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Abstract. The paper presents the brief notes on some questionable points of modern magnetotellur-
ics. These controversial points are: (1) nature and structure of the magnetotelluric impedance tensor,
(2) magnetotelluric dispersion relations, (3) the magnetotelluric eigenstate problem, (4) separation of
local and regional effects (the local-regional decomposition), (5) sensitivity of the TM and TE modes
of the two-dimensional field, (6) robustness of the TM and TE modes, (7) identification and correc-
tion of the static shift, and (8) strategy of the two-dimensional interpretation: unimodal or bimodal
inversion? Consideration of all these topics gives a better insight into problems and potentialities of
magnetotellurics.
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1. Introduction

Nature and structure of the magnetotelluric impedance tensor, its general properties
and geophysical informativeness, and methods of its analysis and interpretations
are still at the centre of theoretical and methodological controversies in the world
geoelectrical community. In this paper I would like to present some viewpoints that
are characteristic of the Russian magnetotelluric school. The paper has the form of
an overview consisting of brief (say, marginal) notes dedicated to eight points: (1)
nature and structure of the magnetotelluric impedance tensor, (2) magnetotelluric
dispersion relations, (3) magnetotelluric eigenstate problem, (4) separation of local
and regional effects (the local-regional decomposition), (5) sensitivity of the TM
and TE modes of the two-dimensional field, (6) robustness of the TM and TE
modes, (7) identification and correction of the static shift, and (8) strategy of the
two-dimensional interpretation: unimodal or bimodal inversion? I hope that these
marginal notes can be interesting for my colleagues from the world geoelectrical
community.
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Figure 1.A layered model with an inhomogeneous body excited by the plane electromagnetic wave.

2. On Deterministic Nature of the Magnetotelluric Impedance and the
Tipper

The long-standing question on the existence, nature and structure of linear algeb-
raic relations between components of the electromagnetic field of the Earth is a
basic challenge of geoelectrics. Should we consider the magnetotelluric linear rela-
tionships as a postulate supported by statistics of observations? Or, more properly,
can we turn to the common principles of classic electrodynamics and derive the
linear relations directly from the Maxwell equations?

Recently, Berdichevsky and Dmitriev (1997) expressed the components of the
MT impedance tensor and the tipper in terms of excessive currents excited within a
3D inhomogeneous body D. The model is shown in Figure 1. The primary field is
supposed to be uniform in the area containing an inhomogeneous body. It has two
degrees of freedom corresponding to two different polarizations. Solving Max-
well’s equations, the following deterministic relations have been obtained at the
Earth’s surfacez = 0:

Ex = ZxxHx + ZxyHy,
Ey = ZyxHx + ZyyHy,
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HereZn is the normal impedance observed in the absence of the inhomogeneous
body and

JFp(r) =
∫ ∫ ∫

D

[GF (r |r v)]j (p)(r v)dV

F (field) = E,H p(polarization)= 1,2

is the convolution of excessive currentsj with Green’s tensor [G].
Thus,

Eτ = [Z]Hτ ,

Hz = [W]Hτ ,
(3)

where

Eτ =
[
Ex
Ey

]
Hτ =

[
Hx
Hy

]
are the horizontal components of the electromagnetic field and

[Z] =
[
Zxx
Zyx

Zxy
Zyy

]
[W] = [Wzx Wzy]

are the impedance tensor and the tipper.
These formulae give adeterministic basisfor examining the properties of the

MT transfer functions. For instance, we see that the off-diagonal components of the
MT impedance contain the basic information on vertical resistivity profile, while its
diagonal components and the components of the tipper reflect mainly the lateral ef-
fects. With this understanding, we can assess the expedience of apparent resistivity
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representations. In the 1D model the transformation of the impedance into apparent
resistivity yields a vivid qualitative picture of vertical geoelectrical cross-section.
This useful property of the one-dimensional impedance is inherited by off-diagonal
componentsZxy, Zyx of the impedance tensor (though with some distortion), and
hardly by its diagonal componentsZxx, Zyy , which more likely characterize the
geoelectrical asymmetry of the Earth. So, it would appear reasonable to calculate
the apparent resistivity of a horizontally inhomogeneous medium as

ρxy = |Zxy |
2

ωµ0
, ρyx = |Zyx|

2

ωµ0
. (4)

All these relations still stand if the atmosphere has nonzero conductivity and the
displacement currents are taken into account.

Similar relations may be observed in the models with three degrees of freedom
of the primary field. Let us consider the uniform primary field that can be polarized
in any of three orthogonal directions. In this case,

Ex = ZxxHx + ZxyHy + ZxzHz,
Ey = ZyxHx + ZyyHy + ZyzHz,
Ez = ZzxHx + ZzyHy + ZzzHz.

