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(1) It is known that the magnetotelluric (MT) variation processing problem is to 
determine the transfer functions describing the linear relationships among the 
MT-field components at the same point of space or at different ones. The transfer 
functions serve as the mutual frequency or transient responses, relating the field 
components and, ideally, must be independent of the field observation time and of 
the variation type, governed only by the electrical structure of the earth. Until 
recently, the general formulation of the problem appeared fairly clear and simple. 
In the frequency domain, for example, the linear relationships of the components 
of the electromagnetic field at a certain point were presented as 

 ,2,x(co) z,,(co)/ (1) 
where/~x.y (co) and/)x, z (6o) are intensities of the respective components of electric 
and magnetic fields; Zxx , Zxy, 2y~, and 2yy are impedance matrix elements at a 
given frequency, co [1]. The relation (1) describes the relation between input and 
output functions of a linear system with two inputs and two outputs, the input func- 
tions being the horizontal magnetic field components (Figure 1 a). It is assumed that 
the matrix nature of the relationship (1) is due to horizontal inhomogeneity within 
the medium, the matrix itself being a tensor which invariantly expresses the linear 
relationships as the coordinate system rotates at the observation points. 

A wealth of experience in practical determinations of the 2z, j(co ) values corre- 
sponding to the above model has shown that the accuracy attained is much below 
the accuracy in measuring field variatons proper and does not always suit the geo- 
physicists' requirements for subsequent interpreation of the MT data. In terms of 
the model (1) the low accuracy of the output data determination seems to be unac- 
countable in many cases. In considering feasible methods for raising the accuracy 
in determining the transfer function for the MT-field, it is expedient to revise the 
prerequisits which underlie model (1), to specify the formulation of the MT-varia- 
tion processing problem, and, at the same time, to elucidate the key points which, if 
disregarded, may give rise to errors in processing. It should be remembered that 
model (1) is based on the assumption that the observed MT-field arises because a 
uniform plane wave varying in time according to harmonic law is incident on the 
electrically inhomogeneous Earth. It is assumed that, having at one's disposal the 
realization of the electric and magnetic field at a certain frequency co, which corre- 
spond to different polarizations of the exciting field, one can find the required ~ , j  
values from a redundant system of algebraic equations obtained from (1). 
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Fig. 1. (a) Traditional equivalent scheme of linear relationships in the MT-field. (b) Revisional system 
of linear relationships in the MT-field for an electrical current with "n" degrees of freedom. 

(2) Let us bring the idealized pattern discussed above closer to the real situa- 
tion. In reality, we deal with a complicated system of ionospheric, atmospheric and 
magnetospheric currents which is time-variable in an arbitrary manner. If the pri- 
mary field of the system in the field observation region can be described with suffi- 
cient accuracy by a homogeneous plane wave of variable polarization, then the 
current system proper may be approximated by two plane currents of different 
directions, varying in time independently of one another. Berdichevsky and 
Zhdanov (1984) and the present authors [2] have demonstrated that, with regard to 
the processing problem, a more accurate approximation of complicated current 
systems can be obtained if they are treated as a finite set of n individual current 
systems ]z(t) and if the time variations of currents in each of the systems are 
governed by an individual, independent law characterized by a certain sufficiently 
arbitrary function of time f (t) (figure 2). In this case the current density variation 
] (t) within the entire system may be presented as 

7(1"o, to) = a ( eo ,  to - t'o) . - f  ( t'o) , (2) 

where the symbol * means convolution in time, t; is a variable of integration, P0 
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Fig. 2. Schematic model of media exited by a complex current system. 

and t o denote the coordinates of the point within the current system and the time 
observation of current in this point; ~ t ; )  is the column-vector composed of the 
time functions f (t;); d (P0, t0) = { ai~ (Po, to)} is the matrix operator of dimension 
3 x n which defines the linear temporal relationships within the current system. 
The linear independence of the time functions is understood in the sense that 
equality 

n 

~, OLi(to - -  t'o) * f ( t 'o)  ----- 0 (3) 
i = 1  

can be satisfied only if all a i (t 0) -- 0. The approximation (2) includes the particular 
cases of a linearly-polarized plane current (n = 1) and horizontal plane currents 
with variable polarization (n -- 2). In the general case n may be a certain number 
whose value is to be found in the course of the processing. 

