. G.: 1999, ‘Joint 3-D Electromagnetic Inversion’, in M. J. Oristaglio and B. R. Spies

(eds.), Three Dimensional Electromagnetics, S.E.G. Geophysical Developments Series 7,

pp. 179–192.
Ellis, R. G.: 2002, Electromagnetic Inversion Using the QMR-FFT Fast Integral Equation

Method, in 72st Ann. Internat. Mtg., Soc. Expl. Geophys., pp. 21–25.
Everett, M., and Schultz, A.: 1996. ‘Geomagnetic Induction in a Heterogeneous Sphere,

Azimuthally Symmetric Test Computations and the Response of an Undulating 660-km
Discontinuity’, J. Geophys. Res. 101, 2765–2783.

Jones, F. W., and Pascoe, L. J.: 1972. ‘The Perturbation of Alternating Geomagnetic Fields by

Three-Dimensional Conductivity Inhomogeneities’,Geophys. J. Roy. Astr. Soc. 27, 479–484.
Judin, M. N.: 1980, Magnetotelluric Field Calculation in Three-Dimensional Media Using a

Grid Method, in Problems of the Sea Electromagnetic Investigations, IZMIRAN, Moscow

96–101(in Russian).
Faber, V., and Manteuffel, T.: 1984. ‘Necessary and Sufficient Conditions for the Existence of

a Conjugate Gradient Method’, SIAM J. Numer. Anal. 24, 352–362.

792 DMITRY B. AVDEEV



Farquharson, C. G., and Oldenburg, D. W.: 1996. ‘Approximate Sensitivities for the

Electromagnetic Inverse Problem’, Geophys. J. Int. 126, 235–252.
Farquharson, C. G., and Oldenburg, D. W.: 1998. ‘Non-Linear Inversion Using General

Measures of Data Misfit and Model Structure’, Geophys. J. Int. 134, 213–233.

Farquharson, C. G., Oldenburg, D. W., Haber, E., and Shekhtman, R.: 2002, ‘An Algotithm
for The Three-Dimensional Inversion of Magnetotelluric Data,’ in 72st Ann. Internat.
Mtg., Soc. Expl. Geophys., pp.649–652.

Farquharson, C. G., and Oldenburg, D. W.: 2004. ‘A Comparison of Automatic Techniques

for Estimating the Regularization Parameter in Non-Linear Inverse Problems’, Geophys. J.
Int. 156, 411–425.

Fletcher, R., and Reeves, C. M.: 1964. ‘Function Minimization by Conjugate Gradients’,

Comput. J. 7, 149–154.
Fomenko, E. Y., and Mogi, T.: 2002. ‘A New Computation Method for a Staggered Grid of

3D EM Field Conservative Modeling’, Earth Planets Space 54, 499–509.

Golub, G. H., and Van Loan, C. F.: 1996, Matrix Computations, (Third ed.). The Johns
Hopkins University Press, Baltimore and London.

Grammatica, N., and Tarits, P.: 2002. ‘Contribution at Satellite Altitude of Electromagnet-
ically Induced Anomalies Arising from a Three-Dimensional Heterogeneously Conducting

Earth, using Sq as an Inducing Source Field’, Geophys. J. Int. 151, 913–923.
Greenbaum, A.: 1997, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia.
Habashy, T. M., Groom, R. W., and Spies, B. R.: 1993. ‘Beyond the Born and Rytov

Approximations: A Nonlinear Approach to Electromagnetic Scattering’, J. Geophys. Res.
98, 1759–1775.

Haber, E.: 1999, ‘Modeling 3D EM Using Potentials and Mixed Finite Elements,’ in M. J.

Oristaglio and B. R. Spies (eds.), Three Dimensional Electromagnetics, S.E.G. Geophysical
Developments Series 7, pp. 12–15.

