
M O D E L L I N G  A N D  I N V E R S I O N  - 

P R O G R E S S ,  P R O B L E M S ,  A N D  C H A L L E N G E S  

A R T  R A I C H E  

CSIRO Division of Exploration and Mining, P.O. Box 136, North Ryde, NSW, Australia, 2113 

(Accepted 30 August 1993) 

Abstract. Researchers in the field of electromagnetic modelling and inversion have taken advantage 
of the impressive improvements of new computer hardware to explore exciting new initiatives and 
solid extensions of older ideas. Finite-difference time-stepping methods have been successfully applied 
to full-domain 3D models. Another new method combines time-stepping with spatial frequency solu- 
tions. The 2D model 3D source (2.5D) problem is also receiving fresh attention both for continental 
and sea floor applications. 

The 3D inversion problem is being attacked by several researchers using distorted Born approxi- 
mation methods. Q-domain inversions using transformation to pseudo-wave field and travel time 
tomography have also been successfully tested for low contrast problems. Subspace methods have been 
successful in dramatically reducing the computational burden of the under-determined style of inver- 
sion. Static magnetic field interpretation methods are proving useful for delineating the position of 
closely-spaced multiple targets. 

Novel ("appeals to nature") methods are also being investigated. Neural net algorithms have been 
tested for determining the depth and offset of buried pipes from EM ellipticity data. Genetic algorithms 
and simulated annealing have been tested for extremal model construction. 

The failure of researchers to take adequate account of the properties of the mathematical transforma- 
tion from algorithms to the number domain represented by the computing process remains a major 
stumbling block. Structured programming, functional languages, and other software tools and methods 
are presented as an essential part of the serial process leading from EM theory to geological interpreta- 
tion. 

1. Introduction 

Altbuugh the title of this paper may seem self-explanatory, let me confuse the 
issue by telling you exactly what I had in mind. As each new discovery in modelling 
and inversion methods is presented, it is easy to convey the impression that at 
last, all the significant problems capable of solution have been solved. In fact, we 
know that the principle of conservation of difficulty exists and that each new 
method generates its own set of frustrations. One of the aims of this paper 
therefore is to convey the impression that no matter how brilliant some of the 
methods described at this meeting may seem, there is still very considerable scope 
for new research in modelling and inversion. I also wish to present a few new 
challenges to those who may wish to look at the process of modelling and inversion 
(M & I) in different ways. 

The progress will consist of two parts, one of which is an explicit sampling of 
several new modelling and inversion algorithms. This year has been particularly 
exciting because several 3-D modelling algorithms have appeared which allow for 
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a general variation of subsurface conductivity rather than being limited to a blob 
in an otherwise uniform half-space. Also, 3-D inversion is becoming at last, a 
practical reality rather than just a dream (numerical nightmare?). However, these 
algorithms are not very useful unless we can encapsulate them into reliable com- 
puter software. Thus the other part of this review will cover something which we 
tend to ignore, the tremendous advancement made in software productivity tools, 
including higher level languages, symbolic manipulation software, and structured 
programming. 

Before defining what I mean by "problems", let's examine some of the reasons 
why we might choose a career in EM modelling and inversion. On the basic level, 
it is certainly a much more comfortable existence than working on a factory 
assembly line or other repetitive manual labour jobs. Next, there is ego gratifi- 
cation, the thrill of being the first to find the solution to a difficult logical problem. 
But lastly in my list, there is the desire to understand how to use electromagnetic 
methods to find resources and/or to study the structure of the earth's crust and 
possibly the crust-mantle interface. It is this latter reason which gives rise to what 
I mean by "problem". How do we know that the numbers at the end of the 
computational process are "correct"? 

Most of us regard the work of modelling and inversion as devising mathematical 
and numerical schemes to compute responses. Inevitably, these require machine 
computations. The work of writing programs to produce the numbers is usually 
regarded as a tedious mechanical task, much akin to typing a paper and drawing 
diagrams. It should be, but in fact, it is not. The act of computation is much more 
profound than this. It is a mathematical transformation of the ideas of the model- 
ling algorithm onto the field of numbers of finite precision. These transformations 
are not unique. Each has its own set of rules and conditions, many of which are 
not obvious. As with all transformations, if rules and conditions are violated, the 
results may appear reasonable but still contain gross errors. If the computational 
structure is not reliable, then the numbers and the algorithmic development are 
useless. The problem is how to design computational structures so that our results 
are a correct mirror of how well the algorithm itself simulates the interaction of 
the electromagnetic field with the earth. One way is use old tools and methods as 
best we can. A better way is to take advantage of the power and reliability of new 
languages and more structured procedures. 

Figure 1 is a process diagram of the M & I (modelling and inversion) process. 
It is a series process with feedback loops, only one of which is shown. Series 
process means that if any one part of the chain is in error, the results are unreliable. 
It is possible to achieve apparently reasonable results by fortuitous error cancella- 
tion. 

Since few of us tend to dispute the validity of Maxwell's equations, I have 
assumed that these are the root point of any M & I procedure. We can make the 
procedure of obtaining a solution to these equations as complicated as we wish 
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Fig. 1. Modelling and inversion process diagram. 
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by including anisotropy as welt as letting the conductivities vary with respect to 
field strength and frequency. The next stage is the selection of model-source 
geometry. Current geometries of interest are 3-D, 2.5-D, and thin sheets. The 
first two can be broken down into full domain heterogeneous or localised heteroge- 
neous. 

The next block, solution algorithms, is the major topic of this paper. Typically, 
these include finite elements/differences, integral equations, direct inversion, to- 
mographic reconstruction, image solutions etc. Also included in this block is choice 
of domain (frequency-time and spatial frequency-spatial co-ordinate). 

It is after this point in the chain that many of us suspend rational thought and 
enter a dream world of childlike belief that by scribbling out a few hundred or a 
few thousand lines of Fortran, a magical device called a computer will interpret 
our thoughts and give us numbers which are an accurate simulation of how 
electromagnetic energy has interacted with earth structure. The James Joyce 
"stream of consciousness" style of Fortran programming may express the poet 
within us but then we must also be prepared to regard the output as fantasy. 

If the numbers do not behave according to our physical intuition, we assume 
that the algorithm is in error, or that we may have made a few silly typing errors. 
The adventurous may use unexpected numerical results as the basis for announcing 
"new discoveries". It is only when all else fails that we may possibly stop to 
consider the importance of the computational structure itself on the numerical 
outcome. 
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The really serious problem occurs when a computationally invalid structure 
yields plausible results due either to the fortuitous by-passing of error producing 
parts or fortuitous cancellation of errors. This is similar to putting your trust in a 
seemingly honest used car salesman who makes a good first impression. 

Before reviewing some of the advances which have been made in modelling and 
inversion methods, I would like to discuss some aspects of the computational 
process; and offer suggestions on how to eliminate problems which we may un- 
necessarily inject into the modelling process. I would also like to suggest exciting 
new ways of computing which will make the person-machine interface more trans- 
parent. 

2. Computational Process and Structure 

Suppose for the moment that we were going to be so rational about computing 
that we would actually specify a list of criteria for producing software. Such a list 
might include the following: 

1. The program should represent a "true computation" of the algorithm. 
2. The programming procedure should correspond as closely as possible to how 

we think about the problem; i.e., model specification and the mathematics of 
the algorithm. 

3a SPEED The time required to go from the algorithm to stable computational 
process yielding correct answers should be minimised. (Why is it that there is 
never enough time to do something right the first time but there is always 
enough time to do it over?) 

3b SPEED The program should run as quickly as possible and should not exceed 
available memory. Disk access requests should be minimised. 

4. It should be easy to program correctly changes to the algorithm. 
5. The code should be easy to debug. 
6. The code should be portable. That is it should be able to be compiled the first 

time on any computer with sufficient memory using a standard compiler for 
the program language. The results (aside from minor precision differences) 
should not be machine dependent. 

7. The code elements should be re-usable. That is one should be able to pull out 
various computational procedures for use in other programs. 

8. The code should be easy to understand (at least by the author) a year after 
the program was last changed. (A very severe requirement indeed!) 

Although these goals may seem obvious, there is not a great deal of software 
around in our field which meets them. Structured programming (SP) is a methodol- 
ogy which has grown up over the last fifteen years specifically designed to help 
the programmer meet the goals listed above. 
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A. S T R U C T U R E D  PROGRAMMING 

In most of what follows, I will use Fortran as the basis for discussion since it is 
the most widely used language for serious numerical computation. However, the 
concepts apply to the other procedural languages such as C 1, Pascal, Modula-ll 
etc. 

It has been estimated that failure to use SP methods will, on average, result in 
major errors every 200 lines of executable code. (Of course this doesn't apply to 
programs which you or I would write, only to people less gifted than ourselves!) 
Using strict SP methods will reduce the error rate to about 1 error every 4,000 
lines of executable code. Since there are a number of excellent treatises on SP 
(Dahl et al. ,  1972; Dijkstra, 1976; Linger et al. ,  1979) I will present only a limited 
description of the discipline. 

Modularity, and eliminating side effects are the two main aspects of SP me- 
thodology. I include a third, documentation. Modularity means that the program 
should be broken down into as many self-contained modules and sub-modules as 
is logically feasible with a minimum of inter-module connections. To start at the 
top, the main program should perform no work function other than to call subrout- 
ines to read in data, present the results, plus those which will organise the major 
computational functions. In turn, each subroutine and function should be kept 
quite short by breaking down the work function into sub-modules which are 
themselves divided into smaller modules. 

Now we come to a crucial point, the elimination of side effects. In the case of 
Fortran, side effects refer to globally defined variables which reside in common 
statements. The output of subroutines and functions should be STRICTLY deter- 
mined by its calling arguments and executable statements. There should be no 
variables in Common statements. This means that a change in one subroutine will 
not be able to influence what happens in another subroutine except through explicit 
calling arguments. Failure to observe this convention can wreak enormous havoc 
and seemingly inexplicable behaviour. 

Modularity and the elimination of side effects yield great benefits. Each subrout- 
ine can be tested for correctness independently of all of the others. Code can be 
reused since independent subroutines can be inserted into other programs. Pro- 
grams composed of independent modules can be more easily improved or changed. 
But there is another demon to be eliminated, the GOTO statement. 

It is important that each subroutine has exactly one entry point and one exit 
point and that control flows strictly from entry to exit (hopefully top to bottom). 
This is achieved by using DO loops and IF-THEN-ELSE constructions and ban- 

1 C is a very dangerous language because its commands  are so powerful that  it encourages programmers  
to write cryptic compact  code with hidden complexities. In fact, some people refer to C as "Write  
Only"  code. 
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ning the use of the GOTO statement. The use of GOTO is one of main sources 
of errors and confusion in non-structured programs. 

B. DOCUMENTATION 

Documentation should be the first rather than the last activity in producing a 
program. It is well known that if left to last, it invariably is done poorly, if at all. 
However, there is a more profound reason for doing it first. It is similar to using 
an outline as the first step in writing a paper. By writing statements in the spoken 
language of ones choice into the subroutine as to what is intended and how it is 
to be done, writing the executable program consists of simply filling in the blanks 
with Fortran statements. Debugging is made easier because one can first ask 
whether the intended logic is correct and then whether the subsequent Fortran 
statements actually do what the spoken language statement says it does. Lastly, a 
properly documented program can actually be understood by the writer as well as 
others, particularly after some time has passed since its genesis. The use of 
indentation and blank lines; i.e., making the layout look pretty, can be a great 
aid to comprehension, the same as for written text. 