Now neglect the atmosphere conductivity and assume that over a wide range of
low frequencies we can disregard the displacement currents (not too severe as-
sumptions). Then we can say that the conductive Earth comes into contact with
nonconductive air and at the lower side of the Earth’s surfaceEz(z = 0 +) = 0 (no
telluric leakage through the Earth’s surface). Hence,

Hz = W̃zxHx + W̃zyHy

and

Ex = Z̃xxHx + Z̃xyHy,

Ey = Z̃yxHx + Z̃yyHy,
where

W̃zx = −Zzx(+0)

Zzz(+0)
, W̃zy = −Zzy(+0)

Zzz(+0)

and

Z̃xx = Zxx + W̃zxZxz,
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Z̃xy = Zxy + W̃zyZxz,

Z̃yx = Zyx + W̃zxZyz,

Z̃yy = Zyy + W̃zyZyz.

Thus, in the models under consideration,the tipper and the impedance tensor
have matrices of dimension1 × 2 and 2 × 2 no matter what is the number of
degrees of freedom in the primary fields.

3. On the Magnetotelluric Dispersion Relations

In magnetotellurics, the Kramers–Kronig dispersion relations of two kinds are
considered: (1) between real and imaginary parts of the impedanceZ, (2) between
apparent resistivitiesρA = |Z|2/iωµ0 and impedance phasesϕ = argZ (Weidelt
1972).

The dispersion relations of the first kind take the form:

R(ω0) = 2

π
pv

∫ ∞
0

X(ω)

ω2− ω2
0

ωdω,

(5)

X(ω0) = −2ω0

π
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0

dω,

wherepv means that integral is taken in the sense of the Cauchy principal value,
andR = Re(Z/iωµ0), X = Im(Z/iωµ0). These relations exist if the impedanceZ
has no poles in the upper half-plane of the complex frequency� = ω + iλ. Here
and below the complex time-factor is e−i�µ0.

The dispersion relations of the second kind are in the form:
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whereρA(∞) is the high-frequency asymptotic value of the apparent resistivity.
These relations exist if the impedanceZ satisfies the condition of the minimum
phase, i.e., if it has neither poles nor zeros in the upper half-plane of the complex
frequency�.
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The existence of the dispersion relations is among the most controversial sub-
jects of today’s magnetotellurics.

Weidelt (1972) and Weidelt and Kaikkonen (1994) gave rigorous proof to the
validity of the dispersion relations of both kinds in the classes of 1D and B-polarized
2D models.

Yee and Paulson (1988) considered the impedance tensor of the heterogen-
eous Earth as a linear casual operator and on this ground state that the dispersion
relations of both kinds hold good in all models, including 3D ones. But this con-
sideration is vulnerable to criticism since the electrical and magnetic fields interact
with each other and we hardly can say that one of these fields is a cause and another
is an effect (Svetov 1991).The magnetelluric system is casual in the sense that
the electrical and magnetic fields are effects of the same cause, for instance, of
ionospheric or magnetospheric currents.

Many people are involved in this discussion (Fischer and Schnegg 1980, 1993;
Egbert 1990; Svetov 1991; Berdichevsky and Pokhotelov 1997a,b). Nowadays it
is evident that we have to leave room for the possibility of violation of dispersion
relations in the classes of E-polarized 2D models and 3D models. The discussion
makes a clear practical sense: if the Kramers-Kronig relations are violated, our
philosophy of amplitude-phase inversion of MT-data should be revised. This is
seen from the following example. Take a regional elongated (quasi 2D) depression
with local near-surface 3D inhomogeneities that violate the dispersion relations.
Here the separate inversions of transverse apparent resistivity and phase curves in
the class of B-polarized 2D models may yield conflicting geoelectrical structures
(even with static shift corrections).

Meantime the magnetotelluric observations give a good deal of examples with
dramatic violation of MT dispersion relations. Figure 2 presents apparent resistivity
and phase curves obtained in the mountains of the Lesser Caucasus. Here the accur-
acy of the phase measurements seems to be rather high (good spatial correlation!),
but the difference between observed and calculatedϕ-curves amounts up to 35◦.

In an attempt to understand these phenomena, Berdichevsky and Pokhotelov
(1997b) constructed a 2D + 3D superposition model where the Kramers-Kronig
relations were violated (Figure 3, model A). The model contains a two-dimensional
deep conductive prismR of width 21y and a three-dimensional shallow resistive
cylinder L of radius a (a � 1y). The calculations have been carried out by an
approximate hybrid method suggested by Berdichevsky and Dmitriev (1976). They
consisted of 4 stages: (1) solution of the 2D problem forR using the numerical
method of Wannamaker et al. (1987) and determination of the 2D impedance