Haber, E., Ascher, U. M., Aruliah, D. A., and Oldenburg, D. W.: 2000a. ‘Fast Simulation of

3D Electromagnetic Problems Using Potentials’, J. Comp. Phys. 163, 150–171.
Haber, E., Ascher, U. M., Aruliah, D. A., and Oldenburg, D. W.: 2000b. ‘On Optimisation

Techniques for Solving Nonlinear Inverse Problems’, Inv. Prob. 16, 1263–1280.
Haber, E., Ascher, U. M., Oldenburg, D. W., Shekhtman R. and Chen J.: 2002a, ‘3-D

Frequency Domain CSEM Inversion Using Unconstrained Optimization,’ in 72st Ann.
Internat. Mtg., Soc. Expl. Geophys., pp.653–656.

Haber, E., Ascher, U. M., and Oldenburg, D. W.: 2004. ‘Inversion of 3D Electromagnetic

Data in Frequency and Time Domain Using an Inexact All-at-Once Approach’,
Geophysics 69, 1216–1228.

Haber, E.: 2005. ‘Quasi–Newton Methods for Large-Scale Electromagnetic Inverse Problems’,

Inv. Prob. 21, 305–323.
Hamano, Y.: 2002. ‘A New Time-Domain Approach for the Electromagnetic Induction

Problem in a Three-Dimensional Heterogeneous Earth’, Geophys. J. Int. 150, 753–169.
Hestenes, M. R., and Stiefel, E.: 1952. ‘Methods of Conjugate Gradients for Solving Linear

Systems’, J. Res. Nat. Bur. Stand. 49, 409–436.
Hohmann, G. W.: 1975. ‘Three-Dimensional Induced-Polarization and Electromagnetic

Modeling’, Geophysics 40, 309–324.

Hohmann G. W.: 1988, ‘Numerical Modelling of Electromagnetic Methods of Geophysics’, in
M. N. Nabighian (ed.), Electromagnetic methods in applied geophysics, Vol. 1, S.E.G.
Investigations in geophysics 3, pp. 314–364.

Hursan, G., and Zhdanov, M. S.: 2002. ‘Contraction Integral Equation Method in Three-
Dimensional Modeling’, Radio Sci. 37, 1089doi, 10.1029/2001RS002513.

THREE-DIMENSIONAL ELECTROMAGNETIC MODELLING AND INVERSION 793



Kaufman, A. A., and Eaton, P. A.: 2001, The Theory of Inductive Prospectings, Methods in

Geochemistry and Geophysics 35, Elsevier, Amsterdam–NewYork–Tokyo.
Kelly, C. T.: 1999, Iterative Methods for Optimization, SIAM, Philadelphia.
Koyama, T., Shimizu, H., and Utada, H.: 2002. ‘Possible Effects of Lateral Heterogeneity in

the D’ Layer on Electromagnetic Variations of Core Origin’, Phys. Earth Planet. Interiors
129, 99–116.

Kuvshinov, A. V., Avdeev, D. B., Pankratov, O. V., Golyshev, S. A., and Olsen, N.: 2002,
‘Modelling Electromagnetic Fields in 3-D Spherical Earth Using Fast Integral Equation

Approach’, in M. S. Zhdanov and P. E. Wannamaker (eds.), Three Dimensional
Electromagnetics, Methods in Geochemistry and Geophysics 35: Elsevier, pp. 43–54.

Kuvshinov, A. V., Utada, H., Avdeev, D. B., and Koyama, T.: 2005. ‘3-D Modelling and

Analysis of Dst C-Responses in the North Pacific Ocean Region, Revisited’, Geophys. J.
Int. 160, 505–526.

Kuvshinov, A. V., and Olsen, N..: 2004. ‘Modelling the Coast Effect of Geomagnetic Storms

at Ground and Satellite Altitude’, in C.. Reigber, H.. Luhr, P.. Schwintzer, and J.. Wickert
(eds.), Earth Observation with CHAMP. Results from Three Years in Orbit, Springer-
Verlag, Berlin, pp. 353–359.

LaBrecque, D.: 1999, ‘Finite Difference Modeling of 3-D EM Fields with Scalar and Vector

Potentials’, in M. J. Oristaglio and B. R. Spies (eds.), Three Dimensional Electromagnetics,
S.E.G. Geophysical Developments Series 7, pp. 148–160.