C. VERIFICATION 

AS mathematical geophysicists, we have a tendency to think of computers as useful 
for computing arithmetical functions. As a result, we do a number of things 
manually that a computer  could do much faster. If a program gives unexpected 
answers, we begin a process of laboriously printing out intermediate computational 
stages hoping to find a reason for the strange behaviour. Since at any stage of the 
computation we have a good idea as to the allowable range of variables, why not 
write functions which will trap values outside these ranges and either print mes- 
sages or take some other form of appropriate action? These trapping functions 
should be written with switches which allow them to be de-activated when we are 
confident that the program is working properly. Another powerful trap is to use 
the bounds checking options on compilers when running test data sets. 

It is important to include these traps in the first few editions of a program 
instead of waiting until the program definitely fails. Very often there are dormant 
errors in programs which may be only weakly activated by test data sets. This can 
create false confidence in subsequent program output which may contain more 
serious errors. Trapping underflows can assist the programmer to place more 
restricted limits on DO loops which can be useful in reducing execution times. 

Lastly, there exist software checking tools which will report on unused or 
undefined variables, non-standard code, and a number of other things which may 
lead to pre-execution identification of program errors. F O R C H E C K  is an example 
of one such product. 
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D. PRECISION 

Analytic solutions often pose hidden precision problems. We tend to believe that 
the computer can compute closed form analytic expressions more accurately than 
it could perform the equivalent numerical integration. The opposite is often true, 
especially when there are no singularities. This belief is a legacy of applied mathe- 
matics courses taught from a 19th century perspective and fails to take account of 
the implications of a machine which performs arithmetic with finite digit numbers. 

Usually, analytic solutions for EM propagation in the earth involve two or more 
expressions of differing sign, which can cause severe precision problems in some 
part of the relevant domain. Numerical integration procedures; i.e., the addition 
of weighted function values, will in many cases be less prone to precision problems 
if we choose the correct methods. This is not to deny the value of analytic solutions. 
Rather it is to point out the importance of exploring the domain of these solutions 
for precision problems. In many cases, it may be possible to use series expansions 
or alternatively phrased solutions to eliminate the precision problem. 

Consider two examples, one trivial, one less so. The roots of the quadratic 
equation ax 2 + bx + c = 0 are usually expressed as: 

-b  - ~ - ~ -  4ac -b  + "V~ - 4ac 
X 1 ~ X 2 

2a 2a 

If b > 4000ac, and the computer carries 6 significant digits then the solution for 
x2 will be meaningless. Careful programming would encourage expressing x2 in 
the form 

2c 
X 2 ~ - -  . 

axl 

The second example comes from an analytic expression for the time-domain 
electric field E on the surface of a half-space of conductivity o- at a distance p 
from a horizontal dipole transmitter. 

E= l--~[erf(~/---JO - 2 ~ / ~ e - X  ] 
2~o-p 3 

where 

X -  °'/xp2 

4t 

for small values of X; i.e., late times or very resistive half-spaces, the above form 
is unstable. Expanding the error function, erf, results in an alternate form which 
should be used for small X. 
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27ro.p 3 e-X (2X) n 
1 (2n + 1)!t 

The promiscuous use of double precision is a dangerous panacea. Although 
double precision would work quite well for the above problem, its use can mask 
deeper precision problems for which double precision is not sufficient. An example 
of this occurs when using Summary Representation methods to limit the mesh 
extent of finite-difference or finite element computations. In Tarlowski and Raiche 
(1984), it appeared that precision problems existed with the numerical finite differ- 
ence part of the solution. It improved as the grid size was decreased but continued 
to remain unacceptable. The use of double precision gave only a moderate im- 
provement. A series expansion of the Summary Representation particular solution, 
which resulted in the elimination of the three leading terms of the series, solved 
the problem. 

In general, double precision should be used primarily for those cases where the 
precision problem is well understood such as the Gaver-Stehfest method for in- 
verting Laplace transforms (Knight and Raiche, 1982). 

The inversion community may feel quite smug about the precision issue because 
of the close attention paid to regularising the sensitivity matrices. However, what 
about the underlying forward solutions? An SVD analysis of the matrices used 
for frequency-domain solutions or implicit time-stepping solutions might be quite 
revealing. This is one of the challenges. 

E .  SPEED OF EXECUTION 

In spite of the  astonishing growth in hardware performance, execution speed is 
still a vital issue. On the more academic side, random search inversion methods 
such as simulated annealing and genetic algorithms applied to 3-D models will 
bring any machine to its knees. Those of us who build software for industrial use 
find that the best modelling program in the world will be unused if it cannot be 
run in a relatively short time on a desktop. There are a number of ways we can 
dramatically decrease CPU times for our programs. 

One method to reduce CPU times is through applying approximation methods 
with adjustable precision. A common example of this strategy is the use of Hankel 
transform algorithms (including Fourier transforms) based upon the digital filter 
coefficients developed by researchers such as Anderson (1979) and Johansen and 
Sorensen (1979). This represented a very substantial breakthrough for compu- 
tational EM geophysics. Another breakthrough (which appears to be much less 
often used) consists of representing computationally intensive functions, their 
integrals and their first derivatives, by cubic spline interpolants. Hohmann (1975) 
used two-dimensional splines to replace explicit Green's tensor element evaluation. 
It was discovered (Gupta et al., 1987) that it was much more efficient to use layers 
of one-dimensional splines than the two-dimensional splines used by Hohmann. 
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Finally, it was shown that it was possible to improve computational speeds by 
more than an order of magnitude (with no sacrifice of accuracy) by using nested 
layers of interpolating functions (Raiche, 1987). 

Procedures which require the computation of a function over an extended 
domain can often be made more efficient by using simple functional forms to 
extrapolate (predict) the function when its behaviour is known to be simple. For 
example, when computing the frequency spectrum of a function for transformation 
into the time-domain, it is usually the case that the low frequency end approaches 
the DC limit in a simple fashion. Empirical analysis of the functional form will 
often indicate a suitable extrapolation such as substituting simple linear or expo- 
nential forms for complex function evaluations before the DC limit is reached. 

Poor structure is an obvious source of excessive computer overheads. Programs 
which were not originally properly structured, which subsequently were then 
"corrected" or given added functionally over time, tend to contain a number 
of unnecessary loops which can greatly extend execution times. Using simple 
restructuring procedures, people in my group are often able to achieve order of 
magnitude reduction in CPU runtimes for software kindly given to us by other 
research groups. If SP methodology is invoked from the start and rigidly adhered 
to, it is very difficult to program redundant loops without being aware of it. 

However, let me be suggest a firm rule at this point. Never sacrifice clarity and 
structure for cleverness. Failure to observe this rule is very costly in the long term. 
If you must be clever, make it very obvious in the program just what it is that has 
been done. 

Matrix operations form the backbone of much of our M & I computing tasks. 
The way in which we phrase these tasks can make literally orders of magnitude 
difference in runtimes. This is because programs which can access pieces of data 
contiguously will run faster (in some cases very much faster) than those which 
have to hop back and forth looking for addresses of randomly accessed data. 
Failure to access data contiguously, when part of the data is disk resident, can 
increase execution times spectacularly. 

Efficient computation of matrix operations is a large field of research in itself. 
Rather than attempting to make this paper into a lecture on the subject, let me 
suggest a very readable book which has become one of the bibles on the subject, 
Matrix Computations (Golub and Van Loan, 1989). 

However, I will use a simple example from this book to lead into another topic. 
It is fairly common knowledge that Fortran stores a two-dimensional matrix by 
columns. Thus if one has the matrix A(I,J) in a double loop, it is much more 
efficient to have J in the outer loop and I in the inner loop since in this way we 
will be accessing data contiguously. However, it is easy to fall into a trap when 
doing something simple such as taking the product of two matrices and storing 
the result. Consider two different codings to construct a matrix which is the 
product of two other matrices. C0,K ) = A(I,J)*B(J,K) 
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for I = 1, N1 for K = 1, N2 
for K = 1, N2 for J = 1, N3 

for J = 1, N3 for I = 1, N1 
C(I,K) = A(I,J)*B(J,K) C(I,K) = A(I,J)*B(J,K) 

end end 
end end 

end end 

The code on the right will access data more efficiently and thus may run much 
faster than the code on the left if N1, N2, and N3 are large. However, from the 
standpoint of developing correct code quickly, the algorithm on the left offers the 
advantage of clarity because it is closer to the style in which the mathematics is 
expressed. Should we write for clarity or speed? 

In this case, the best choice is none of the above because we should not be 
writing code at this level any more than we should have to program at machine 
level. The machine software should be performing these index ordering tasks. To 
a small degree, this is done using the vector commands of Fortran 90. However, 
I believe that we number crunchers should follow the lead of those in the artificial 
intelligence field. We should be using higher order custom built languages. 

F.  HIGHER LEVEL LANGUAGES 

The concept of a higher level language for us would mean that we would specify 
our model, variables, and domains in something close to natural language (English, 
Finnish, Russian, Kiwiese etc.). We would then express the mathematical formula- 
tion in a form that was as close as possible to the actual mathematics of the 
problem. Some procedure specification would be necessary but a lot would be 
done by the language constructs and function libraries. The compiler would pro- 
duce Fortran or C code which could then be compiled on any machine with 
standard compilers. The need for the user to use structured programming disap- 
pears because the structure is in the language. Programming for the user is reduced 
to filling in templates. Consider the current alternative. 

The finite-element method is a powerful, well proven numerical method for 
many problems in engineering and science. Although the theory is fairly simple, 
writing FE programs is a formidable task. The way in which nodes are numbered 
can affect bandwidth significantly, and hence execution times. Correlating node 
numbers with element numbers is a complicated bookkeeping task, especially for 
higher order elements. This becomes even more complicated if one uses a frontal 
solution. Application of different types of boundary conditions, changes to element 
functions, and changes to geometry open the opportunity for programmer-induced 
error yet further. 

At  least 90 percent of finite-element programming consists of tedious bookkeep- 
ing tasks that the computer can perform more reliably and efficiently than we can. 
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Computer languages constitute a whole sub-discipline in computer science. We 
should be working with computing science people to develop specialised languages 
for finite elements, inversion, finite differences etc. 

The development of DPML (data parallel meta-language) is an example of such 
a collaboration between the CSIRO Divisions of Information Technology and 
Atmospheric Research (Abramson, pers. com. and Francis, pers. com.) The goal 
was to build an explicit time-stepping finite difference program for climate model- 
ling which not only made provision for wind dynamics, solar radiation, clouds, 
rain, snow and ice; but also for such things as evaporation through vegetation and 
coupling with oceans. The results for the prototype language, DWARF, were 
published in the CTAC-91 conference proceedings (Abramson, et al. 1991) 

Programming in DPML, is very simple and quite far removed from what we 
might consider a program to be. In a typical program, the user specifies the values 
of constant data, number of physical dimensions (2-D or 3-D say) and the domains; 
i.e., the grids. (The climate model operates on 4 staggered grids.) The user then 
defines the fundamental and derived variables and assigns them to the appropriate 
grid. The transforms which relate the various grids are specified next. Fortran is 
used for the input and output functions so module interfaces must be specified. 

The user then specifies the boundary conditions, the spatial differencing and 
the time-stepping algorithm. Lastly, the physics of the particular model; i.e., the 
mathematical relationships, are expressed in terminology very close to the way in 
which equations are written. A typical program can be written in about 100 lines. 

The DPML compiler produces Fortran code but not in a form which could be 
understood very easily. It targets this intermediate code to specific machines so 
as to achieve maximum efficiency. Fine-grained massively parallel SIMD machines 
such as the Connection Machine or the Maspar organise their data in different 
ways. The DPML compiler will produce intermediate Fortran code to optimise 
the way the grid variables are assigned to the different processors in each case. 
There are separate compiler options for Crays, unix workstations, and machines 
using VMS. 