[Z2D] =
[

0
Z2D
yx

Z2D
xy

0

]
, (7)
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Figure 2. Magnetotelluric curves for the Armenian Upland. (A, B) Apparent resistivities and im-
pedance phases; digits at the curves are the numbers of MT-sounding sites. (C) Violation of the
dispersion relations in MTS-6; the solid line is the observed phase curve, and the dashed line is the
phase curve calculated from the apparent resistivity curve; taken from Berdichevsky and Pokhotelov
(1997b).
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Figure 3.Superposition of near-surface cylindrical (L) and deep prismatic (R) structures. Model A:
(ρ1 = 10 Ohm.m,h1 = 0.5 km,ρL1 =∞, a = 0.125 km,ρ2 =∞, h2 = 80 km,ρR2 = 10 Ohm.m,h′2
= 10 km,1h = 10 km,1y = 20 km,ρ3 = 0. Observation site O:θ = 45◦, r = 0.129 km,α = 50◦.
Model B:ρ1 = 100 Ohm.m,h1 = 0.1 km,ρL1 = 10 Ohm.m,a = 0.1 km,ρ2 =∞, h2 = 100 km,ρR2 =
10 Ohm.m,h′2 = 10 km,1h = 10 km,1y = 100 km,ρ3 = 0.01 Ohm.m. Observation site O:θ = 45◦,
r = 0.11 km,α = 45◦.

whereZ2D
xy andZ2D

yx relate to the TE and TM modes; (2) solution of the 3D problem
for L using the quasi-static analytical thin-sheet approximation of Berdichevsky
and Dmitriev (1976) and determination of the electrical distortion matrix

[e] =
[
exx
eyx

exy
eyy

]
(8)

and the magnetic distortion matrix

[h] = [I ] + 0.5[R]{S[e] − S1[I ]}[Z2D] =
[
hxx
hyx

hxy
hyy

]
, (9)

where

[I ] =
[

1
0

0
1

]
, [R] =

[
0
1
−1
0

]
, S =

{
SL1 = h1/ρ

L
1

S1 = h1/ρ1

O ∈ L
O 6∈ L ;

(3) synthesis of the 2D and 3D problems and determination of the synthesized
impedance:

[Z] = [Z2D+3D] = [e][Z2D][h]−1 =
[
Zxx
Zyx

Zxy
Zyy

]
; (10)
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Figure 4.Curves of apparent resistivity and impedance phase at a site O (θ = 45◦, r = 0.129 km), the
x′-axis is directed at angleα = 50◦.

and (4) rotation of the synthesized impedance through an angleα:[
Zx ′x ′
Zy ′x ′

Zx ′y ′
Zy ′y ′

]
=
[

cosα
− sinα

sinα
cosα

] [
Zxx
Zyx

Zxy
Zyy

] [
cosα
sinα

− sinα
cosα

]
.

(11)

Figure 4 demonstrates theρx ′y ′ andϕx ′y ′-curves obtained in the immediate vi-
cinity of the cylinder, axisx′ being almost normal to the cylinder. The Kramers–
Kronig transforms ofρx ′y ′, ϕx ′y ′ and ReZx ′y ′, Im Zx ′y ′ are displayed in Figure 5.
We observe a strong violation of the dispersion relations betweenρx ′y ′ andϕx ′y ′,
while ReZx ′y ′ and ImZx ′y ′ satisfy the dispersion relations with high accuracy. One
can suppose that in the model under consideration there are zeros and no poles in
the upper half-plane of complex frequency.

Calculations verify the reality of anomalous phenomena that are exhibited in
violation of dispersion relations.At present we know less than nothing about these
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Figure 5. The Kramer–Kronig transformation at a site O (θ = 45◦, r = 0.129 km), thex′-axis is
directed at angleα = 50◦. (A) real and imaginary parts of the normalized impedanceZx ′y ′ /iωµ0, (B)
apparent resistivityρx ′y ′ and impedance phaseϕx ′y ′ . Solid line – initial values, dashed line – values
calculated with formulae (5) and (6); taken from Berdichevsky amd Pokhotelov (1997b).
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phenomena. To fill the gap, we need experimental materials and theoretical de-
velopments. A starting point may be the including of special test controlling the
dispersion relations into existing programs of MT data processing and inversion.

4. On the Magnetotelluric Eigenstate Problem

All the information inherent in the magnetotelluric impedance tensor can be sys-
tematized and concentrated on the optimum directions by the methods related to
the eigenstate problem. The basic ideas about magnetotelluric eigenstate problem
have been suggested by Swift (1967).

The two-dimensional model is the starting point. Let thex-axis coincide with
the strike of the 2D model. Then the impedance tensor takes the form

[Z] =
[

0
Zyx

Zxy
0

]
=
[

0
−Z⊥

Z‖
0

]
(12)

whence

Ex = Z‖Hy, Ey = −Z⊥Hx, (13)

whereZ‖ = Zxy andZ⊥ = −Zyx are the longitudinal and transverse components
of the tensor [Z] oriented along the strike and perpendicularly to the strike. It is nat-
ural to consider the values ofZ‖ andZ⊥ as theprincipal values(eigenvalues) and
the longitudinal and transverse directions as theprincipal directions(eigendirec-
tions) of the magnetotelluric impedance tensor. In this context, the fieldsEτ andHτ

linearly polarized in the longitudinal and transverse directions manifest themselves
as theeigenfieldsof the magnetotelluric impedance tensor. The two-dimensional
tensor [Z] has two pairs of the eigenfields:

E(1)τ =
[
E(1)x
0

]
, H(1)

τ =
[

0
H(1)
y

]
and E(2)τ =

[
0
E(2)y

]
, H(2)

τ =
[
H(2)
x

0

]
.