Lager, I. E., and Mur, G.: 1998. ‘Generalized Cartesian finite elements’, IEEE Trans. Magn.

34, 2220–2227.
Lanczos, C.: 1952. ‘Solution of Systems of Linear Equations by Minimized Iterations’, J. Res.

Nat. Bur. Stand. 49, 33–53.

Lesselier, D. and Habashy, T. (eds.) 2000, ‘Special Section on Electromagnetic Imaging and
Inversion of the Earth’s subsurface’, Inv. Prob. 16(5) 1083–1376.

Lesselier, D. and Chew, W. C. (eds.): 2004, ‘Special Section on Electromagnetic Character-

ization of Buried Obstacles’, Inv. Prob. 20(6), S1–S256.
Li, Y., and Oldenburg, D. W.: 2000. ‘3-D Inversion of Induced Polarization Data’, Geophysics

65, 1931–1945.
Li, Y., and Spitzer, K.: 2002. ‘Three-Dimensional DC Resistivity Forward Modeling Using

Finite Elements in Comparison With Finite-Difference Solutions’, Geophys. J. Int. 151,
924–934.

Livelybrooks, D.: 1993. ‘Program 3Dfeem, A Multidimensional Electromagnetic Finite

Element Model’, Geophys. J. Int. 114, 443–458.
Mackie, R. L., and Madden, T. R.: 1993. ‘Three-Dimensional Magnetotelluric Inversion

Using Conjugate Gradients’, Geophys. J. Int. 115, 215–229.

Mackie, R. L., Madden, T. R., and Wannamaker, P.: 1993. ‘3-D Magnetotelluric Modeling
Using Difference Equations – Theory and Comparisons to Integral Equation Solutions’,
Geophysics 58, 215–226.

Mackie, R. L., Smith, T. J., and Madden, T. R.: 1994. ‘3-D Electromagnetic Modeling Using

Difference Equations, The Magnetotelluric Example’, Radio Sci. 29, 923–935.
Mackie, R.L., Rodi, W., and Watts, M.D.: 2001, ‘3-D Magnetotelluric Inversion for Resource

Exploration, in 71st Ann. Internat. Mtg., Soc. Expl. Geophys., pp. 1501–1504.

Mackie, R.L.: 2004, Private communication.
Macnae, J. and Liu, G. (eds.): 2003, Three Dimensional Electromagnetics III, Austr. Soc. Expl.

Geophys.

Madden, T. R., and Mackie, R. L.: 1989. ‘Three-Dimensional Magnetotelluric Modeling and
Inversion’, Proc. IEEE 77, 318–333.

794 DMITRY B. AVDEEV



Martinec, Z.: 1999. ‘Spectral-Finite Element Approach to Three-Dimensional Electromag-

netic Induction in a Spherical Earth’, Geophys. J. Int. 136, 229–250.
McGillivray, P. R., and Oldenburg, D. W.: 1990. ‘Methods for Calculating Frechet Derivatives

and Sensitivities for the Non-Linear Inverse Problems’, Geophysics 60, 899–911.

McKirdy, D. McA., Weaver, J. T., and Dawson, T. W.: 1985. ‘Induction in a Thin Sheet of
Variable Conductance at the Surface of a Stratified Earth- II. Three-dimensional theory’,
Geophys. Roy. Astr. Soc. 80, 177–194.

Mitsuhata, Y., Uchida, T., and Amano, H.: 2002. ‘2.5-D Inversion of Frequency-Domain

Electromagnetic Data Generated by a Grounded-Wire Source’, Geophysics 67, 1753–1768.
Mitsuhata, Y., and Uchida, T.: 2004. ‘3DMagnetotelluric Modeling Using the T-W Document

Finite-Element Method’, Geophysics 69, 108–119.

Newman, G. A., and Hohmann, G. W.: 1988. ‘Transient Electromagnetic Response of High-
Contrast Prisms in a Layered Earth’, Geophysics 53, 691–706.