The electromagnetic field generated by such a system as (2) at a certain point P 
in the observation region and at an arbitrary moment t may be found using the 
tensorial Green function ~ (P, P0, t -  to). An arbitrary component of electric or 
magnetic field along some direction (designated as E(P, t)) can be expressed as 

ff E(P,  t) = ~-(P, Po, t -- to)" J--(Po, to) d V o d to = 
dVo J - -  

= Y-(P, Po, t - t o )  | ~(Po, to), (4) 
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where ~ is a vectorial Green function (a line of the respective Green function 3~); 
the symbol | means integration over the exciter coordinates P0 within the region 
V 0 where j # 0, and convolution in time. Substituting (2) in (4) and integrating over 
intermediate coordinates, we obtain 

E(P, 0 = ~(P, P0, ~ - r  | ~(P0, t; - to) * ~ t0)  = 

= / ~ ( f ,  t - to )  * ~to), (5) 

where 

K(e, t - t0)  = Y(P, p~, t - t ; )  | ~(P0, t ; -  t0) 

is a line-vector of n elements. From (5) it follows that, like the field of the exciting 
current system, the set of the functions characterizing the time variations of any 
component of the field at any observation point is one and the same finite-dimen- 
sional functional space with the basic set of the time functions ~t0) in which the 
multiplication operation is a convolution with the functions/T(P, t -  to), depen- 
dent on the time difference t - t o . Any set of n independent time functions charac- 
terizing the time variations of some rationally selected field components H i (P, 6), 
i -  1, 2, . . . ,  n may be taken instead of f (to) to be the basic set in the space of 
observed time functions. If such a basic set does exist the mutual one-to-one corre- 
spondence: 

~ ( e ;  to) = ~(P',  to - t ; )  , ~ t ; )  (6) 

~ t 0 )  -- t - l ( f  ', t;  - to) * H( /" ,  to) (6') 

must exist between the basis f(to) and H(P' ,  to). Substituting (6') in (5), we obtain 
the expression for any of the observed field components through the novel basis 
functions: 

E(P,, t) = t~(P, P', t -- to)  �9 H ( P ,  to), (7) 

where ~ (  P,, P', t --to) = K(  P, t - t'o ) * ~-1  ( p,, t'o - to) is the vectorial operator of 
convolution which expresses the linear relationships among the components of 
the examined electromagnetic field. The mathematical meaning of the operator 
r~(P, P ,  t) * ( - )  will be specified later. In the frequency domain the relation (7) 
takes the form 

~ ( ~  ~o) = m(R/'; o,). ~ (P;  o), (7') 

where m(P, P ;  ~o) = ~(P, w)" ~ - l ( p ,  o0" As a particular case, the expression 
(7') is in correspondence with any of two linear algebraic relations obtainable from 
the matrix relation (1) if the functions Hx(O)) and Hy(o)) are taken to be the basis. 
The expressions (7) and (7') must underlie the problem of determining the transfer 
functions r~(P, P ;  t) and re(P, P ;  o)) in MT studies as well as the other important 
problem of eliminating MT-variations from the results of observing the main 
magnetic field or artificial electromagnetic fields, 
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(3) Let us return from the above discussed simple, but abstract, mathematics to 
the practical aspect of data processing and find out what must be taken into con- 
sideration when formulating and solving the MT-variation processing problem. 
Firstly, the relations (1) are but a special case of a more general system of linear 
relationships expressed through the matrix transfer functions of dimension n. 
Actually, let us assume there is another set of n independent time-variable field 
components E(P, t) along with the already above selected basis time functions H(P, 
t). Then one-to-one correspondence between these sets of the functions can be 
written on the basis of the relation (7): 

E(P, t) = t~(P, P', t -- t ') * H(P ,  t ' ) ,  (S) 

where the matrix lines rh(P, P, t - t ' )  are formed of vector transient functions for 
the field components E i (P, t). Similarly, in the frequency domain we have: 