(14)

In each pair the electric eigenfield is the transform of the magnetic eigenfield.
These representations exhibit 3 characteristic properties of the 2D magnetotel-

luric impedance tensor: (1) the impedance tensor reduced to its principal directions
has zero diagonal, (2) the electric and magnetic vectors within each eigenfield pair
are mutually perpendicular (the E-H, E-H perpendicularity), and (3) the electric
vectors from different eigenfield pairs are mutually perpendicular, as well as mag-
netic vectors from different eigenfield pairs are mutually perpendicular (the E-E, H-
H perpendicularity). This gives a clue to the generalization of the magnetotelluric
eigenstate problem to the 3D model.
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Nowadays three methods to solve the eigenstate problem are mostly used in the
geoelectric community: (1) the rotation method (Swift, 1967; Sims and Bostick,
1967), (2) the orthogonalization method (Swift, 1967; Eggers, 1982), (3) the diag-
onalization method (Swift, 1967; LaTorraca, Madden and Korringa, 1986; Yee and
Paulson 1987).

The rotation method is rather simple. It reduces to the tensor rotation which
minimizes the matrix diagonal. Here the 3D tensor is approximated by the 2D
tensor. The calculations result in determining the principal valuesζ1 = |ζ1| eiξ1,
ζ2 = |ζ2| eiξ2 and principal directionsα1, α2 = α1 + π/2 (α is an angle between
thex-axis and the principal direction).

The orthogonalization and diagonalization methods reduce to the detection of
the perpendicular eigenfields. The directions of the eigenfields are found as direc-
tions of the major axes of eigenfield polarization ellipses. In the orthogonalization
method we look for the electrical and magnetic eigenfields with the E-H, E-H
perpendicularity. This method is a modification of the classical eigenstate formu-
lation. Here the calculations result in determining the principal valuesζ1 = |ζ1|
eiξ1, ζ2 = |ζ2| eiξ2 and principal directionsα1 = αE1, α2 = αE2 (αE1 andαE2 are
the directions of major axes of polarization ellipses for both electrical eigenfields).
In the diagonalization method we look for the electrical and magnetic eigenfields
with the E-E, H-H perpendicularity This method is a modification of the Lannczos
SVD-formulation. Here the calculations result in determining the principal values
ζ1 = |ζ1| eiξ1, ζ2 = |ζ2| eiξ2 and principal directionsα1 = αE1, α2 = αH1 (αE1

andαH1 are the directions of major axes of polarization ellipses for the electrical
and magnetic eigenfields respectively). Both methods offerpurely mathematical
proceduresthat attach some properties of the 2D model to the 3D model and the
discussion about their physical meaning is a bit scholastic. The challenge is to find
relations between eigenstate indications and properties of geoelectrical structures.

It would be instructive to examine some characteristic models and compare
results received with all these methods. The model considered by Nguen Tkhan
Van and me consisted of an0-shaped near-surface resistive inlier and a 2D deep
conductive prism (Figure 6). The problem was solved by the hybrid method de-
scribed in Section 2. The calculations have been carried out using the numerical
methods of Wannamaker et al. (1987) for the 2D prism and Debabov (1980) for
the L-shaped inclusion. The eigenstate estimations were done at 14 sites.

Figure 7 shows amplitudes|ζ | and phasesξof the impedance principal values
obtained by the rotation method (1), the orthogonalization method (2), and the
diagonalization method (3). All three techniques give close principal values (the
difference at many sites does not exceed 5% and 3◦ and only at a few sites amounts
up to 12% and 6◦). Here the distinctions between methods are rather small, but they
vividly manifest themselves in the parameter

N =
∣∣∣∣ζ1− ζ2

ζ1+ ζ2

∣∣∣∣ (15)
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Figure 6.Model with an0-shaped near-surface resistive inlier and a 2D deep conductive prism. 1, 2,
3, . . . – observation sites.
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Figure 7. Principal values of the impedance tensor. 1 – rotation method, 2 – orthogonalization
method, 3 – diagonalization method.

that reflects the lateral inhomogeneity (Figure 8). In 1D models we haveN = 0. De-
viation ofN from zero indicates the lateral effects caused by 2D or 3D structures.
In the model under consideration the diagonalization method gives the maximum
N-values being the most sensitive to lateral effects.

Now look at Figure 9 which shows the impedance principal directionsα ob-
tained by three methods. Though theα-values are in close qualitative agreement,
the difference between them may attain 15◦ and even 25◦. Usingα-values we can
calculate the angular skew

Sa =
∣∣∣|α1− α2| − π2

∣∣∣ (16)

that reflects asymmetry of the medium. In 2D models and axisymmetric 3D models
we haveSa = 0. Deviation ofSa from zero indicates the effect of an asymmetric 3D
structure. In the model under consideration the orthogonalization method gives the
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Figure 8. Parameter of inhomogeneity. 1 – rotation method, 2 – orthogonalization method, 3 –
diagonalization method.