DPML represents a significant step in developing the concept of special purpose 
languages for problems in computational physics. Special languages for tasks other 
than explicit time-stepping finite differences may be slow to be developed. In the 
meantime, functional languages offer an interesting alternative to what we do 
nOW.  

G. F U N C T I O N A L  L A N G U A G E S  

Fortran, C, Pascal, Modula-II etc. belong to a category known as procedural or 
imperative languages so named because programs written in these languages define 
procedures and the order in which these are to be executed. On the other hand, 
a program written in a functional language is itself a function defined in terms of 
a hierarchy of functions until at the bottom level, the functions are language 
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primitives. These functions are very much like ordinary mathematical functions. 
Starting a program in an imperative language begins a time sequenced series of 
processes defined by the user. Running a program in a functional language is more 
like logging in to an environment and asking the computer to evaluate a function. 

A functional program is a collection of mathematical expressions comprised of 
user defined and intrinsic functions which are well-defined and determinate. They 
define unique mappings between domains and ranges. There are no assignment 
statements so variables, once given a value, never change. Thus, when passed the 
same set of values, a function will always yield the same answer regardless of the 
environment. This establishes what is called referential transparency which means 
that one can freely replace variables by their value and vice versa. 

Thus there are no side effects. Consequently, the order of execution is irrelevant 
since the lack of side effects means that a function can be evaluated at any time. 
One implication of this is that the programs are implicitly parallel. 

In an excellent introductory article on functional programming, Hughes (1989) 
discusses another powerful aspect of FL (functional languages), the "glue". Having 
provided the facility for the programmer to write correct modules quickly, FL also 
supply powerful tools to glue simple modules together. For example, on the micro 
level, FL programs commonly operate on list structures. The elements of these 
lists can be constants but they can also be functions. FL have the facility to perform 
higher order operations on lists as a whole or on designated elements. This enables 
the programmer to build structures of arbitrary complexity from simple elements 
using simple commands. 

On the macro level, another form of FL "glue", called lazy evaluation, makes 
it easy to run two or more programs together with no extra programming. An FL 
program is a function, which can call any other function including another pro- 
gram. Lazy evaluation refers to the fact that a function is memory resident only 
when it is being called so no extra storage is required. By contrast, if we were to 
use the output of one imperative program to feed another imperative program, 
we would have to anticipate the entire range of data and provide a large array to 
store it, or alternatively provide memory for the other program(s). 

The lack of side effects, the elimination of the need to specify flow control, 
and the close relationship with mathematical formulation means that functional 
languages make it easier to write, prove, analyse, maintain and extend programs. 
They allow a level of abstraction over conventional imperative languages which 
separates the programmer from the machine and emphasises problem definition 
and algorithm mathematics over the mechanics of computer solution. Although 
programs written in FL are not necessarily faster than those written in Fortran in 
terms of execution speed, the development time from algorithm conception to 
acceptable numerical results can be an order of magnitude shorter for FL compared 
to that for procedural languages. 

Functional languages are not a new development. LISP and Prolog have been 
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an integral part of artificial intelligence work for many years. In fact, LISP is as 
old as Fortran. What is relatively new is the interest in applying FL to large scale 
numerical problems. Until recently, there had been a problem with execution 
speeds, the so-called copying problem. Since strict FL do not allow variable re- 
assignment, a change to an N by N matrix required the whole matrix to be re- 
copied each time an element was updated. Thus if N = 1,000, there are one 
million matrix copy operations. Recently, this problem has been solved with the 
development of in place operations (termed copy elimination) which do not violate 
FL strictures. 

At the present time, SISAL, developed at LLNL (Lawrence Livermore National 
Laboratory), would appear to be the most mature of the general purpose numeri- 
cally inclined functional languages. Its compiler produces intermediate C or For- 
tran and leaves final machine code generation up to resident compilers. Cann 
(1992) gives examples where large numerical simulation programs from different 
disciplines were run on various Cray configurations in both SISAL and Fortran. 
Sometimes SISAL was faster, sometimes the Fortran was, depending upon the 
program, and in some cases, the specific iteration. SISAL is a public domain 
software package. 

An example of applying FL programming to 2-D finite-element stress compu- 
tations is described in Liu et al. (1992). 

H. OTHER TOOLS -- ARTIFICIAL INTELLIGENCE APPLICATIONS 

I would like to conclude this section with a brief discussion of two types of software 
tools, one of which exists, the other of which doesn't. We tend to think of applied 
mathematics as a cognitive activity of high order. 2 However, activities such as 
analytic integration, differentiation, solving algebraic equations, series expansions 
etc., consist largely of pattern matching and the application of well-defined rules. 
Computers are quite good at pattern matching and applying well-defined rules as 
well as the creation of new rules from input data. 

There are several symbolic manipulation packages now extant (Reduce, Mac- 
syma, and Mathematica to name three) which can perform algebraic and calculus 
tasks. These could play an invaluab!e role for verifying (and indeed, even for 
deriving) complex mathematical equations. Mathematica (Wolfram, 1991), in par- 
ticular is very interesting because the language ties the symbolic mathematics 
facility to numerical evaluation and 2-D and 3-D screen graphics options. It also 
has another powerful aspect. Mathematica makes it possible to perform floating 
point operations with numbers of any digit length, say 72 for example. This feature 
is invaluable for examining the extent of precision problems for small pieces of 
code. Mathematica is useful mostly for analysis rather than practical execution. 

2 It is much easier to build a machine which can derive theorems and manipulate mathematical 
equations than it is to build one to play tennis. 
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Using it to perform entire large numerical simulations would give the user an 
intimate feeling for geologic time scales. 

A tool which would make AI (artificial intelligence) directed numerical compu- 
tation easy to program would be invaluable. A large part of our numerical compu- 
tations consist of approximations which represent a trade-off between the required 
accuracy and speed of execution. Mesh design, and setting the knots for spline 
computation are but two examples of this. These are set before runtime as a sort 
of compromise. Thus some parts are over-specified and other parts are inadequate. 
If we had much faster brains which could take in the information of how selected 
numerical functions developed as they were being computed, and had the ability 
to change the mesh density and extent and knot distribution as the computation 
progressed (in a metaphoric sense, wander around inside the computer memory), 
our programs could be made to have the desired degree of accuracy and efficiency. 
In principle, we could program this in Fortran but it would be very difficult. The 
point is that it would be very useful to have an AI facility to let the computer 
examine itself and vary program control during the numerical computation process. 
The facility should then report on changes. This tool does not yet exist but I offer 
you the challenge of developing it. 

3. Forward Modelling 

The elusive (controversial) goals of inversion depend upon many things including 
the development of fast, reliable, and general forward modelling algorithms. 
Curiously, we tend to lose sight of the fact that numerical forward modelling is 
really an inversion process. The unknowns are the local functions used to represent 
fields and possibly the mesh point locations. The data is a modeller defined 
functional of the primary source field. The moving finite-element (MFE) work of 
Travis and Chave (1989) is one of the few acknowledgements of this fact. Indeed, 
they had to use regularisation methods to preserve element shapes. Their work 
exhibited two other advanced features which are not yet in wide use: the use of 
an automatic mesh generator, and the use of incomplete factorisation methods 
instead of full Gaussian elimination. At this time, there is not much new to report 
on MFE modelling. 

In the last three or four years, forward modelling activities have in fact taken a 
great leap forward. Previously, practical EM forward modelling programs (integral 
equations, compact finite elements) had all been based upon modelling the re- 
sponse of a blob in an otherwise uniform half-space. Druskin and Knizhnerman 
(1988) published a more general, 3-D time-domain finite-difference solution which 
was free from this restriction. (I will refer to this as full-domain modelling.) 
They used a spectral Lanczos decomposition method (SLDM) rather than a time- 
stepping approach to obtain time-domain solutions. This required an implicit finite- 
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difference solution but in H6rdt et al. (1992), it is claimed that the solution time 
for the SLDM increases only as ~ t .  

In what follows, I want to cover some interesting new full-domain work which 
is in the process of being published. The first is Wang and Hohmann's  3-D time- 
stepping finite-difference work (Wang and Hohmann,  1993). This is followed by 
Lee's new approach of time-stepping in the spatial frequency domain (Lee, 1991). 
There has also been a resurgence of interest in the full-domain 2.5-D problem. 
Sugeng and Raiche (1992) have developed a program for the active source minerals 
exploration whilst Unsworth, et al. (1993) as well as Everett and Edwards (1992) 
have been oriented towards sea floor active source applications. This section will 
conclude with some general observations on the current state of modelling with 
suggestions on new directions. 

A. T I M E - S T E P P I N G  W I T H  S T A G G E R E D  G R I D S  A N D  F I R S T  O R D E R  E Q U A T I O N S  

Finite-difference and finite-element solutions for EM induction have been in the 
literature for more than two decades. Until recently, it was standard practice to 
solve for a second order equation on a single grid. 

Yee (1966) published a solution for coupled first order equations defined on a 
staggered grid, which formed the basis for Wang and Hohmann's  (1993) 3-D finite- 
difference time-stepping method. In the frequency domain, Smith (pers. com.) 
and (Madden and Mackie, 1989) have also used the staggered grid approach. The 
approach is best understood by looking at Figure 2. Two of Maxwetl's equations 
expressed in terms of the usual symbols are; 

V x e(r,  t) + / x 0 t h ( r ,  t) = 0 (1) 

V x h(r, t) = o-e(r, t) (2) 

Two grids are defined such that the corner of a cell of one is in the centre of 
the cell of the other. At an initial time, to, an analytic solution is used to compute 
the half-space electric field on the E grid. At time step tl, the electric field values 
are frozen and Equation (1) is used to compute the magnetic field on the B grid. 
At  time step t2, the magnetic field values are frozen and Equation (2) is used to 
compute the electric field on the E grid. This process is continued iteratively until 
the maximum desired delay time is reached. Stokes' theorem can be invoked to 
show that the staggered grid implies that the curl is computed without additional 
discretisation error; i.e., it has the same accuracy as the nodal values on the other 
grid. In theory, this time-stepping method is a very simple and accurate process. 
However, getting it to perform adequately in practice has required a lot of skill 
and work. 

In order to avoid a matrix inversion at every step, Wang and Hohmann used a 
modified Dufort-Frankel scheme which could be made unconditionally stable. 
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When applied to the first order Maxwell's equations, this required that a pseudo- 
wave term be added to Equation (2) which then becomes 

X7 × h(r, t) = oe(r t) + 7Ore(r, t) (3) 

The added term on the right appears to be a restoration of the displacement 
current but in fact its magnitude is considerably larger than an actual displacement. 
Its raison d'etre is to give stability to the solution, y is chosen as a function of the 
square of the ratio of the time step to the minimum grid spacing. If the time step 
is chosen to be too large, the fictitious displacement current can dominate the 
solution so the time step must be increased only gradually. The process of schedul- 
ing time-step increases is discussed in Oristaglio and Hohmann (1984). 

Ideally, one might use absorbing boundary conditions (Engquist and Majda, 
1977) to limit the extent of the grid. Since diffusion processes imply a spread of 
phase velocities, it is quite difficult to define appropriate absorbing boundary 
conditions for this problem. Thus the boundaries at the side and at the bottom 
were taken out far enough for homogeneous Dirichlet boundary conditions to 
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apply. Since Laplace's equation can be used to compute the magnetic field in air, 
an analytic continuation process was used to compute the fields in air. Thus the 
top of the grid could be terminated one layer of nodes above the earth's surface. 

The choice of the initial time step is crucial because if it is too small, the solution 
will take too long and additional errors could develop before the desired end time 
was reached. The maximum to is determined by how long it takes the source field 
to reach the first heterogeneity because the initial values are set assuming a uniform 
half-space. During the earliest time steps, a fourth-order difference scheme is 
used so that the very high frequency components are adequately modelled. As 
these die out, the second order scheme is used. 