Newman, G. A., and Alumbaugh, D. L.: 1995. ‘Frequency-Domain Modeling of Airborne

Electromagnetic Responses Using Staggered Finite Differences’, Geophys. Prosp. 43, 1021–
1042.

Newman, G. A., and Alumbaugh, D. L.: 1997. ‘Three-Dimensional Massively Parallel
Electromagnetic Inversion- I.’, Theory, Geophys. J. Int. 128, 345–354.

Newman, G. A., and Alumbaugh, D. L.: 2000. ‘Three-Dimensional Magnetotelluric Inversion
Using Non-Linear Conjugate Gradients’, Geophys. J. Int. 140, 410–424.

Newman, G. A., and Hoversten, G. M.: 2000. ‘Solution Strategies for 2D and 3D EM Inverse

Problem’, Inv. Prob. 16, 1357–1375.
Newman, G. A., Hoversten, G. M., and Alumbaugh, D. L.: 2002, ‘3D Magnetotelluric

Modeling and Inversion, Applications to Sub-Salt Imaging’, in M.S. Zhdanov and P.E.

Wannamaker (eds.), Three Dimensional Electromagnetics, Methods in Geochemistry and
Geophysics 35, Elsevier, pp. 127–152.

Newman, G. A., and Alumbaugh, D. L.: 2002. ‘Three-Dimensional Induction Logging

Problems. Part I. An Integral Equation Solution and Model Comparisons’, Geophysics 67,
484–491.

Newman, G. A., Recher, S., Tezkan, B., and Neubauer, F. M.: 2003. ‘3D Inversion of a Scalar
Radio Magnetotelluric Field Data Set’, Geophysics 68, 791–802.

Newman, G. A., and Boggs, P. T.: 2004. ‘Solution Accelerators for Large-Scale Three-
Dimensional Electromagnetic Inverse Problem’, Inv. Prob. 20, s151–s170.

Newman, G. A., and Commer, M.: 2005. ‘New Advances in Three-Dimensional Transient

Electromagnetic Inversion’, Geophys. J. Int. 160, 5–32.
Nocedal, J., and Wright, S.: 1999, Numerical Optimization, Springer-Verlag, New York.
O’Leary, D. P.: 1996, ‘Conjugate Gradients and Related KMP Algorithms, the Beginnings’, in

L. Adams and J.L. Nazareth (eds.), Linear and Nonlinear Conjugate Gradient-Related
Methods, SIAM, pp. 1–9.

Oristaglio, M. J. and Spies, B.R.: 1999, ‘Three Dimensional Electromagnetics’, in M. J.
Oristaglio and B. R. Spies (eds.), Three Dimensional Electromagnetics, S.E.G. Geophysical

Developments Series 7.
Paige, C. C., and Sounders, M. A.: 1974. ‘Solution of Sparse Indefinite Systems of Linear

Equations’, SIAM J. Numer. Anal. 11, 197–209.

Pankratov, O. V., Avdeev, D. B., and Kuvshinov, A. V.: 1995. ‘Electromagnetic Field
Scattering in a Heterogeneous Earth, A Solution to the Forward Problem’, Phys. Solid
Earth 31, 201–209.

Pankratov, O. V., Kuvshinov, A. V., and Avdeev, D. B.: 1997. ‘High-Performance Three-
Dimensional Electromagnetic Modeling Using Modified Neumann series. Anisotropic
case’, J. Geomagn. Geoelectr. 49, 1541–1547.

THREE-DIMENSIONAL ELECTROMAGNETIC MODELLING AND INVERSION 795



Paulsen, K. D., Linch, D. R., and Strohbehn, J. W.: 1988. ‘Three-dimensional finite,

boundary, and hybrid element solutions of the Maxwell equations for lossy dielectric
media’, IEEE Trans. Microwave Theory Tech. 36, 682–693.