Figure 9.Principal directions of the impedance tensor. 1 – rotation method, 2 – orthogonalization
method, 3 – diagonalization method.
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Figure 10.Angular skew. 1 – orthogonalization method, 2 – diagonalization method.

maximumSa-values to be the most sensitive to the structural asymmetry (Figure
10).

Theorthogonalization and diagonalization methods complement each otherand
are the most informative ones since they fill all 8 degrees of impedance freedom.
What we would like to stress is that the orthogonalization method has an elegant
theory and does not need any limitations, while the diagonalization method as-
sumes that the Earth is locally passive and real part of Pointing’s vector everywhere
points down. This is a weak point of the diagonalization method because nobody
has proved that near-surface local inhomogeneities cannot emit the energy back
into the air.

5. On the Local-Regional Decomposition

For separation of local and regional effects we use decompositions of two kinds:
(1) The Bahr decomposition (Bahr 1988), and (2) The Groom-Bailey decomposi-
tion (Groom and Bailey 1989). These quasi-static decompositions rest on the same
model represented by superposition of 2D regional and 3D local structures.

The Bahr and Groom–Bailey decompositions have the same basis, but differ in
technology.

Return to the 2D + 3D superposition model examined in Section 2. The basic
representation for the local-regional decomposition can be derived directly from
Equation (10). If local structure is sufficiently small and frequency is sufficiently
low, we neglect the magnetic distortion

[h] =
[
hxx
hyx

hxy
hyy

]
≈
[

1
0

0
1

]
(17)
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and represent the local (synthesized) impedance tensor as a product of the real-
valued electric distortion matrix and regional (two-dimensional) impedance tensor:

[Z] ≈ [e][Z2D] =
[
exx
eyx

exy
eyy

] [
Z2D
xx

Z2D
yx

Z2D
xy

Z2D
yy

]

=
[
exxZ

2D
xx + exyZ2D

yx

eyxZ
2D
xx + eyyZ2D

yx

exxZ
2D
xy + exyZ2D

yy

eyxZ
2D
xy + eyyZ2D

yy

]
. (18)

In the Bahr decomposition we rotate the tensor [Z] and examine the phase rela-
tions between its components. The calculations result in determining the regional
strike and phases of the principal values of the regional impedance.

The Groom–Bailey decomposition reduces to the least squares approximation
of the tensor [Z] by the product of the special matrix [e] reflecting the twist and
shear deformation of the electric field and the regional tensor [Z2D]. The calcula-
tions result in determining the regional strike and phases of the principal values of
the regional impedance as well as the twist and shear angles.

Here I would like to note that theBahr and Groom–Bailey decompositions
give stable results if transverse and longitudinal components of the 2D regional
impedance have significantly different phases.If the phases do not differ, both
decompositions are unusable since the Bahr equation for the strike reduces to zero
over zero and the system of the Groom–Bailey equations becomes indeterminate.

Let us consider a model example (Figure 3, model B). Here a 3D local cyl-
indrical resistive inlierL is superimposed on a regional 2D conductive prismatic
structureR. The problem was solved by the hybrid method given in Section 2.

Figure 11 depicts the apparent resistivity and phase curves calculated from lon-
gitudinal and transverse components of the 2D regional impedance. Note that at T∼= 7.5 s and T> 40 000 s the phases of longitudinal and transverse impedances
virtually coincide.

Consider some parameters, which characterize the superposition model.
The parameter

1 = |ArgZ‖ − ArgZ⊥| = cos−1 |det[ReZ] + det[ImZ]|
|det[Z]| (19)

with

det[ReZ] = ReZxxReZyy − ReZxyReZyx,

det[ImZ] = ImZxxImZyy − ImZxy ImZyx,

det[Z] = ZxxZyy − ZxyZyx
is the difference between longitudinal and transverse phases calculated directly
from the local impedance tensor [Z] and its real and imaginary parts [ReZ], [Im
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Figure 11.Apparent resistivity and impedance phase curves calculated from longitudinal and trans-
verse components of the 2D regional impedance, for model B in Figure 3. 1 — longitudinal curve
(the TE mode), 2 – transverse curve (the TM mode).

Z]. The local-regional decomposition is stable, providing that1 is much greater
than the errors of phase measurements.

The parameterq is the normalized Frobenius norm of the magnetic distortion
matrix defining the contribution of the local magnetic anomaly:

q =
√
|hxx − 1|2 + |hxy|2+ |hyx|2+ |hyy − 1|2

2
. (20)

We can neglect the magnetic anomaly and apply basic Equation (18), providing
thatq is sufficiently small.
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The parameter

skew=
∣∣∣∣Zxx + ZyyZxy − Zyx

∣∣∣∣ (21)

indicates a departure from the two-dimensionality or axial symmetry. In 2D models
skew = 0.

The parameter

η =
√
|Im(ZxyZ∗yy + ZxxZ∗yx)|
|Zxy − Zyx| (22)

with the asterisk denoting the complex conjugate is the phase-sensitive skew. At
frequencies reflecting the regional structure this parameter indicates the adequacy
of the 2D + 3D superposition model and applicability of basic Equation (18). The
favorable indication isη < 0.1.