~(P, w) = r~(P, P ,  co). ~(P ' ,  w) (8') 

For the uniform plane wave of variable polarization, when n = 2, the relation (1) 
follows from (8'), and P = P',  

and 

At the same time it is necessary to notice that relationship (1) holds true not only in 
this case but for more general conditions, when time variations of the currents ex- 
citing the MT-field may be described by means of two independent functions jr/(t). 
that is in any case, the current system being of two degrees of freedom. The rela- 
tionship between the frequency characteristics of the horizontal components of 
magnetic and electric fields should be described by the same relation (1) in the 
case, for example, when the MT-field source can be approximated with oscillating 
horizontal magnetic or electric dipoles of varying orientation. Naturally, as this 
takes place, the transfer functions 2ij(w ) differ from the corresponding plane 
wave impedances. The matrix form of the presentation (1) is convenient when tran- 
sition is made from one basis (Hx, Hy) to another (Ex, Ey). As applied to the 
processing problem, a more adequate expression is given by the equalities (7) and 
(7') which express the scalar product of two vectorial functions, namely, the trans- 
fer function r~ and the basis function/4. In case of (1) the two expressions are of 
the form 

2 2 

e i (O = E z i j ( t - t o )  �9 mj( o) or = E (1") 
/ = 1  j = l  

If the relations (1') fail to give a satisfactory solution for the processing problem, 
i.e. when the field calculated from given//j and from found Z~j (the synthesized E) 
is substantially different from the observed pattern or the values Z~ vary signifi- 
cantly from one realisation to another, then the system of basis functions Hx, Hy 
must be complemented (for example, with H z and, may be, with some other func- 
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tions). One of the key problems to be resolved in the course of the processing is to 
decide on the required number and on the concrete selection of the basis and trans- 
fer functions. If the subsequent interpretation of the transfer functions is essentially 
made in terms of the plane-wave model, it is desirable to exclude the realizations 
described by the transfer functions of dimension n > 2 from the set of the MT- 
field variation realizations to be processed. When this approach is being used the 
same problem is solved, as is done in the paper [3] by "the remote reference point 
MT technique", but by other means. More efficiently the problem is worked by 
means of the technique of the magnetotelluric survey with the remote reference 
point, specially developed for this purpose and commonly used in the USSR. The 
stable impedance matrix is determined at the reference point as the result of 
prolonged measurements. Then the synchronous observations are carried out at 
the reference and common survey points. If now the impedance values defined 
using measured variations at the reference point markedly differ from the curves 
defined earlier, these realizations are excluded from the processing on all other 
points of observation too. 

Secondly, there is one more type of variation which should be processed using 
extreme care: they are generated with a moving source. Since (4) and (5) comprise 
integration over the exciter coordinates Po, these and subsequent expressions in 
horizontally-inhomogeneous media will be of the convolution type only if the field 
exciter is immobile. If this condition is not satisfied, the transfer functions become 
transient. This is quite understandable physically because the excitation of inhomo- 
geneities in a medium varies as the exciter moves with respect to them. Therefore, 
the variations during which the exciter position relative to observation point varies 
substantially (for example, solar-diurnal variations) must also be excluded from the 
processing. The more faithful processing method for variations like these is spheri- 
cal harmonic analysis resulting in stationary frequency characteristics of impedance 
spherical harmonics (spectral impedances). 