Figure 3 illustrates an important type of model which cannot be computed 
using either Sugeng and Raiche's compact finite-element method or Newman and 
Hohmann's integral equation method because the host resistivity is no longer 
restricted to vary only with depth. There is good agreement on the TDEM response 
of this model between Wang and Hohmann's method and the Spectral Lanczos 
method of Druskin and Knizhnerman. 

At the present time, the numerical procedure of Wang and Hohmann is used 
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to compute the total rather than the secondary field. This necessitates a relatively 
fine mesh in comparison to that which would be required for computing the 
secondary field. However, the alternative required computing the primary field 
analytically at every mesh point at every time step which proved to be more 
computationally expensive than using the fine mesh. 

B .  T H E  t - k M E T H O D  -- T I M E - S T E P P I N G  IN T H E  S P A T I A L  F R E Q U E N C Y  D O M A I N  

The use of numerical derivatives necessitated by finite difference/element model- 
ling methods can be an unwanted source of error. To some degree, this can be 
alleviated by the use of fitting splines in the pre-derivative stage, or apparently 
better yet, through the use of staggered grids. Seunghee Lee (1991) sidesteps this 
problem completely by Fourier-transforming Maxwell's equations from the spatial 
domain (x, y, z) to the spatial frequency (or wavenumber) domain (kx, Icy, kz). 
Spatial derivatives in the wavenumber amount to simple multiplication; e.g., 
differentiating with respect to x consists of multiplying the quantity by ikx where 
i = ~- -1 .  

Lee defines two scalar potentials f and g in terms of the vertical magnetic field 
/4z and the vertical induced current Jz where the hat denotes that the variables 
are defined in the wavenumber domain. 

f ( k . ,  ky, kz) " ( k 2 x  + k~ + ~ )  i?tz (4) 
- ~ l  2 2 (kx + Icy) 

g(kx, ky, kz) - kx ]z (5) 
(k 2 + k 2) 

By writing Maxwell's equations in the wavenumber domain and performing 
some simple algebraic manipulations, the currents can be expressed in terms of 
these potentials as 

Jx -- kyf  - kxg (6) 

]y = - k x f  - kyg (7) 

]z = k2 + ~ g (8) 
kz 

Further manipulation then yields the equations of propagation as 

13,oOf = k~x -t- k~y + k 2 (kxJEy - ky~x) (9) 
+ 

l~z (kxE~ - -  k y ~ _ , y )  - kz~z (10) 
IZoO,g - kZxx + k~y 

The procedure for solving these equations consists of: 
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1. At an initial time to, Hz, and J~ can be computed analytically in the space 
domain and transformed into the wavenumber domain, to must be less than 
the time required for the diffusion front to reach the first heterogeneity. The 
potentials f and g can thus be computed from Equations (4) and (5). 

2. The wavenumber current densities ix, Jy, and J~ are computed from these 
potentials using Equations (6-8). 

3. The wavenumber domain electric field 1~ can be obtained either by transforming 
the wavenumber domain current densities into the space domain and multiply- 
ing by the resistivity E(x, y, z) = p(x, y, z)J (x, y, z) and transforming the result 
back into the wavenumber domain - or - performing a convolution fi® j 
in ttie wavenumber domain. The first of these procedures turns out to be 
computationally more efficient due to the use of the FFT. 

4. The resulting electric fields in the wavenumber domain are inserted into the 
propagation Equations (9) and (10) and the values of the potentials f and g at 
the next time step are obtained through the use of an appropriate time differenc- 
ing formula. 

5. These potentials are fed back into step 2 to compute new current densities. 

As with Wang and Hohmann (1993) and Oristaglio and Hohmann (1984), it is 
easy enough to use Euler's method to define a stable time step. However if the 
computation is to take less time than a geological process, methods must be found 
to increase the step size as the computation progresses. Lee (1991) makes an 
analogy with the exponential time decay of a distribution of magnetic dipoles in 
wavenumber domain, and uses this to derive his time-differencing procedure. 

Once again, since absorbing boundary conditions are difficult to apply to dif- 
fusion problems the mesh was extended sufficiently far to allow homogeneous 
Dirichlet conditions to be employed. Also, analytic continuation was used at the 
earth's surface so that the mesh did not have to be continued into the air region. 

Lee (1991) was able to use an FFT method for transformations between the 
wavenumber and spatial domains for a non-uniform, monotonically expanding 
grid through the relationship 

Lee achieved reasonable agreement when comparing his solutions with analytic 
half-spaces, integral equation solution for a block in a half-space, and semi- 
analytical solutions for a sphere in half-space. The problem is that sharp boundaries 
require very high Fourier bandwidths. As the resistivity contrast increases, the 
errors associated with limiting this band increase rapidly. Lee states that the 
maximum practical resistivity contrast for the t - k method is about 10 : 1. 

The t - k method may not appear very useful for modelling structures with sharp 
conductivity boundaries - but it could be very effective for modelling conductivity 
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structures which can be represented by continuous functions. The importance of 
this is discussed in the Inversion Commentary section of this paper. 

C. 2,5-D (2-D c~oLo~Y-  3-D SOURCE) 

In addition to the usual justification that the earth's geology can, in many cases 
be represented by 2-D structure, this model is important for letting us study the 
EM response of complex structures at a much reduced computing cost compared 
to that required by equivalent 3-D models. For controlled source modelling, it is 
necessary to incorporate the 3-D nature of the source field because 2-D approxi- 
mations don't work very well except perhaps for very long wavelength induction 
sources. 

Flosad6ttir (1990) used a local spectral representation to compute the 2.5-D 
EM response from a distant dipole source using 1-D eigenfunctions. In what 
follows, we will concentrate on methods which can be used for all sources at all 
ranges. 

Specifying the model as constant along the y-direction, the problem is usually 
formulated in the spatial frequency (ky) domain; e.g., the magnetic field H(x, y, z) 
is represented as 

1 
I n ( x ,  ky, z)e -ikyy dky H(x, y, z) : -~ 
J o  

Computations for all required fields are then performed in the ky domain. In 
earlier work; e.g., (Lee and Morrison, 1985) the problem was formulated in terms 
of three components of the electric field but this has the conflict that the finite- 
element solution assumes the continuity of all components whereas, in fact, the 
fields normal to a conductivity boundary are discontinuous. An alternative (Sugeng 
and Raiche, 1992) and (Unsworth et al, 1991), is to formulate the problem in 
terms of the along-strike components of the electric and magnetic field Ey and 
Hy. In addition to reducing the dimensionality of the computation from 3 to 2, 
one solves for fields which are everywhere continuous. 

Defining the primary field as that due to a uniform half-space, the best approach 
is to solve for the primary field analytically and formulate a finite difference/ele- 
ment solution for the secondary fields Ey and Hy. Then after manipulating 
Maxwell's equations in the frequency-domain (Hohmann, 1987) the other two 
components of the magnetic field can be found in the ky domain from 

1 (-ikyOxI~y + O'Oz~y + ikyo'aE p) a Sx=  

and 



M O D E L L I N G  A N D  I N V E R S I O N  179 

1 
I~Sz = ~ (-ikyOzt)5 + CrOxJ~5 + ikyo'oF.~) 

where the hat indicates transformed quantities, /~f, is the ith component of the 
electric field in the ky, domain, 

= --iWlXOO'a 

and 

k 2 = k 2 - k 2= ky 2 + ia)/x0o'. 

o" is the actual conductivity and ~ra is the anomalous conductivity; i.e., the differ- 
ence between o- and the half-space conductivity. 

In a collaboration initiated by Hohmann (pers. com.) and Rijo, Sugeng and 
Raiche (1992) solve for/~/y and/~y using the frontal finite-element method (Irons, 
1970) with isoparametric elements. This is similar to Gaussian elimination except 
that the global matrix is never assembled. Instead, the elimination procedure is 
performed during the assembly of columns of elements (the front). Then only the 
non-zero elements of the matrix are actually stored. The back substitution process 
is performed in the usual way. Thus, the number of arithmetic operations is greatly 
reduced. 

Sugeng and Raiche were interested in constructing software to model the re- 
sponse of 2.5-D models for a wide range of time-domain EM systems, necessitating 
frequency-domain solutions in the range from 1 Hz to 100 kHz. The ratio of Ey 
to H~ decreases linearly with frequency so that at low frequencies, this ratio can 
be several orders of magnitude. In principle, the solution could be ill-conditioned. 
However, in the ky domain, this ratio is much smaller, almost always below 100 
for the models studied. For this as well as computational efficiency reasons, the 
derivatives were performed in the ky domain rather than in the spatial domain. 

Sugeng and Raiche compute 25 ky domain solutions for ky values ranging from 
10 .5 to 1, at a density of five per decade, and integrate the subsequent spline 
representation. The resulting frequency-domain solutions are computed at a den- 
sity of six per decade, splined, and transformed into the time-domain using the 
fast Hankel transform coefficients derived from Johansen and Sorensen (1979). 
The response of different time-domain systems is constructed by convolving the 
step response with the transmitter waveform and receiver windows in the time 
domain. 

Both Unsworth et al. (1991) and Everett and Edwards (1992) were interested 
in computing the EM response of a mid-oceanic ridge for transmitters and receivers 
on the ocean floor. Both used linear finite elements. This problem is easier than 
the air-ground problem because the sea-water acts as an absorber. The absence 
of an air layer apparently permitted the use of the Gaver-Stehfest inverse Laplace 
transform algorithm in the time-domain program of Everett and Edwards. This 
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requires considerably fewer "frequency-domain" solutions per time point than is 
the case with the inverse sine transform as well as allowing the computation to 
avoid complex arithmetic. In practice, however, the CPU saving is negligible since 
one must still construct a frequency-domain representation sufficiently broad to 
serve as a basis for the time-domain range of interest. 

Unsworth also used the absence of an air layer to advantage by applying a 
mixed boundary condition (in essence an infinite exponential element) instead of 
requiring that the mesh extend sufficiently far from the target to allow the appli- 
cation of a homogeneous Dirichlet boundary condition. His finite element program 
had another interesting innovation. 

Instead of solving coupled equations for/~y and/~/~, he took advantage of the 
fact that/~y would be dominant. Thus, he initially set H~ to zero, solved for/~y, 
and then used this to solve for/:/y. He then used/-]r~ to update for a new E~ and 
continued this iterative procedure until convergence. This approach greatly re- 
duced storage and CPU times. In principle, this is a subset of a more general class 
of iterative matrix solutions which could be tried. 

In some preliminary comparisons, the frontal finite-element solUtion of Sugeng 
and Raiche and Unsworth's iterative finite-element solution with absorbing boun- 
dary conditions required similar computation times. 

D. COMMENTARY 

Mesh design is still a major question. How far do meshes need to extend? How 
fine do they have to be as a function of conductivity structure? To what degree 
will increasing the order of the local functions allow the use of coarser meshes? 
How does this affect time-stepping procedures or the required spectral density for 
the Lanczos spectral decomposition (Druskin and Knizhnerman, 1988)? 

The moving finite-element work of Travis and Chave (1989) is a very interesting 
first step in this direction. Although it ignores the above questions, it answers a 
related one. Given N mesh points, what is the most suitable arrangement for 
them? It would be interesting to see the MFE work extended to the 3-D time 
domain. In principle, the mesh would simply move with the induced currents as 
they developed with time. There is a commonality with problems in computational 
fluid dynamics which we should be exploring. 