All these parameters are shown in Figure 12.
At T > 2 s the phase-sensitive skewη reaches the level of 0.1 and tends to

zero indicating the feasibility of the local-regional decomposition. Smallη-values
correlate with a drop inq, which is an indication of the attenuation of magnetic
distortions.. Within this frequency range we choose the area FA with1 > 7.5◦,
which is most favorable for the local-regional decomposition. It is notable that
skew� η over a wide range of periods. This has a simple explanation. While skew
characterizes the general asymmetry of the medium, the phase-sensitive skewη

manifests the symmetry of the regional 2D structure.
Figure 13 presents the results of the Bahr decomposition, which has been car-

ried out against random noises with standard deviation of 5% in the impedance
amplitudes and 3◦ in the impedance phases. Within the favorable area FA we de-
termine the strikeα of the regional 2D structure and the phasesϕ of the regional
2D impedances with sufficient accuracy. The similar results have been obtained by
the Groom-Bailey decomposition, even with a slightly higher accuracy (Figure 14).
The necessity of frequency restrictions taking into account the phase difference1

is clearly seen in determining the twistβT and shearβS angles (Figure 15). Here the
scatter in the results of the Groom-Bailey decomposition outside of the favorable
area FA dramatically increases.

Evidently thelocal-regional decomposition should be preceded by analysis of
η, skew,1 and detection of favorable frequency range.

6. On the Sensitivity of the TM and TE Models

Figure 16 shows a model with a 2D narrow horst-like resistive elevation in the
upper layer (sediments). This shallow structure is clearly marked by all graphs of
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Figure 12.Characteristic parametersη, skew,q, and1 for model B in Figure 3. FA – favorable area.
Uppermost graph: 1 –η, 2 – skew.

the transverse apparent resistivity (the TM mode) calculated for periods from 0.1 to
10 000 s, but it is barely perceptible in the corresponding graphs of the longitudinal
apparent resistivity (the TE mode).

Figure 17 shows a model with the uniform upper layer and a broad trapezoidal
elevation of the conductive asthenosphere. This deep structure is clearly marked
by low-frequency graphs of the longitudinal apparent resistivity (the TE mode,
T = 100, 1000, 10 000 s), but it is not reflected in any of the graphs of the transverse
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Figure 13.The Bahr decomposition: regional strikeα and longitudinalϕ‖ and transverseϕ⊥ phases
of the 2D regional impedance; vertical bars characterize the data scattering caused by noise in the
local impedance, FA – favorable area, for model B in Figure 3. 1 – data for the noise-free local
impedance, 2 – true data.

apparent resistivity (the TM mode, T = 0.1∼ 10 000 s, the intensive screening by
the high-ohmic lithosphere).

Thus,the TM impedance is more sensitive to shallow (resistive) structures and
resistance of the high-ohmic lithosphere, but the TE impedance is more sensitive to
deep (conductive) structures.

7. On the Robustness of the TM and TE Modes

First we study the model, which is similar to that examined by Wannamaker, Hoh-
man and Ward (1984). The model is shown in Figure 18. The apparent resistivity
curves obtained for a conductive 3D prism (ρP = 2 Ohm.m) are presented at the
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Figure 14.The Groom–Bailey decomposition: regional strikeα and longitudinalϕ‖ and transverse
ϕ⊥ phases of the 2D regional impedance; vertical bars characterize the data scattering caused by
noise in the local impedance, FA – favorable area, for model B in Figure 3. 1 – data for the noise-free
local impedance, 2 – true data.

left panel of Figure 19. Here the transverseρA-curve (T) oriented across the 3D
prism is close to theρA-curve corresponding to the TM mode in the associated
2D model. At the same time, the longitudinalρA-curve (L) oriented along the 3D
prism differs drastically from theρA-curve corresponding to the TE mode in the
associated 2D model. So, the two-dimensional inversion is sufficiently accurate
with the transverse MT-curves, but can give crazy artifacts with the longitudinal
MT-curves. This modeling result seems to be very impressive. The illusion appears
that “the TM impedance should be preferable for 2D inversion since it is more
robust to 3D effects than the TE impedance”.

Now we substitute a resistive 3D prism (ρp = 40 000 Ohm.m) for a conductive
one. Here we obtain the apparent resistivity curves shown at the right panel of
Figure 19. We see that the relations change radically: in the 3D model with a
resistive prism the longitudinalρA-curve as well as the transverseρA-curve are
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Figure 15.The Groom–Bailey decomposition: twist-angleβT and shear-angleβS ; vertical bars char-
acterize the data scattering caused by noise in the local impedance, FA – favorable area, for model B
in Figure 3. Solid line – data for the noise-free local impedance.