Thirdly, from the above it follows that the sought transfer functions are very 
different from the transfer functions studied in the theory of linear systems, for, in 
contrast to the latter, they, owing to their inherent physical sense, establish the rela- 
tionship only among the output functions rather than between the input and the 
output in a linear system (Figure lb). The input functions for the MT-field are 
understood in a natural way as the currents, exciting it (the function ~ (t) describing 
time variations of the current). The measured electromagnetic field (both electric 
and magnetic components) should be considered as the response of the linear 
system (the Earth) to this excitation. Therefore, the MT transfer functions may not, 
generally, exhibit the important properties (causality and stability) which character- 
ize the conventional transfer functions of passive linear systems, although from (7) 
it follows that their stationarity (i.e. dependence on only the difference between the 
time arguments) is preserved. The causality of the transfer functions (m (P, P,  r) = 0 
at r < 0) appears to hold, but only in quasistationary fields (in the wave fields 
there can be the equality of more general form: rn(P, P ;  r) = 0 at ~ < r 0 1> 0). 
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However, these functions may not exhibit the stability property, i.e. the finiteness 
of the integral fo] re(P, P,  r)] d r  < oz. It is, therefore, more correct to treat them 
and their Fourier transforms as generalized functions or distributions and to 
understand in this sense the mutual transitions from rg(P, P ,  r) to re(P, P ,  co) and 
vice versa and the operation of their convolution with the field variations [4]. As a 
rule, the transfer functions between the like field components at different points 
contain d-functions in the time domain, while the impedance and admittance trans- 
fer functions contain nonintegrable features at zero or infinity. The impedance of 
the homogeneous half-space Z(o)) = ~ has no, in common functional sense, 
inverse Fourier transform. However, in a generalized sense, the pulse impedance 
characteristic does exist and is expressed by means of the generalized function 
Z(t)  = ( 1 / 2 x / ~ ) ~ f ~ ( 1 / t ~ 2 ) ,  being determined with the linear continuous func- 
tional of the form 

1 ,  0(0 =  (0)1 d t  
0 

under the space S of basic functions (p(t), which are infinitely differentiable and 
speedily decreasing at infinity (speedier than any power of 1 /0 .  When t > 0 this 
generalized function coincides with the common function 1 / t  3/2 . If differcntiability 
of the convolution results is not required, this definition can be generalized to arbi- 
trary, bounded, and one time differentiable functions H(t) ,  which can be identified 
with MT-field variations transformed in a special way. Hereinafter we will discuss 
this and another approach to the time domain regularization of the generalized 
transfer functions. Since we are not interested in the accurate values of the transient 
and frequency characteristics of the transfer functions both at zero and at infinity 
and, moreover, since they cannot be obtained in practical calculations due to the 
limited length of the realizations and to the discretization of the continuous values 
of the field, the transition to the generalized function is quite justified. 

Forthly, the concept of causality is extended to the generalized functions. The 
causality of the transfer functions gives rise to their important analytical properties 
which have to be used as a priori information, when solving the processing problem 
making it possible to improve the stability of the solution for the problem. These 
properties include, for instance, relationships between the real and imaginary parts 
of the transform function rh(P, P;  (o), expressed by the Hilbert transform. In cases 
when there is the possibility of identification of the basic functions in (7, 7') with 
the input functions of the linear system, following from the general physical and 
mathematical propositions, much more efficient a priori information can be attract- 
ed to solve the processing problem. Particularly it can be done when horizontal 
components of the magnetic field at the Earth's surface coincide with accuracy of 
constant factors with the primary field of the exciter (the case of the horizontal 
homogeneous section in the plane wave field, the 2D-medium in the H-polarized 
plane field). In situations like these one may contend that the frequency character- 
istics of the MT-transform functions ~(P, P ,  co) are analytical on the complex 
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plane dJ= ~o + is everywhere, except the positive half-axis s > 0, similar to the 
case of the conventional transfer functions of the quasi-stationary field [5, 6]. From 
this it follows that these transfer functions can be presented as 

m(P,P,~) = fom(P,P',s) e-S~ds (9) 

where rh(P, P ,  s) is called the exponential spectrum of a quasistationary transient 
process [5]. 