Polak, E., and Ribiere, G.: 1969. ‘Note sur la convergence de methode de directions

conjuguees’, Revue Francaise d’Informatique et de Recherche Operationnelle 16, 35–43.
Portniaguine, O., and Zhdanov, M. S.: 1999. ‘Focusing Geophysical Inversion Images’,

Geophysics 64, 874–887.
Pridmore, D. F., Hohmann, G. W., Ward, S. H., and Still, W. R.: 1981. ‘An Investigation of

Finite-Element Modeling For Electrical and Electromagnetic Data in Three Dimensions’,
Geophysics 46, 1009–1024.

Raiche, A.: 1974. ‘An Integral Equation Approach to Three-Dimensional Modeling’,

Geophys. J. 36, 363–376.
Ratz, S.: 1999, ‘A 3D Finite Element Code for Modeling of Electromagnetic Responses, in

Expanded abstracts of the 2nd International Symposium on 3D Electromagnetics, Salt Lake

City, Utah, pp.33–36.
Reddy, I. K., Rankin, D., and Phillips, R. J.: 1977. ‘Three-dimensional modelling

in magnetotelluric and magnetic variational sounding’, Geophys. J. Roy. Astr. Soc. 51,
313–325.

Rodi, W., and Mackie, R. L.: 2000. ‘Nonlinear conjugate gradients algorithm for 2-D
magnetotelluric inversion’, Geophysics 66, 174–187.

Romanov, V. G, and Kabanikhin, S. I.: 1994, Inverse Problems for Maxwell’s Equations, VSP,

Utrecht.
Saad, Y., and Schultz, M. H.: 1986. ‘GMRES, A Generalized Minimal Residual Algorithm for

Nonsymmetric Linear Systems’, SIAM J. Sci. Stat. Comput. 7, 856–869.

Sasaki, Y.: 2001. ‘Full 3-D Inversion of Electromagnetic Data on PC’, J. Appl. Geophys. 46,
45–54.

Sasaki, Y.: 2004. ‘Three-Dimensional Inversion of Static-Shifted Magnetotelluric Data’, Earth

Planets Space 56, 239–248.
Schultz, A. and Pritchard, G.: 1999, Three-Dimensional Inversion for Large-Scale Structure in

a Spherical Domain’, in M. J. Oristaglio and B. R. Spies (eds.), Three Dimensional
Electromagnetics, S.E.G. Geophysical Developments Series 7, pp. 451–476.

Singer, B. Sh., and Fainberg, E. B.: 1985, Electromagnetic Induction in Non-uniform Thin
Layers, IZMIRAN, Moscow (in Russian).

Singer, B. Sh.: 1995. ‘Method for Solution of Maxwell’s Equations in Non-Uniform Media’,

Geophys. J. Int. 120, 590–598.
Singer, B. Sh., and Fainberg, E. B.: 1995. ‘Generalization of the Iterative-Dissipative Method

for Modeling Electromagnetic Fields in Nonuniform Media with Displacement Currents’,

J. Appl. Geophys. 34, 41–46.
Singer, Sh. B., and Fainberg, E. B.: 1997. ‘Fast and Stable Method for 3-D Modelling of

Electromagnetic Field’, Explor. Geophys. 28, 130–135.
Singer, B. Sh., Mezzatesta, A., and Wang, T.: 2003, Integral equation approach based on

contraction operators and Krylov subspace optimisation, in J. Macnae and G. Liu (eds.),
Three Dimensional Electromagnetics III, Austr. Soc. Expl. Geophys.

Siripunvaraporn, W., Uyeshima, M., and Egbert, G.: 2004a. ‘Three-Dimensional Inversion for

Network-Magnetotelluric Data’, Earth Planets Space 56, 893–902.
Siripunvaraporn, W., Egbert, G., Lenbury, Y., and Uyeshima, M.: 2004b. ‘Three-Dimensional

Magnetotelluric Inversion: Data Space Method’, Phys. Earth Planet. Inter. 150, 3–14.