Sugeng and Raiche (1989) showed that by defining the conductivity at the 
boundary as the geometric average of the volume-weighted conductivities of sur- 
rounding elements (nth root of n products), the allowable conductivity contrast 
increased from 300:1 to over 10,000:1). In essence, this corresponds to using a 
smoothly varying conductivity contrast and then contracting it back to a line 
boundary. There is still a tendency to use arithmetic averages in many other 
modelling programs. Consider that if the conductivity of one element is 1 and that 
of its neighbour is 10 -4, does a conductivity of 0.5 o r  10 - 2  represent the better 
average? 
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What is the best way to terminate a finite-element or finite-difference mesh? 
This is crucial in 3-D but it is even important in 2-D. In a paper to be given at 
this meeting, Sugeng and Raiche simply use a very large mesh and use homogene- 
ous Dirichlet conditions for the secondary field. Unsworth et al. (1991) is somewhat 
more sophisticated by using a mixed boundary condition equivalent to an infinite 
element at the boundary. A third possibility would be the use of Summary Repre- 
sentation as a hybrid method. Raiche and Tarlowski (1984) showed how to model 
the response of a heterogeneous region in a host which could consist of uniform 
blocks of different conductivities. Analytic solutions apply to the uniform blocks. 
Finite element/difference methods need be used only in the heterogeneous region. 
In principle, this could be applied to 3-D modelling with the aid of symbolic 
manipulation software such as Mathematica. 

Let me offer the challenge of a very useful, but time consuming research project 
which would consist of phrasing various forward modelling algorithms in terms of 
an explicit inversion problem for node positions as well as function coefficients. 
In particular, it would be invaluable to perform SVD decompositions so that we 
could understand the interaction of node position with function coefficients 
through the eigenparameters. The eigenparameters of such an inversion may 
contain certain combinations of nodes which are non-local, especially for com- 
plicated anomalous structures. This may explain why it is so difficult to determine 
the best node spacings simply on the basis of skin depth. 

The last issue concerns the best way to model in the time domain. Time-stepping 
is possibly the most direct way of time-domain modelling and also offers the 
opportunity to extend the work of Zhdanov and Frenkel (1983) on inversion as 
reverse time migration. Wang (pets. com.) has suggested treating the data residuals 
at each receiver source as artificial sources which radiate backwards in time. There 
are some disadvantages however. The fact that the explicit time-stepping scheme 
may be stable does not mean that the correct answer will result. Round-off errors 
can grow with each step since each computation depends upon all of the preceding 
ones. There is a lot of art in getting the 3-D time-stepping solution to work. 

In this regard, the spectral Lanczos decomposition method (SLDM) of Druskin 
and Knizhnerman would appear to have an advantage. Because it is a spectral 
method, the errors do not propagate forward with time. Also, it is believed to be 
faster since computation time grows only as ~tt. However, it is not clear how one 
could perform Wang's reverse time migration scheme using SLDM. 

Lee's t -  k method is quite interesting but the fact that large conductivity 
contrasts will blow out the computing times because of the need for a larger k- 
band is disconcerting. However, it may be regarded as an important advance for 
computing the response of structures with smoothly varying conductivity. 

Computing time-domain solutions by transforming frequency-domain solutions 
has several advantages. Firstly, it is easy to add new transmitters and new wav- 
eforms at minimal computational costs. Secondly it is a spectral method so each 
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frequency solution can be computed independently. Thus representing the fre- 
quency spectrum as a spline function constrains the error propagation in one part 
of the spectrum from propagating as a function of time. Most models can be 
computed using 30 frequency-domain solutions. Both Newman and Hohmann 
(1986), and Sugeng and Raiche (1989) have demonstrated that even for very high 
contrast models; i.e. greater than 10,000 to 1, six frequency-domain solutions 
per decade provide adequate sampling. Indeed, as spectrum prediction methods 
improve, even fewer FD solutions will be needed. Certainly we should be experi- 
menting with the coupled first-order equation, staggered grid method of Smith 
(pers. com.) in the frequency domain. 

Direct time-domain methods have the disadvantage of an additional mesh vari- 
able, the time step. How is this affected by conductivity contrast? To date, no 
high conductivity contrast models have been run and no late time solutions have 
been published. However, frequency-domain solutions have had a much longer 
maturation time than have direct time-domain solutions so making a definitive 
judgement at this stage is premature. The important point is that new ground has 
been broken and there is considerable room for developing these new methods 
further. 

4. Inversion 

Having previously discussed the inversion aspects of forward modelling, this sec- 
tion will concentrate on the inversion problem of estimating conductivity structures 
from EM data. I want to concentrate on new styles of inversion which have not 
yet been published rather than review the body of existing published work. Having 
said this, I would be remiss in not mentioning that details of two outstanding 
advances in inversion methodology, which were discussed at the 1990 Mexico 
meeting, have since been published: the approximate inverse method (Oldenburg 
and Ellis, 1991) and the Smith and Booker (1991) rapid inversion for magnetotel- 
luric data. Both of these are undergoing maturation; i.e., being tested on a number 
of problems. 

In what follows, I discuss Pellerin's version of distorted Born inversion followed 
by Ki-Ha Lee's innovative work in the Q-domain. The profile analysis approach 
of Silic is presented as a counterpoint to the heavily mathematical paradigms. 
Methodologies based on metaphors of Nature; i.e., genetic algorithms, simulated 
annealing, and neural nets are the subject of section 5. 

A. DISTORTED BORN APPROXIMATION INVERSION OF TIME-DOMAIN SOUNDINGS 

The motivation behind this work (Pellerin, 1992) is to use 3-D inversion methods to 
improve 1-D resistivity estimates from time-domain sounding data. Time-domain 
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soundings are made over each column of blocks comprising the model (Figure 4) 
and the results converted to frequency domain. The model consists of block 
structure anomalies in an otherwise uniformly layered half-space. The dimensions 
and discretisation of the heterogeneous region are fixed throughout a given inver- 
sion run. The initial guess for the 3-D model is obtained using either the image 
solution of Eaton and Hohmann (1989) or common 1-D layered earth inversion 
methods. The resistivity and thickness of the layers are also obtained using these 
initial 1-D methods. 

The basic concept of this inversion is to realise that the Frechet derivative is 
inherently contained in the integral equation formulation. The perturbed vertical 
magnetic field, Hz +, arising from a change in the conductivity of the anomalous 
blocks, 6o-, can be computed from the previous magnetic field Hz using the integral 
equation: 

Hz+(ro) = Hz(ro) + f d r '  (11) 

where C, is the 3-D (not the layered-earth) magnetic Green's tensor, E is the 
previously computed total electric field in the target, ro and r' are the "obser- 
vation" and "source" points respectively. E is assumed constant within each cell. 

The Born approximation consists of assuming an initial value for the electric 
field derived from the 1-D estimates and neglecting the second order term 6E6o-a 
and updating the field iteratively. The distorted Born approximation updates the 
Green's tensor at each iteration as well as the electric fields. Thus it can recover 
a much wider range of conductivity contrasts. 

From Equation (11), it can be seen that Di4 , the Frechet kernel relating the 
change in response of the ith data point, 6Hi, to the change in conductivity in cell 
j, 6~., is simply 
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Di,y = V O I j [ G H ( r l ,  r])" E](rj)]z (12) 

Initially, the inversion begins with the 1-D layered earth magnetic Green's 
tensor. However,  since a new electric field is computed at each inversion iteration, 
the 3-D magnetic Green's tensor elements are computed by invoking reciprocity. 
In particular, the z component of the magnetic field at to, Gz/(ro, r ' )  due to the 
ith component of a unit electric dipole at r '  is related to the electric field Eez at 
r '  due to a unit magnetic dipole at r0 as 

1 
Gzi(ro, r ' )  = - - -  Eez(r' ,  ro) 

ico/x 

Thus as new electric fields are computed, the Green's  tensor is updated. In 
discretised form, Equation (11) becomes 

M 

aHi = H~- - He = ~ De,j6o'j. (13) 
j = l  

In what follows, H,d is defined as the ith data point, H~ as the data value after 
k iterations, and e~ as the residual error. 

M 

Hi[ +1 = H~ + ~ D~j&r~i (14) 
j = l  

e/k = H/a - H/k . 

Thus the expression for the error residual to be minimised is: 
M 

e k - e l + 2 =  E D k a d  (15) 

and for l -- 1, N 

k Fi,I+M = ~i,l ¢~mki,l+M = e k + l  

where 8ia is the Kronecker delta. This leads to the minimum length solution 

8m/~ = ~T(ppr)- laek 

j = l  

Three regularisation schemes were tried for the least squares solution of Equa- 
tion (15). The first (Fullagar and Oldenburg, 1984) creates an under-determined 
problem of dimension M + N by using the future residual e~ ÷~ to augment the 
Frechet kernel such that 

M+N 

el= E rfjamf 
j = l  

where for j = 1, M,  

F~j = D~j, Bmf = ao~y 
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Philosophically, this approach was interesting because it explicitly attempted to 
minimise the future error rather than setting it to zero. Unfortunately, in spite of 
attempts to scale the matrix, it produced steepest descent step sizes which were 
far too small for practical inversions. 

This approach was abandoned in favour of two, more traditional approaches. 
The first, referred to as the smallest step solution, was the familiar Marquardt 
method where one minimises the functional 

E = ere + A~mr6m 

The second approach, called the flattest step solution, is basically a second order 
version of the recent craze for smoothness. Instead of minimising the roughness 
between adjacent parameters, Pellerin minimised the roughness in the change of 
adjacent model parameters by minimising the functional 

E = ere + h(A~m)r(A~m) 

The inversion method consisted of first obtaining an initial parameter estimate 
using either the 1-D image inversion of Eaton and Hohmann or layered-earth 
inversion. At each iteration, an integral equation was used to compute the electric 
and magnetic fields, the Frechet kernel and the updated residual. Then either the 
traditional Marquardt method, or the flattest step method was applied to update 
the parameters. 

In comparing the smallest step and the flattest step methods on artificial data, 
Pellerin found that when the Lagrange multiplier was sufficiently reduced, both 
methods converged near the same solution. When h > 1, the smallest step method 
creeps towards a solution. The flattest step method is the more robust of the two 
if the starting model is far from the true model but the final solution exhibits 
horizontal banding as could be expected. Since the aim of her work was to develop 
a scheme to refine 1-D inversions, where the starting model could be expected to 
be near the final model, Pellerin used the smallest step method. 

Pellerin applied her methodology to a number of low contrast problems, one 
of which is shown in Figure 5, representing a conductive contaminant plume. The 
inversions which used initial estimates from half space inversions resolved the 
location of the plume bottom but tended to shift the top of the plume upwards 
and overestimated the plume resistivity. The half-space resistivity was, of course, 
well resolved. The starting model based on image inversion does the reverse. The 
top of the plume and its resistivity are well resolved but the base of the plume 
and the host resistivity are not as well resolved. 

There are a nufnber of other interesting issues in her work such as stopping 
criteria and data partitioning which are still under investigation. 

Newman (1992) used Born inversion also (Born again) to invert single frequency 
data for cross hole transmitters and receivers. Although much of what he did was 
similar to the work of Pellerin, he used different regularisation procedures. Be- 
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Fig. 5. Pollution plume model, 

cause of the similarity and the fact that he will be presenting his work in this 
session (Newman, 1992), I will not include details here. 

B. Q DOMAIN -- A PSEUDO WAVE EQUATION APPROACH 

For distances beyond a few metres, the conductivity of the earth limits EM 
propagation to being a diffusion process. In addition to the implied lack of resol- 
ution, this poses a concomitant computational difficulty. Fields that satisfy the 
diffusion equation are global in the sense that their value at any one point of 
space-time, is a consequence of the entire history of the field in that domain. 