(4) As noted in the very beginning, the processing problem is to determine the 
transfer functions relating to each other the variations of different field compo- 
nents in the time or frequency domain. Determining and analysing the frequency 
spectrum of the MT-field components proper falls outside the scope of the 
problem, but underlie its solution in the frequency domain when the algebraic 
equation (7) is to be solved. Strictly speaking, the set (7) may only be solved if we 
know the values of/)(P, w) and H(P ,  a~) at n sufficiently close frequencies where 
the frequency spectrum of the transfer functions varies little, while the frequency 
spectra of the field components vary pronouncedly. Since the spatial orientation of 
a strictly monochromatic field cannot be changed, the field polarization variations 
imply in the case of the plane-wave model that at least two sufficiently close 
frequencies exist in the field spectrum. This circumstance predetermines the highly 
jagged form of the field frequency spectrum. Historically, it has so occured that the 
processing problem was initially formulated in the frequency domain and the 
efforts of researchers in the field of MT-data processing were aimed at carrying out 
the spectral analysis of the field components, i.e. at solving the secondary, rather 
than principal, problem. The secondary problem proved to be not less complicated 
than the principal problem because the MT-field variations are highly unspecified. 
When treated as functions of time, they appear to be neither absolutely integrable 
nor square integrable and, therefore, the classical Fourier-transform formalism is 
inapplicable to them. This is why the researchers began paying their attention main- 
ly to the methods of generalized harmonic analysis according to Wiener [7] on the 
assumption that the application of such analysis is justified by the fact that the 
observed realizations of the MT-field variations belong to a stationary ergodic 
process. We are of the opinion that this approach to the MT-variation processing 
involves essentially a nonverifiable hypothesis because we can never have an 
ensemble of realizations and must deal with but a single realization of a limited 
length. Division of the realization into parts is not a way out of the situation and 
entails only an increased volume of the material to be processed. It should be noted 
that the application of the methods of generalized harmonic analysis according to 
Wiener does not at all necessitate such a hypothesis and requires only [8] that the 
observed field variations should be functions of a finite mean power, i.e. that the 
limit 
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l i t  
W = lim - -  A2(t) dt < oo (10) 

r ~ ~ 2 T J - T  

should exist and be finite. The existence of this limit gives rise to correlation func- 
tions and entails applicability of all the methods of generalized harmonic analysis. 
Such a hypothesis seems to be physically justified and may be verified using (10) on 
the intervals of duration 2T which are sufficient to obtain the frequency spectrum 
of the process. It is probably because the observed MT-field variations belong to 
the class of functions with finite mean power that the generalized harmonic analysis 
yields satisfactory results. The statistical approach introduces none other than the 
respective terminology to the processing operations. This is quite obvious because 
the detailed analysis of particular algorithms realized in terms of the methods 
based on the statistical approach has shown that they coincide essentially with the 
solution of the redundant system of algebraic equations (8) obtained in a deter- 
ministic way by the least squares method. 

From the present-day point of view the Wiener generalized harmonic analysis is 
a particular case of the Fourier analysis being a consequence of the generalized 
function theory. This theory suggests abandonment of the knowledge of the func- 
tion values A ( t )  or A(o)) in every point, physically superfluous and unachievable 
practically, and to supersede it with the knowledge of certain linear continuous 
functionals (generalized functions) of the form (A,  go) = f A ( t )  go(t) d t  on a certain 
space s of the basic functions go(t) e s being selected in such a way that the corre- 
sponding integrals may converge. The generalized function values (A, go) are, 
roughly, the weighted values of the conventional function A (t). These very integrals 
not infrequently are of interest when mathematically examining physical phe- 
nomena. 

When the continuously differentiable functions, decreasing together with all the 
derivatives at ItF ~ ~o quicker than any power 1/Itl, are selected as the basic func- 
tions, the integral f_~ A ( t )  go(t) d t  converges for any A ( t )  increasing as a power 
function at ltl --" oo and, in particular, for the arbitrary bounded functions A(t ) ,  
describing real MT-field variations. The Fourier transform of the generalized func- 
tions is defined on the basis of one of the modifications of the Parceval equality: 

;:>, f:: (A(t) ,  (p(t)} = ~ ( t )  d t  = 21(0)) go(w) do) = 

= (A(~o), go(a))), (11) 

where 

= 1 1 ~  1 1 ~  ~ e ixy qS(y) 2 ~  _ go(x) e -ixy dx,  go(x) - 2 ~  ~(Y) dy. 