close to theρA-curves corresponding to the TE and TM modes in the associated
2D model. In this case the TM and TE impedances are equally robust to 3D effects.
Moreover, it is easy to construct a model where the TE impedance is much more
robust to 3D effects than the TM impedance. As an example, Figure 20 shows
the model with a 3D resistive horst. Consider theρA-curves obtained at sites A,
B, C, which are 5, 3, and 1 km from the horst (Figure 21). At all these sites the
longitudinalρA-curves are close to their TE counterparts. But the transverseρA-
curves are dramatically distorted by the around-flow effects. They diverge from
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Figure 16.Model with a two-dimensional horst-like resistive elevation in the sedimentary cover. At
the bottom: the model cross-section (not to scale). At the top: the apparent resistivity profiles for the
TE and TM-modes, profile parameter: period T, 1–0.1 s, 2–1 s, 3–10 s, 4–100 s, 5–1000 s, 6–10 000
s; taken from Berdichevsky et al. (1998).

their TM counterparts and near the horst tip over (here the degree of distortion of
the transverseρA-curve is almost the same as in the case of the longitudinalρA-
curve in the model with a conductive prism). It is clear that the wording “the TM
impedance is more robust to 3D effects than the TE impedance” (Wannamaker et
al., 1989) should be edited. We have to say that “the TM impedance is more robust
to 3D effects caused by conductive structures (that is, by current gathering), but
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Figure 17.Model with a two-dimensional elevation of the conductive asthenosphere. At the bot-
tom: the model cross-section (not to scale). At the top: the apparent resistivity profiles for TE and
TM-modes, profile pararameter: period T, 1 – 0.1 s, 2 – 1 s, 3 – 10 s, 4 – 100 s, 5 –1000 s, 6 – 10
000 s; taken from Berdichevsky et al. (1998).
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Figure 18.Model with a three-dimensional elongated prism of resistivityρp in the first layer (not to
scale), O-observation site; taken from Berdichevsky et al. (1998).

the TE impedance may be more robust to 3D effects caused by resistive structures
(that is, by current around-flow)”.

Finally I give a field example, which confirms this consideration. Figure 22
presents MT-curves that have been obtained along a profile crossing the Precaucasian
foredeep. The profile is 150 km long and its southern end lies on the foot of the
Caucasian ridge. It is remarkable that the longitudinalρA-curves are almost un-
distorted, and their 2D inversion gives the relief of the crystalline basement which
correlates with seismics and drilling data. But the transverseρA-curves are dramat-
ically distorted by intense around-flow effects (currents flow around the high-ohmic
Caucasian Ridge). Their 2D inversion is senseless.
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Figure 19.Apparent resistivity curves at site O for a model with a three-dimensional elongated prism
of resistivityρp (see Figure 18). Solid line: 1D-curves. Dashed line – long dash: 2D-curves for TE
and TM modes, short dash: 3D-curves for longitudinal (L) and transverse (T) polarization of the
electric field; taken from Berdichevsky et al. (1998).

8. On the Static Shift

We have to discern two kinds of the static shift: (1) theρ-effect caused by small
near-surface inliers and (2) the S-effect caused by variations in the integral con-
ductance S of the upper conductive layer (Berdichevsky, Dmitriev and Pozdnjakova
1998). Theρ- and S-effects are exemplified by Figure 23. In the ideal 2D model
they act upon transverseρA-curves and do not touch longitudinalρA-curves. Be-
hind both effects are the same galvanic mechanisms, but they operate in different
frequency intervals. Theρ-effect shifts theρA-curves in the wide frequency range
(including their ascending and descending branches), while the S-effect shifts only
low-frequency part of theρA-curves and does not affect the ascending branch
caused by the resistive bed that underlies the upper conductive layer. Both effects
manifest the same conformal relations between the shifted and normal (remote)
ρA-curves, and can be identified using the phase curves. The basic rule for static
shift correction is simple: theρA-curves should be corrected in the frequency range
where phases change slightly along profile.
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Figure 20.Model with a three-dimensional horst-like resistive elevation in the sedimentary cover (not
to scale), A,B,C – observation sites and their distance to elevation edge; taken from Berdichevsky et
al. (1998).

Note that in the vicinity of elongated structures the longitudinalρA-curves in-
herit properties of the ideal TE mode and experience a far lesser static shift than the
transverseρA-curves do. The typical example is shown in Figure 24. Unfortunately,
in actual practice, we may deal with superposition of elongated structures and
local 3D-inhomogeneities, where not only transverse, but longitudinal apparent
resistivity curves also suffer from theρ- and S-effects.

Though the static shift changes neither the shape of long-period part ofρA-
curves nor corresponding phases, it drastically plagues the interpretation of MT-
data. Success of MT-interpretation depends greatly on reliability of the static shift
corrections. I have to stress that there is no standard universal remedy for static shift



MARGINAL NOTES ON MAGNETOTELLURICS 369

Figure 21. Apparent resistivity curves in the vicinity of a horst-like elevation (see Figure 20).
MT-soundings at sites A,B,C. Solid line: 1D-curves. Dashed line – long dash: 2D-curves for TE
and TM-modes, short dash: 3D-curves for longitudinal (L) and transverse (T) polarization of the
electric field; taken from Berdichevsky et al. (1998).