Smith, J. T., and Booker, J. R.: 1991. ‘Rapid Inversion of Two- and Three-Dimensional
Magnetotelluric Data’, J. Geophys. Res. 96(B3), 3905–3922.

796 DMITRY B. AVDEEV



Smith, J. T.: 1996a. ‘Conservative Modeling of 3-D Electromagnetic Fields, Part I, Properties

and Error Analysis’, Geophysics 61, 1308–1318.
Smith, J. T.: 1996b. ‘Conservative Modeling of 3-D Electromagnetic Fields, Part II,

Biconjugate Gradient Solution and an Accelertor’, Geophysics 61, 1319–1324.

Song, L.-P., and Liu, Q. H.: 2004. ‘Fast Three-Dimensional Electromagnetic Nonlinear
Inversion in Layered Media with a Novel Scattering Approximation’, Inv. Prob. 20, S171–
S194.

Spichak, V. V.: 1983, Numerically modeling the electromagnetic fields in three-dimensional

media, Ph. D. thesis, Moscow, 215 p. (in Russian).
Spichak, V., and Popova, I.: 2000. ‘Artificial Neural Network Inversion of Magnetotelluric

Data in Terms of Three-Dimensional Earth Macroparameters’, Geophys. J. Int. 142,

15–26.
Sugeng, F., Raiche, A. and Xiong, Z.: 1999, ‘An Edge-Element Approach to Model the 3D

EM Response of Complex Structures with High Contrasts’, in Expanded abstracts of the

2nd International Symposium on 3D Electromagnetics, Salt Lake City, Utah, pp. 25–28.
Tabarovsky, L. A.: 1975, Application of Integral Equation Method to Geoelectrical Problems,

Novosibirsk, Nauka (in Russian).
Tamarchenko, T., Frenkel, M., and Mezzatesta, A.: 1999, Three-dimensional modeling of

microresistivity devices, in M. J. Oristaglio and B. R. Spies (eds.), Three Dimensional
Electromagnetics, S.E.G. Geophysical Developments Series 7, pp. 77–83.

Tarantola, A.: 1987, Inverse Problem Theory, Elsevier, Amsterdam–Oxford–New York–

Tokyo.
Tarits, P.: 1994. ‘Electromagnetic Studies of Global Geodynamic Processes’, Surv. Geophys.

15, 209–238.

Tikhonov, A. N., and Arsenin, V. Y.: 1977, Solutions of Ill-posed Problems, Wiley, New York..
Ting, S. C., and Hohmann, G. W.: 1981. ‘Integral Equation Modeling of Three-Dimensional

Magnetotelluric Response’, Geophysics 46, 182–197.

Torres-Verdin, C., and Habashy, T. M.: 1994. ‘Rapid 2.5-D Forward Modeling and Inversion
Via a New Nonlinear Scattering Approximation’, Radio Sci. 29, 1051–1079.

Torres-Verdin, C., and Habashy, T. M.: 2002. ‘Rapid Numerical Simulations of Axisymmetric
Single-well Induction Data Using the Extended Born Approximation’, Radio Sci. 36,

1287–1306.
Tseng, H. -W., Lee, K. H., and Becker, A.: 2003. ‘3-D Interpretation of Electromagnetic Data

Using a Modified Extended Born Approximation’, Geophysics 68, 127–137.

Uyeshima, M., and Schultz, A.: 2000. ‘Geoelectromagnetic Induction in a Heterogeneous
Sphere, A New 3-D Forward Solver Using a Staggered-Grid Integral Formulation’,
Geophys. J. Int. 140, 636–650.

Uchida, T. and Sasaki, Y.: 2003, Stable 3-D Inversion of MT Data and Its Application for
Geothermal Exploration, in J. Macnae and G. Liu (eds.), Three Dimensional Electromag-
netics III, Austr. Soc. Expl. Geophys.

Varentsov, Iv. M.: 1999, ‘The Selection of Effective Finite Difference Solvers in 3D

Electromagnetic Modeling’, in Expanded Abstracts of 2nd International Symposium on 3D
Electromagnetics, Salt Lake City, Utah.