The Q-domain inversion method of Lee and Xie (1993) starts from the point 
that diffusion fields can be related uniquely to a fictitious wave field, defined in 
what is termed the Q-domain, through an integral transform. Thus it should be 
possible to analyse EM data using techniques developed for seismic data analysis. 
The basic idea of Q-domain inversion is to transform magnetic field data into 
pseudo-wave field data, compute travel times, and then use tomographic methods 
to construct a conductivity map. 

In the frequency-domain, one cannot help but notice that the diffusion equation 
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can be transformed into the wave equation by replacing the real angular frequency 
oJ with a pseudo-frequency v defined as v = ~/i~o. This has prompted several papers 
such as Isaev and Filatov (1981), and Filatov (1984) to investigate the link between 
scalar diffusion fields and the corresponding wave equations in the time domain. 
Lee and Morrison (1989) generalised the relationship to include vector EM fields. 

The starting point is the time-domain equation for the magnetic field, H(r, t) in 
a homogeneous region (ignoring the displacement current) 

~72H(r, t) - / x ~ r )  0 n(r ,  t) = - ~7 × S(r, t) 

where H(r, 0) = 0. An equivalent pseudo-wave equation can be written in the Q- 
domain as 

0 2 
~TZU(r, q) - / ~ r )  ~ U (r, t) : F (r, q) 

Oq ~ 

with 

u(r, 0) = 0; a__ U (r, t)lq=o 
Oq 

If the same boundary conditions hold in each domain, then Lee and Xie (1993) 
show that the magnetic field H and the wave field U are related uniquely as 

H(r, t) = ~ qe-q2/4~U (r, q) dq (16) 

This wave field propagates with a velocity which is inversely proportional to the 
square root of conductivity. Thus if one can use tomographic techniques to map 
the slowness (square root of the conductivity permeability product), the conduc- 
tivity map follows directly. 

There were two essential steps to making this procedure work. The first was to 
find a method to invert Equation (16) in order to be able to transform time- 
domain magnetic field data into Q-domain waveform data. The second was to 
develop a travel-time tomography algorithm capable of handling high conductivity 
contrasts. (In seismic applications, slowness contrasts seldom exceed a factor of 
two.) 

The inversion of Equation (16) is an ill-posed problem due to the strongly 
damped kernel. Lee and Xie solved this problem using a singular value decomposi- 
tion technique. First, Equation (16) is discretised in q and t using the trapezoidal 
rule and collocation to produce the matrix equation, 

H = A U .  (17) 

An important point is the discretisation of t into n values ti where 



188 ART RAICHE 

( i -  1)AT 
t~- 

(n  - 1) 

and AT is the time-window occupied by the time-domain window. In previous 
work, Lee and Morrison (1989) developed an inversion for Equation (16) which 
required four decades of time-domain or frequency-domain data with a maximum 
allowable noise level of 3 percent. Since no EM system yet exists with this wide- 
band capability, a better transform method was needed. By expressing A in the 
singular value decomposed form A = W D V  ~, the regularised solution of Equation 
(17) can be formally expressed as 

U = V ( D  2 + od) -~ D W T H  

Lee and Xie used the "quasi-optimality' method proposed by Leonov (1978) to 
compute a. In this method o~ is chosen as the smallest positive root of the equation 

o da [ \ a /  + k=l~ (a + 3,2) 4 = 0 (18) 

where ~/is the norm of the residual of the null space of A, Ak are the p non-zero 
eigenvalues of A, and ak are the corresponding non-zero members of D W T H .  The 
parameter ~ depends upon H. When the data are noisy, ~/will increase resulting 
in a smoother wave field solution with decreased resolution. 

In order to test the above transform from time domain to Q-domain, Lee and 
Xie (1993) computed time-domain magnetic fields from a magnetic dipole in a 
whole space, computed the wave field in Q-domain, and compared the travel 
times with those computed directly from the time-domain data. This was done for 
a number of values of a, and different time windows. The agreement was good 
provided that a was picked within the minimum and maximum bounds of the 
solutions to Equation (18). In particular for time windows of only 1.5 decades, 
spatial resolutions of better than 1 percent of transmitter-receiver separation were 
obtained. Added noise did not significantly affect travel time estimates as long as 
the noise level was kept under a 3-5 percent limit. 

Non-linear methods are necessary for constructing a tomographic algorithm for 
EM inversion because linear ray paths cannot be used. Since the slowness model 
depends on the ray paths and the ray paths depend on the slowness model, this 
becomes an iterative process. Assuming a 2-D model such that x is the horizontal 
propagation direction and z the depth, a discretised slowness model is constructed 
which is piecewise linear in x and cubic spline continuous in z, in each element. 
Thus the ray paths are smooth and can bend continuously. Using Fermat's principle 
that the travel time between any two points must be a minimum, a two point ray 
tracing algorithm is used to construct the paths. A consequence of the method is 
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Fig. 6. Cross-hole inversion target for Q-domain inversion. 

that the rays can move only in the positive x-direction so that backscattering is 
not allowed. 

Having constructed the ray paths, the travel time data is used to construct 
an updated slowness model. This once again is a nonlinear process requiring 
regularisation methods. Interested readers are referred to the derivation in Lee 
and Xie (1993). 

In order to test the method, Lee and Xie used the three layer model shown in 
Figure 6 which was rotated 60 degrees so as to simulate a dipping dyke between 
two boreholes. The conductivity values on the diagram represent a conductivity 
contrast of 10 to 1, the highest contrast studied by Lee and Xie. 

Lee and Xie constructed Q-domain data sets from magnetic field data computed 
in the time range 0.01 to 0.5 ms. They were able to recover both the location of 
the dyke as well as the three conductivities quite well in 120 iterations requiring 
about 5 hours CPU time on a SPARC2. 

The results of Lee and Xie are quite impressive; and they leave some interesting 
questions to research. Can this method be extended to work for conductivity 
contrasts in excess of 10 : 1? Will it work for more complex models? Would it be 
better to abandon Q-domain and use the new tomographic procedures directly in 
time domain? 

C .  T I M E - D O M A I N  P A T T E R N  R E C O G N I T I O N  S T U D I E S  

Over the past decade, exploration geophysicists have derived empirical rules for 
analysing time-domain EM data sets. These are based largely upon bumps and 
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cross-overs (sign changes) in the profiles (at specific delay times) of vertical and 
horizontal components of the magnetic field and its time derivative. However, 
using raw profile data alone, it is difficult to distinguish between responses due to 
a broad step in the overburden from those due to deeper conducting bodies. 
Silic (pets. com.) has developed a method based upon combinations of spatial 
derivatives, which has proven effective in separating the responses of different 
conductors both in analog model studies and field data. The background to this 
work can be found in Silic (1989) 

Silic compared the response of a line current source in a conductive half-space 
with that of the same source in free-space. As can be seen from Figure 7, the two 
responses are very close for delay times, t,, > o-/zr 2 where o- is the half-space 
conductivity and r is the distance between the receiver and the buried line source. 
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The basis for this is the fact that if the receiver is in air, then at any specific 
delay time, the EM diffusion equation reduces to Poisson's equation. Thus, the 
time-domain response can be accurately modelled by DC current sources, the 
location of which move with time. When discrete conductors are present, these 
equivalent DC current sources will become stationary at the location of the conduc- 
tor during a delay time window, the width and position of which depend upon 
relative conductivities and geometry. This is the basis of Barnett's DC current 
filament inversion method (Barnett, 1984) which has proven to be quite successful 
for locating thin sheet targets. 

Thus, t, > o-p.r 2 corresponds to a regime where equivalent DC currents are 
stationary within discrete conductors. Moreover, potential field theory can be 
invoked to show that the horizontal derivatives of the response can be computed as 
the weighted sum of edge currents where the Weights correspond to the appropriate 
free-space Green's function. 

Silic used analog modelling to obtain the time-domain response of a number of 
simple models. Figure 8 shows the response of different horizontal derivative 
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combinations of the time-domain response of a vertical dyke. The half-width of 
the second derivative responses is proportional to the depth of burial. Figure 9 
shows the responses over a finite block model. The peaks appear over the edges. 
The responses of the two vertical edges add linearly consistent with the DC regime 
assumption. For these simple targets, all of the derivative combinations give useful 
information. 

From analog model data for the more complicated structure shown in Figure 
10, only the indicator (O2Hz/Ox2) 2 + (02Hx/OX2) 2 shows a pattern which is diagnostic 
of the whole model. Peaks appear over the edges of the overburden steps. There 
is a long wavelength feature corresponding to the deeper vertical dyke. 

Analog model data is one thing, field data another. The presence of temporal 
and geologic noise makes it difficult to perform meaningful spatial derivatives on 
field data. However Silic smoothed his data using cubic spline techniques which 
minimised the power in the higher derivatives. When applied to field data from 
exploration surveys, Silic's interpretation technique has successfully identified drill- 
ing targets in a complex, deformed terrain. 

This methodology is significant for a number of reasons. Firstly it has shown 
the value of potential field edge-finding techniques for qualitatively interpreting 
the time-domain EM response of complicated conductivity structures where more 
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than one conductor is present. Secondly, it can provide starting models for more 
quantitative mathematical inversion methods. Silic is currently working on DC 
inversion techniques to make the method yield more quantitative estimates of size 
and depth. 

D .  COMMENTARY 

Consider an inversion problem with ND data points and MP unknown parameters. 
Suppose, for the moment ,  that we represent the linearised part of an inversion by 
the linear equation 

Au = g (19) 

where the matrix A contains the physics of the problem, u is an MP dimensional 
vector containing the unknown model parameters,  and g is an ND dimensional 
vector containing the data or some appropriate functional thereof. Let  us also 
assume for the moment  that our  model consists of a 2-D or 3-D half-space divided 
into MP cells and that our inversion problem is to find the conductivity of these 
cells from ND data points. In general, this will be an under-determined problem, 
even if MP < ND. To paraphrase Lanczos (1961), this is because the matrix A is 
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not activated in all the dimensions of the spaces spanned by u and g. One way to 
solve this problem is to increase the activation of A by including model prejudice. 

This strategy was employed in a classic paper on stochastic inversion by Franklin 
(1970). He augmented Equation (19) by including an unknown noise vector n. 

Au + n = g (20) 

The unknowns, u and n are regarded as samples drawn from two random pro- 
cesses. Equation (20) now expresses the stochastic relationship between signal, 
noise, and data processes. In this context, inversion consists of asking which 
random variable obtained from the data process is the best approximation to the 
random variable acted on by the signal process? What does best mean? 

Working from a signal processing point of view, Franklin (1970) chose "best" 
as finding a solution using an autocorrelation function, R1, which has been con- 
structed from some a-priori conviction concerning the size and smoothness of an 
admissible solution. 

Assuming that the signal and noise processes are independent, Franklin (1970) 
thus computes the best estimate for the model u in the form: 

u = R I A T ( A R I A  r + Rz)-~g (21) 

where Rz is the noise autocorrelation. Assuming white noise of small amplitude, 
this noise correlation matrix has the form R2 = AeI where I is the identity matrix. 
Thus Equation (21) can be expressed 

u = R ~ A T ( A R ~ A  r + Az/)-lg (22) 

which looks very much like regularised inversion solutions. Choosing various forms 
for R~ gives the inversion great power to explore different model constraints. 
Indeed, we can see that several of the various inversion paradigms which are used 
in EM are simply special cases of Equation (22). The autocorrelation function R1 
can be used to force model coherency or to enforce smoothness constraints. 

We can phrase the ideas of Equation (22) in a more familiar way as follows. 

~b(m, rood, do) = f (m,  lid - doll) + ,~g([lm - moll) (23) 

The first term on the right, f represents choosing a set of model parameters, m 
which minimise the misfit between model data d and observed data do, subject to 
appropriate regularisation techniques. The second term, g seeks to minimise the 
deviation of the inverted model parameters m from a model mo with pre-specified 
properties. A is a Lagrange multiplier. Often, the model misfit component tries to 
enforce smoothness constraints on adjacent cell conductivity values, producing the 
smoothest model consistent with a level of data misfit. 