– the best result can be attained by combining different correction techniques and
controlling them by phase and tipper inversion, and independent geological and
geophysical information. Modern magnitotellurics offers a number of methods for
the static shift correction. These methods reduce to statistic averaging, filtering, dis-
placement to some reference points, mathematical modelling. Overviews of popu-
lar shift correction methods have been given by Jones (1988), Berdichevsky et al.
(1989), Pellerin and Hohmann (1990), Vozoff (1991), Zinger (1992), Berdichevsky
et al. (1998).
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Figure 22.Longitudinal (ρ‖) and transverse (ρ⊥) apparent resistivity curves along profile crossing
the Precaucasian foredeep (top) and geophysical cross-section (bottom), 1,2,3-surface of the Paleo-
zoic basement: 1-from theρ‖-curves, 2-from seismics, 3-from drilling; taken from Berdichevsky et
al. (1998).

9. On Strategy of the Two-Dimensional Interpretation

While the transverse MT curves provide higher accuracy in the 2D-approximation
of conductive structures and higher sensitivity to near-surface structures and to
the lithosphere resistance and deep faults, the longitudinal MT curves provide
higher sensitivity to deep structures and may ensure higher accuracy in the 2D-
approximation of resistive structures. And when the transverseρA-curves suffer
dramatically from the static shift, the longitudinalρA-curves may be almost undis-
torted. The transverse and longitudinal MT curves nicely complement each other:
gaps and shortcomings left by one mode are filled by another mode. In this sense
one can say thatthe TM and TE modes of the two-dimensional magnetotelluric
field satisfy the principle of information complementarity.The complementarity
principle forms a sound basis for the two-dimensional interpretation strategy.

Generally,the most reliable and comprehensive information on the Earth’s con-
ductivity can be obtained by means of the bimodal inversion of the MT data, using
both modes.

The international project EMSLAB gives the dramatic example of imperfection
of the unimodal inversion. Figure 25 presents the two-dimensional resistivity cross-
section through the Juan de Fuca subduction zone plotted with priority for the
TM impedance, which, as the authors say, is “more robust to common deviations
from two-dimensional assumption” (Wannamaker et al., 1989). The most inter-
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Figure 23. At the bottom: different inhomogeneities in the sedimentary cover. Model E: a local
near-surface resistive inlier, model F: a horst-like elevation of resistive rocks, model G: an increase
of sediment series resistivity, O,R – observation sites, the distance OR is 1 km (model E) and 50 km
(models F,G). At the top: apparent resistivity and impedance phase curves in models E, F and G.
Model E shows theρ-effect, models F and G show the S-effect. Solid lines: 1D-curves at central site
O and remote site R, dashed lines: 2D-curves for the TE and TM-modes at central site O; taken from
Berdichevsky et al. (1998).
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Figure 24.Longitudinal (L) and transverse (T) apparent resistivity curves characteristic of the Urals,
ρst – the standard apparent resistivity curve based on the Clobal Magnetovariation Sounding and
voluminous MTS statistics; taken from Dyakonova et al. (1986).

Figure 25.East–west resistivity cross-section through the Juan de Fuca subduction zone constructed
from the unimodal MT-inversion (using the TM mode). CB – Cascadia Basin, NB – Newport Basin,
CR – Coast Rang, WB – Willamette Basin, WC – Western Cascades, HC – High Cascades, DB –
Deshutes Basin. The values of resistivity are indicated in Ohm.m; taken from Wannameker et al.
(1989).
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Figure 26.East–west resistivity cross-section through the Juan de Fuca subduction zone constructed
from the bimodal MT-inversion (using the TM and TE modes). C – the coast. The values of resistivity
are indicated in Ohm.m; taken from Varentsov et al. (1996).

esting features of this model are: (1) a low-resistivity subduction layer beneath
the Coast Range, (2) a subhorizontal conductive layer in the continental middle
crust, and (3) the well-developed conductive asthenosphere beneath the ocean and
its degeneration and disappearance beneath the continent. Later analysis of the
model showed that the sensitivity of the TM impedance to mantle conductivity is
very poor (the screening effect) and only the TE impedance can give a clue to the
study of the asthenosphere (Berdichevsky, Koldaev and Jakovlev, 1992). Figure 26
displays the result of the bimodal interpretation of EMSLAB data performed by
Russian geophysicists (Varentsov et al., 1996). Inversion has been carried out by
Tikhonov’s regularized minimization of model misfit involving (1) phases of the
TM impedance and real parts of the tipper (maximum weight), (2) phases of the
TE impedance and transverse apparent resistivities (normal weight), and (3) lon-
gitudinal apparent resistivities (minimum weight). The upper part of Varentsov’s
model is in gratifying agreement with Wannamaker’s model. The main distinctive
element of the Varentsov model is a continental conductive layer at a depth of
50 km, which can be identified with the partially melted asthenosphere. It hardly
needs to be stated that the new data for the continental asthenosphere change our
idea of geodynamics and thermodynamics of the subduction zone.
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