Varentsov, Iv. M.: 2002, ‘A General Approach to the Magnetotelluric Data Inversion in a

Piece-Continuous Medium’ Fizika Zemli 11 (in Russian).
Vasseur, G., and Weidelt, P.: 1977. ‘Bimodal Electromagnetic Induction in Non-Uniform

Thin Sheets with Application to the Northern Pyrenean Induction Anomaly’, Geophys. J.

R. Astr. Soc. 51, 669–690.

THREE-DIMENSIONAL ELECTROMAGNETIC MODELLING AND INVERSION 797



Velimsky, J., Everett, M. E., and Martinec, Z.: 2003, ‘The Transient Dst Electromagnetic

Induction Signal at Satellite Altitudes for a Realistic 3-D Electrical Conductivity in the
Crust and Mantle, Geophys. Res. Letts. 30(7), doi,10.1029/2002GL016671.

Wang, T., and Hohmann, G. W.: 1993. ‘A Finite-Difference Time-Domain Solution for

Three-Dimensional Electromagnetic Modeling’, Geophysics 58, 797–809.
Wang, T., Oristaglio, M., Tripp, A., and Hohmann, G. W.: 1994. ‘Inversion of Diffusive

Transient Electromagnetic Data by a Conjugate Gradient Method’, Radio Sci. 29, 1143–
1156.

Wang, T., and Tripp, A.: 1996. ‘FDTD Simulation of EM Wave Propagation in 3-D Media’,
Geophysics 61, 110–120.

Wang, T., and Fang, S.: 2001. ‘3D Electromagnetic Anisotropy Modeling Using Finite

Differences’, Geophysics 66, 1386–1398.
Wannamaker, P. E., Hohmann, G. W., and San Filipo, W. A.: 1984. ‘Electromagnetic

Modeling of Three-Dimensional Bodies in Layered Earth Using Integral Equations’,

Geophysics 49, 60–74.
Wannamaker, P. E.: 1991. ‘Advances in Three-Dimensional Magnetotelluric Modeling Using

Integral Equations’, Geophysics 56, 1716–1728.
Weaver, J. T.: 1994,Mathematical Methods for Geo-electromagnetic Induction, John Wiley and

Sons, Taunton, UK.
Weaver, J. T., Agarwal, A. K. and Pu, X. H.: 1999, ‘Three-Dimensional Finite-Difference

Modeling of the Magnetic Field in Geo-Electromagnetic Induction’, in M. J. Oristaglio

and B. R. Spies (eds.), Three Dimensional Electromagnetics, S.E.G. Geophysical
Developments Series 7, pp. 426–443.

Weidelt, P.: 1975. ‘Electromagnetic Induction in 3D Structures’, J. Geophys. 41, 85–109.

Weidelt, P.: 1999, 3D conductivity models, Implications of electrical anisotropy, in M. J.
Oristaglio and B. R. Spies (eds.), Three Dimensional Electromagnetics, S.E.G. Geophysical
Developments Series 7, pp. 119–137.

Weiss, Ch. J., and Everett, M. E.: 1998. ‘Geomagnetic Induction in a Heterogeneous Sphere,
Fully Three-Dimensional Test Computation and the Response of a Realistic Distribution
of Oceans and Continents’, Geophys. J. Int. 135, 650–662.

Weiss, Ch. J., and Newman, G. A.: 2002. ‘Electromagnetic Induction in a Fully 3-D

Anisotropic Earth’, Geophysics 67, 1104–1114.
Weiss, Ch. J., and Newman, G. A.: 2003. ‘Electromagnetic Induction in a Fully 3-D

Anisotropic Earth, Part 2, The LIN Preconditioner’, Geophysics 68, 922–930.

Xiong, Z.: 1992. ‘EM Modeling Three-Dimensional Structures by the Method of System
Iteration Using Integral Equations’, Geophysics 57, 1556–1561.