Using a non-zero A corresponds to adding geological prejudice to somehow 
compensate for the lack of uniqueness caused by data noise and incomplete data. 
It is equivalent to solving an equation by specifying a particular solution and 
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adding it to the general solution of a homogeneous equation. To quote from 
Lanczos (1961): "While this procedure is formally correct, it has the disadvantage 
that the 'particular solution' from which we start, can be chosen with a high degree 
of arbitrariness. This hides the fact that our operator gives a very definite answer 
to our linear problem in all those dimensions in which the operator is activated, 
and, on the other hand, fails completely in all those dimensions in which the 
operator is not activated. But then it seems more adequate to the nature of the 
operator to give the unique solution in all those dimensions in which this solution 
exists and ignore those dimensions which are outside the realm of the operator. 
If we give some particular solution, this condition is not fulfilled because in all 
probability our solution will have some projection in the field V0 which is not 
included by the operator." 

Thus, performing a grossly under-determined inversion, constrained by requir- 
ing the smoothest model, is by no means the least presumptuous solution. It is, 
in fact, a very strong assumption which will yield solutions outside the space 
spanned by the operator which links the physics of the process to the data. 

If we solve for the natural inverse of Equation (19) (equivalent to setting A -- 
0 in Equation (23)) using the Jupp SVD regularisation algorithm (Jupp and 
Vozoff, 1975), we can gain a great deal of insight into the inversion process 
regardless of whether MP < ND or vice versa. This regularisation method is based 
upon the NSR (noise to signal ratio) and the natural eigenparameters of the model 
rather than preconceived conductivity distributions; i.e., it does not act outside 
the space spanned by A in Equation (19). In essence, it damps the effect of 
eigenparameters whose relative singular eigenvalue (normalised with respect to 
the largest one) is below a specified threshold. Initially, this threshold is set quite 
high (usually above 10 percent) and is allowed to decrease down to the NSR value 
as a function of data misfit. Thus, in the early stages, only the most important 
eigenparameters determine the solution path. The less important eigenparameters 
come into play, only as the data misfit decreases. The only remnant smoothing 
occurs as a result of excluding the effect of eigenparameters whose relative singular 
eigenvalue is below the estimated NSR. The point is that this type of smoothing 
(including the selection of the Marquardt parameter) is a data driven consequence 
of the model rather than a consequence of the ideology of the person doing the 
inversion. 

Moreover, we can use this method to adjust the grid to reduce the level of 
non-uniqueness. The eigenparameters corresponding to large eigenvalues contain 
information as to which combinations of physical parameters are important in 
fitting the data. Similarly, those corresponding to very small eigenvalues indicate 
which physical parameters are unresolvable. Thus for a grid cell model, this 
analysis indicates which cells can be subdivided and which can be combined. Thus 
the model becomes rougher in some parts and smoother in others, once again, 
entirely driven by the data rather than preconception. 
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This inversion paradigm yields two additional pieces of information. One is the 
noise to signal ratio which can be used to govern the regularisation process in a 
subsequent inversion. The second is the average predicted residual error (APRE); 
i.e., the error which would arise in predicting a data value if each data point were 
removed, one at a time; the process averaged over all data points. When the 
number of parameters for a given model is consistent with what is actually activated 
by the EM field, APRE will have a value consistent with the standard error. If 
the model is appreciably over or under parameterised, APRE will be significantly 
higher than the standard error (Hohmann and Raiche, 1987). 

One point, which doesn't seem to be well appreciated, is that prior geological 
information can be introduced into the inversion via the starting model without 
the need for constraints. If the inversion is well conditioned, and the results do 
not support the form of the initial model, then it can be truly said that this 
information is inconsistent with the data. Moreover, the use of constraints distorts 
the formation of the true eigenparameters of the model. 

Regardless of whether or not one chooses to use explicit constraints, realistic 
2-D and 3-D inversion can impose such a heavy computational burden that one 
is driven to look for ways to reduce the dimensionality of the problem. Oldenburg 
et al. (1992) have developed subspace methods which limit the number of search 
vectors and thus dramatically reduce the computational burden. They still use 
explicit model constraints in the solution. In (Oldenburg, 1992) this method was 
applied to a 3-D DC problem. They are currently applying this paradigm to a 
number of different inversion tasks such as 2-D MT inversion. 

At this point we can mention two different inversion philosophies. One seeks 
to invert for the whole subsurface conductivity map in some detail. In this case, 
the above subspace approach represents a very interesting advance. An alternative 
philosophy (which would also permit a substantial reduction of the computational 
problem) consists of an initial localisation of distinct anomalous regions followed 
by a more detailed inversion to better resolve the anomalous structure. Thus, it 
would use a relatively fine discretisation over the anomalous regions and a very 
coarse discretisation to cover the rest of the illuminated volume. Eigenparameter 
analysis could be used to adaptively adjust the discretisation as the inversion 
proceeded. 

The initial localisation can be accomplished in a number of ways. The most 
obvious is to use stitched 1-D inversions to locate regions of interest and restrict 
2-D or 3-D grid cell inversions to these regions. (Pellerin, 1992) is an example of 
this procedure. Alternatively, one could use data processing techniques such as 
the derivative techniques of (Silic, 1989) to localise the structures of interest. One 
of the implicit strategies of this method is to locate equivalent edge currents. This 
is quite interesting because; in fact, the magnetic and electric fields which one 
measures are caused by induced current distributions which are related to conduc- 
tivity structures. Thus the equivalent current filament method (Barnett, 1984) and 
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the equivalent dipole sources method (Macnae et al., 1991) can be regarded as 
variations on the same theme - finding the currents which denote anomalous 
conductivity zones. 

However, an inversion procedure based upon localisation of anomalous regions 
followed by detailed parametric estimation will be of limited success when the 
underlying conductivity structure is smoothly varying. On the other hand, it seems 
ridiculous to invert for say 10,000 unknowns when the subsurface conductivity 
might be described by a function with perhaps 20 degrees of freedom. The fact 
that the possible choices for this conductivity might be limited by smoothness 
constraints still makes the problem far more complicated then it need be. In this 
context, the subspace inversion method of Oldenburg et al. (1992), where the 
inversion is limited to a few search vectors, represents an implicit recognition of 
the fact that a full inversion with 10,000 degrees of freedom is vastly over-com- 
plicating the task of subsurface interpretation. 

Alternatively, the inversion problem could be reduced greatly by representing 
the earth's conductivity in terms of continuous functions (with relatively few 
parameters) rather than as constant conductivity cells. One candidate for two and 
three dimensional conductivity modelling would be products of 1-D splines. One 
would then invert for knot positions and function amplitudes at the knots. The 
inversion would start with a small set of functions because even a grossly under- 
parameterised model would yield useful information about the location of scatter- 
ers and the degree of smoothness of the model. Subsequent inversion runs would 
increase the functional complexity until the averaged predicted residual error 
reached a minimum. In this way, one starts with a smooth model which builds 
complexity without preconception because additional knots would be added as a 
function of the magnitude of spatial derivatives of the conductivity functions. The 
forward modelling part of this paradigm could be based upon spectral methods 
such as Lee's t - k domain (1991). Indeed, this becomes very appealing because 
the bandwidth necessary to describe smoothly varying structures is much less than 
that required for structures described by sharp boundaries. 

Nabighian (pers. com.) has suggested that functional (rather than block conduc- 
tivity) models could be based on EM versions of alpha centres and wavelets. The 
problem with the latter is that most of the basic references on wavelet methods 
hide the useful information in a blancmange of formal mathematics. 

5. APPEALS TO NATURE 

Many commonly observed natural phenomena can be thought of as the results of 
"Nature's optimisation" so it is not surprising when weary warriors in the trenches 
of mathematical inversion join others in seeking to emulate these "natural inver- 
sion" solution methods. Two of these, genetic algorithms, and simulated an- 
nealing, are aimed at trying to find a global minimum through directed Monte 
Carlo methods. A third, neural nets, is an adaptive learning pattern matching 
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paradigm. It is perhaps only a matter of time until inversion methods emulating 
the olfactory search optimisation methods of ants, fleas, flies or bees become 
published. 

The problem with emulating nature is that even apparently simple natural 
phenomenon often contain such deep complexities that our best endeavours pro- 
duce highly simplistic approximations which fail to capture the real essence of the 
actual natural process. This is particularly true in the field of neural networks. 
The second problem is that Nature does things on a far more massively parallel 
scale than we can hope to emulate in the next few years. Unlike our current fine- 
grained parallel computer systems, Nature does not get bogged down with shared 
memory hot-spots or excessive communication overheads. Nature also does not 
have to pay for computer time 

Despite the above, natural emulations are an important part of research because 
not only might they generate improved solutions; they can also lead us into lines 
of enquiry which might otherwise never have been pursued. 

A. GENETIC ALGORITHMS 

"Natural selection" is presumably an optimisation process based on genetics al- 
though sometimes observation would indicate that optimisation may not be the 
most appropriate word. Basically, the idea of GA's is to start with an initial, 
randomly chosen population of say N possible models, whose parameters are 
coded in binary form into "chromosomes". The genetic processes of selection, 
cross-over, and mutation are applied to update the population. Cross-over means 
exchanging bits between pairs of chromosomes (models) whilst mutation changes 
one bit at random. After these processes are applied, the new models are compared 
to the old chromosomes and acceptance depends upon an update probability. The 
best N are "selected" and the mutation and cross-over process begins anew. 
(Goldberg, 1989) is a good basic text for this paradigm. 

There appears to be considerable interest in applying GA techniques for seismic 
problems. One example is the moderate success achieved by Sen and Stoffa (1992) 
using genetic inversion of AVO data. In a paper presented at this meeting, Schultz 
(pers. com.) used a GA to explore the solution space for a 1-D MT problem. 

Initially, linearised inversion was used to pick thicknesses for a 24 layered earth 
model using data from 27 frequencies converted to Shmucker C values. The 
inversion parameters are log conductivities. After generating a random population 
of starting models, mutation, cross-over and selection procedures are performed 
based upon ,)(2 misfit. The GA algorithm can perform about 0.5 million searches 
per hour of Sparc 2 CPU time. The final population of models shows strong 
consistency in regions where the EM resolution is expected to be good and 
considerable divergence where the opposite is true. 
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B. SIMULATED ANNEALING 

Annealing crystalline materials consists of melting them and then cooling them 
quite slowly, resulting in increased strength because slow cooling results in larger 
crystals and concomitant increase in long range order. At high temperatures, 
thermal agitation allows transitions to higher energy states as well as those of 
lower energy but as the temperature decreases, the probability for transition to 
higher energy states decreases to near zero. The slow cooling prolongs the thermal 
agitation process, thus increasing the probability that the annealed material will 
reach a global minimum energy state and thus achieve its greatest strength. 

A famous algorithm (bearing the name of the lead author only) which simulated 
this behaviour was developed by Metropolis et al. (1953). It was subsequently 
formulated as an optimisation problem by Kirkpatrick et al. (1983) where (now) 
obvious parallels were drawn between achieving a global minimum and achieving 
the lowest energy state. The method consists of randomly perturbing the model 
parameters and computing the change to the objective function. If the objective 
function decreases, the new model replaces the old one. If it increases, a number 
is generated from a probability distribution, the value of which may allow the new 
model to be accepted. The probability of acceptance depends upon the value of 
the objective function increase and the number of previous iterations. As the 
process proceeds, the probability of acceptance of new models which increase the 
objective function is lowered (the annealing schedule) until near the end, only 
those model changes which lower the objective function will be accepted (freezing). 

Dosso and Oldenburg (1991) used simulated annealing as a method of construct- 
ing extremal models for fitting 1-D models to MT data. The goal was to construct 
maximum and minimum values of conductivity over specified depth intervals 
subject to achieving an acceptable fit to the data. A conservative approach was 
taken which accepted 90 percent of the perturbations at the start and very slowly 
lowered the "temperature" (probability of acceptance). For the four layer model 
discussed in their paper, Dosso and Oldenburg (1991) report that the process took 
two days on a Sun 4/310 workstation. This contrasts with 3-5 minutes taken by a 
linear appraisal method which they had previously developed (Dosso and Olden- 
burg, 1989) The two methods showed good agreement near the "region of maximi- 
zation" but gave different deep structure values. This difference is probably not 
important since the resolution at depth is expected to be poor. 

C. NEURAL NETS 

Crudely speaking, neural nets consist of an array of interconnected, simple process- 
ing elements (PE's), the output of each of which is an amplitude-limited monotonic 
function of the weighted sum of those outputs of other elements connected to its 
input channels. The weights are set adaptively by correlating input patterns with 
a desired output pattern. Neural net paradigms are characterised by the connection 
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Fig. 11 Model geometry for neural net experiments. 

topology, the PE output function, and "learning method" (the way in which the 
magnitudes of the weights are determined). A more detailed description will not 
be presented here because NN (neural net) methods have been discussed widely 
in both the popular and technical literature. (Raiche, 1991) contains an extensive 
review of many neural net paradigms in the context of using pattern recognition 
methods to solve geophysical inverse problems. 

Generally speaking, neural nets are designed either as classifiers or as interpola- 
tors. What makes them interesting is that instead of specifying the statistical 
classification or mathematical interpolation paradigm directly, the NN 'designer 
specifies the net topology, PE output function and the learning rule. General 
inversion combines these tasks. Is there a target and of what type (classification)? 
Where is it and what are its properties (interpolation)? 

In two papers, Poulton et al. (1992, 1992a) compared the ability of several 
different NN methods to use ellipticity data to estimate the position and conduc- 
tivity area product of a horizontal galvanised pipe. The 60 m long pipe (with an 
outside diameter of 6 cm) was buried 1.27 m deep parallel to a grounded trans- 
mitter wire with a horizontal offset of 10 m as illustrated in Figure 11. The radial 
and vertical components of the magnetic field, Hr and Hz, generated from a 
grounded wire transmitter, were measured at several offset distances for 11 fre- 
quencies ranging from 150 to 6814 Hz. The magnetic fields were converted to 
ellipticity, e, defined below in terms of the tilt angle, a. 

H ~  c o s  a - Hr sin a 

e = H-~c-~s~+ H-~= s-~n ~ (24) 
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tan(2~) = 

2 H~ cos(¢z - G) 
Hr 

l( r) 
The project consisted of generating a synthetic data set using a 2-D finite- 

element program to compute the ellipticity for several different offset distances 
and depths of the pipe and using the resulting image pixel data to train various 
neural net configurations. The experiment was simply to determine how well the 
different neural net methods could recover these parameters from both the arti- 
ficial data and some field data as well. Initially, the input data set for each pipe 
position consisted of the percent ellipticity values from 660 pixels. 

Although using the entire input data set produced results within 10 percent 
accuracy, it required more than a day to train the network on a PC. Decreasing 
the data set can greatly speed up training times so different representations were 
tried. These included 2-D spatial FFT, sampling peak heights and widths, and 
using different sub-samples of pixel data. The FFT data set produced results almost 
as good as those using the whole image. For data sets of less than 100 pixels, 
directed random search and function link worked best. These apparently did not 
scale upwards very well because for large data sets, the combination of the self- 
organising map with backpropagation worked best. 

There are some things which presumably could have improved this work. Ex- 
panding the input data set for function net to include common pattern indicators 
such as peak height and half-width of the magnetic field profiles could possibly 
have improved parameter recovery. The use of non-localised node updating me- 
thods would also improve efficiency. Nonetheless, from an inversion point of view, 
this was a very easy problem and Poulton et al. had to work very hard to get fairly 
mature NN methods to yield a reasonable answer. What would have been the 
case for a problem with 10 parameters? 

D. COMMENTARY 

1. Neural Nets 

In a program based upon numerical or logical manipulation, the programmer 
controls the computation and can ascertain the state of this computation at any 
stage by having selected variables report their values. This control is not possible 
in NN computations. The best that can be done is watching how selected weights 
change value. The real (but often hidden question) is: Is there any magic? By 
giving up control of the process, can something new be discovered? Can NN 
methods discover hidden patterns and perform classification and interpolation 
tasks more efficiently than ordinary statistical and A1 methods? All the evidence 
points to one answer: No. 
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I am unaware of any significant pattern recognition task performed by neural 
nets which has not been done (and probably been done better) by either AI or 
statistical methods. For a start, most neural net methods in practical use are 
analogue realisations of pre-existing statistical or AI methods. For example Kohon- 
nen's vector quantisation method for self-organising nets is the analogue equivalent 
of a well known statistical clustering method, the k-means algorithm (Duda and 
Hart, 1973). Backpropagation is a simple form of linear regression without regular- 
isation. Using neural net training rather than direct programming just makes these 
things more difficult to implement and monitor. 

Neural nets will perform much more efficiently if problem specific information 
(rules and mathematical relationships) can be used to shape the form of the input 
data and the training method. This is the basis for the success of Pao's function 
net. Why not make things easier and go the whole way with logic and numeric 
programming? Two reasons were given in (Raiche, 1991). The first is that by 
experimentation with different types of feedback terms, one might discover better 
methods of classification not covered by existing AI or statistical methods. To 
date, this does not seem to have happened, and neural network research is now 
a big field. 

The second reason was that once trained, a neural net could perform classifica- 
tions much faster than say a statistical algorithm. In fact, a neural net can be 
represented by a set of filter coefficients much the way as Hankel transforms. Why 
not compute these coefficients and use them directly without using neural nets to 
obfuscate the issue? 

Raiche (1991) was oriented towards developing an NN approach to geophysical 
inversion. Paradoxically, the application of geophysical inversion techniques could 
significantly improve the training of feed-forward networks. The question of how 
many nodes to use and how they should be connected is usually answered by trial 
and error methods. Connection weights are updated individually. However, it is 
easy to formulate the training problem as an SVD inversion. Regularisation me- 
thods would undoubtedly improve the stability of the networks. Moreover, by 
examining the eigen-weights rather than simply updating the actual network 
weights, it is easier to determine which are the most important weight combinations 
and which are irrelevant. 

However, I would like to augment the above judgement with a mention of the 
development of a new paradigm in behavioural neurodynamics. The 1st Appalach- 
ian Conference on Behavioural Neurodynamics (Radfield University, Radfield, 
Virginia, Sept., 1992) will feature papers discussing the application of quantum 
field theory and non-linear dynamics to the processing of neuroelectric signals. 
Heisenberg matrix and symmetry group methods are apparently now being applied 
to imaging and object perception. Whether any of this can be used eventually to 
improve current inversion processes is a matter of conjecture and future research. 

In summary, there is a clear trend towards recognising neural net methods as 
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a collection of mathematical pattern recognition techniques rather than an emu- 
lation of "biological computing". 

2. Fast Forward Model  

However, the body of neural net research has been useful in that it suggests 
that we re-examine the computational possibilities of different multi-dimensional 
interpolation methods. One possibility is the development of the fast forward 
model, similar in concept to Pelton et al. (1978). The idea is to compute a model 
suite of the EM responses of a low parameter model such as a 3-D prism in a 
two-layer half-space over a wide range of model parameter combinations. A 
clustering algorithm would be used to study the variation of the responses as a 
function of different combinations of parameters. In principle, one could use 
multi-dimensional interpolating functions to represent responses in each cluster. 
A rule-based program would direct the computation into the appropriate cluster. 
Having devised such a program, one could then compute model responses in 
seconds on a PC rather than hours on a supercomputer. The question is: how long 
would it take to compute a suitably representative model suite to feed the clus- 
tering and interpolation algorithms. This depends strongly on the efficacy of the 
interpolator. 

Multi-dimensional interpolation is a topic of considerable recent interest, some 
of which has been sparked off by the neural net boom. One method is the use of 
radial basis functions (Poggio and Girosi (1990), Powell (1985), Powell (1987)). 
Another is the multiquadratic-biharmonic method (Hardy (1990), Kansa (1990)). 
(Broomhead and Lowe, 1988) discuss the relationship between multi-variable 
interpolations and adaptive networks. The point of this is, why not use direct 
mathematical methods instead of hoping for magic by training neural nets to 
represent model responses. 

At the present time, we have no indication as to how efficiently radial basis 
functions or multiquadrics will work for EM models. Poulton (pers. com.) is now 
investigating the use of radial basis functions. 

3. Directed Monte Carlo Methods 

Both Schuttz and Dosso and Oldenburg (1991) tackled aspects of a 1 -D MT 
problem, the former with GA's, the latter with simulated annealing. Both directed 
Monte Carlo methods gave tight responses in regions where the resolution was 
anticipated to be good, and scattered results where the physical resolution was 
expected to be poor. The problem of course is that the time to evaluate a 1-D 
MT response is negligible compared to that required to compute the response of 
a 2-D or 3-D model response of an active EM source. It is possible that we may 
be able to design directed Monte-Carlo methods which are better directed than 
simulated annealing or GA's. Alternatively, another method of 3-D inversion is 
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to wait for geological weathering and tectonic processes to either expose the target 
at depth or bring it to the surface. 

The following quote from Adam Schultz (pers. com.) describes the simulated 
annealing problem as well as it does GA's. "Eigenparameters as a paradigm have 
got to be better than the blind groping GA is doing. GA is just like rolling a 
marble on a bumpy rubber surface. You let the membrane vibrate just a little and 
you have a better chance of the marble falling into the deepest depression in the 
surface. Don't vibrate it at all, and it falls into whatever's handy. Vibrate it too 
much and the thing jumps all over the place. So how much do you vibrate it? You 
vibrate it JUST RIGHT. This sounds like an eigenvalue problem if only we could 
figure out how to describe the misfit manifold." I leave this as a challenge for the 
reader. 

6. Conclusions 

The early 2-D numerical modelling papers in the 1970's used to begin with phrases 
such as "with the advent of powerful new computers". Over the past two decades, 
the development of even newer computers has allowed us to make moderate 
progress in modelling and inversion methodology but some of us may have felt 
that this progress was more a case of refinement rather than real innovation or 
breakthroughs. However, "with the advent of powerful new computers" . . . .  

New innovations both in hardware and software are allowing researchers to test 
ideas which had previously been judged to be computationally unfeasible. New 
frequency and time-stepping modelling methods using staggered grids defined on 
the full spatial domain will free us from the restriction of localised heterogeneities 
in homogeneous hosts and allow us at last to model the EM response of true 
geologic complexity. A new generation of relatively inexpensive, massively paral- 
lel, fine-grained computers will allow us to compute these models in minutes. 
Developments in problem based data languages, symbolic processing and visualisa- 
tion technology will enable new ideas to be prototyped and tested in a fraction of 
the time now required. 

Inversion methodology should virtually leap ahead based upon new abilities to 
compute complex models quickly. New weapons technology should make the 
debate between competing inversion theologies much more interesting. 

In short, two decades of good scientific research by our colleagues, coupled 
with advances in information technology, have now brought us to the threshold 
of a new era in modelling and inversion. However, in all of this excitement, we 
should perhaps ask one question. What can be done about the low resolution of 
our EM systems caused by that low pass filter called the earth? 
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