Xiong, Z., and Tripp, A. C.: 1995. ‘Electromagnetic Scattering of Large Structures in Layered

Earth Using Integral Equations’, Radio Sci. 30, 921–929.
Xiong, Z., Raiche, A., and Sugeng, F.: 2000. ‘Efficient Solution of Full Domain 3D

Electromagnetic Modeling Problems’, Explor. Geophys. 31, 158–161.
Yamane, K., Kim, H. J., and Ashida, Y.: 2000. ‘Three-Dimensional Magnetotelluric Inversion

Using a Generalized RRI Method and Its Applications’, Butsuri-Tansa (Geophys. Explor.)
53, 1501–1513.

Yee, K. S.: 1966. ‘Numerical Solution of Initial Boundary Value Problems Involving

Maxwell’s Equations in Isotropic Media’, IEEE Trans. Ant. Prop. AP-14, 302–307.
Yoshimura, R. and Oshiman, N.: 2002, Edge-based Finite Element Approach to the

Simulation of Geoelectromagnetic Induction in a 3-D sphere, Geophys. Res. Letts. 29(3),

doi,10.1029/2001GL014121.
Zhang, Z.: 2003. ‘3D Resistivity Mapping of Airborne EM Data’, Geophysics 68, 1896–1905.

798 DMITRY B. AVDEEV



Zhdanov, M. S., and Fang, S.: 1996. ‘Quasi-Linear Approximation in 3-D EM Modeling’,

Geophysics 61, 646–665.
Zhdanov, M. S., and Fang, S.: 1997. ‘Quasi-Linear Series in Three-Dimensional Electromag-

netic Modeling’, Radio Sci. 32, 2167–2188.

Zhdanov, M. S., and Portniaguine, O.: 1997. ‘Time-Domain Electromagnetic Migration in the
Solution of Inverse Problems’, Geophys. J. Int. 131, 293–309.

Zhdanov, M. S., Varentsov, I. M., Weaver, J. T., Golubev, N. G., and Krylov, V. A.: 1997,
‘Methods for Modelling Electromagnetic Fields; Results from COMMEMI – the

International Project On the Comparison of Modelling Methods for Electromagnetic
Induction’, in J. T. Weaver (ed.), J. Appl. Geophys. 37, 133–271.

Zhdanov, M. S., Fang, S., and Hursan, G.: 2000. ‘Electromagnetic Inversion using Quasi-

Linear Approximation’, Geophysics 65, 1501–1513.
Zhdanov, M. S.: 2002, Geophysical Inverse Theory and Regularization problems, Elsevier,

Amsterdam-New York-Tokyo.

Zhdanov, M. S. and Wannamaker, P. E.: 2002, ‘Three Dimensional Electromagnetics’, in M.
S. Zhdanov and P. E. Wannamaker (eds.), Three Dimensional Electromagnetics, Methods
in Geochemistry and Geophysics 35, Elsevier.

Zhdanov, M. S. and Golubev, N. G.: 2003, ‘Three-Dimensional Inversion of Magnetotelluric

Data in Complex Geological Structures’, in J. Macnae and G. Liu (eds.), Three
Dimensional Electromagnetics III, Austr. Soc. Expl. Geophys.

Zhdanov, M. S., and Tolstaya, E.: 2004. ‘Minimum Support Nonlinear Parametrization in the

Solution of a 3D Magnetotelluric Inverse Problem’, Inv. Prob. 20, 937–952.
Zunoubi, M. R., Jin, J. -M., Donepudi, K. C., and Chew, W. C.: 1999. ‘A Spectral Lanczos

Decomposition Method for Solving 3-D Low-Frequency Electromagnetic Diffusion by the

Finite-Element Method’, IEEE Trans. Antennas Propogat. 47, 242–248.
Zyserman, F. I., and Santos, J. E.: 2000. ‘Parallel Finite Element Algorithm with Domain

Decomposition for Three-Dimensional Magnetotelluric Modeling’, J. Appl. Geophys. 44,

337–351.

THREE-DIMENSIONAL ELECTROMAGNETIC MODELLING AND INVERSION 799



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