If the functions A ( t )  are non-integrable over - -m < t < m,  the spectrum .,~(a)) is 
the generalized function being determined from the functional equation (11), the 
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basic functions cp(t) and their Fourier transforms in (11) belonging to the space S 
of rapidly decreasing functions respectively in the axis t and o). An important fea- 
ture of the space of the generalized functions themselves S' (the linear continuous 
functionals A~0 = (A(t), q)(t)) e S') is its completeness being understood in the 
sense that if the function sequence q0n(t ) e S converges to any function c#(t) then 
the corresponding sequence of the generalized functions A ~ = (A (t), go n (t)), being 
determined by cpn (t), converges to A~. In the case of the regular generalized func- 
tions being determined by means of the integrals (A(t), cp(t)) = f~_~ A(t)  cp(t) dt 
the convergence of the generalized functions is the weak one of the conventional 
functions. The generalized function theory permits one to understand properly the 
periodogram technique, used to define the Fourier transform spectral evaluations 
of the realizations, as corresponding to functions A (t) which do not decrease when 
t -+ oa, multiplied by the corresponding windows K~ (t). It is known that the spec- 
tral evaluations of the functions A( t ) .  Kn (t) do not converge when the window is 
extended at n -" co neither pointwise nor in the least squares sense. However they 
converge weakly in the space of the functions cp(t) e S; that is, as the generalized 
functions do. 

The generalized function theory entails a number of new spectral value determi- 
nation techniques. In particular the spectrum of the bounded function A(t), not 
decreasing at t --, ~o, may be defined in the generalized sense as the generalized 
second-order derivative of the function [9]: 

~A(OO) -- 2~  A ( t ) ~  ~e t~  e -i~ at ,  (12) 

where e > 0. WA"(O)) is a conventional Fourier transform for absolutely integrable 
functions A(t)  e L 1. For bounded functions A(t), which do not belong to L1, 

A (0.)) defines the spectrum A (oo) in the generalized sense: 

( A ( o , ) ,  = = ( q ' A ( O ' ) ,  = 

= I~A ((D) cp"(w) dw -- (t) qS(t) a t  -- 

= (A(t), c~(t)). (13) 
Supposing the weak convergence of the spectra is sufficient to solve practical 

problems, one may get the spectral value of the function A(t)  by means of the 
smoothing of the function �9 (o)) and following double differentiation with respect 
to o). For bounded functions, belonging to the special function type with finite 
mean power (10), it may be possible to define the generalized Fourier transform by 
means of the single differentiation in the sense of the distributions of the spectrum 
SA (a)), derived by [7]: 

~ A ( O ) )  - -  1 r__l~A(t) K(w, t) dt, K(w, t) -- e-i~~ 1 (14) 
--it ' 3-~ 
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but not by means of the second-order derivative of ~A (t0) (12). 
Thus, the generalized function theory permits one to define spectral values of 

the bounded functions on a deterministic basis without using their special statistical 
features. However, irrespective of a particular hypothesis underlying the general- 
ized harmonic analysis and of a particular modification of the method used, the 
solution for the processing problem in the frequency domain seems to us to be 
faced with additional difficulties arising from the necessity that the variation spec- 
trum should be determined beforehand. We do not consider this approach on the 
whole as having no prospects, but, nevertheless, prefer the temporal approach 
which makes it possible to find the transfer functions without making spectral 
analysis of the variations proper. 

(5)Let us examine the problem of determining the transfer functions in the time 
domain firstly using for example, the scalar impedance relationship. In the frequen- 
cy domain the relationship is of the form 

H(to) �9 Z(to) =-/~(to). (15) 

This pointwise equality in the frequency domain expresses the algebraic equation 
with respect to Z(to). Even in the case where the functions//(to) and/TS(to) are the 
Fourier transforms of the functions H(t), E(t) ~ L1, we cannot go directly over to 
the time-domain because 2(o9) rises at to -- co as , ~ .  Let us multiply both sides of 
(15) by the function K(to), which belongs to the class of physically realizable func- 
tions, decreasing rapidly enough at infinity (for instance/~;(to) e S) and is close to 1 
in the frequency band of interest to us: 

//(co)" Z(to)" R(to) = E(to)"/~;(to). (16) 

Since the impedance 2* (to) = 2(09). R(to) decreases rapidly enough at to ~ co, 
one may go over to convolutions in the time domain: 

H(t)* Z*(t) = Z*(r)" H(t--r)  dr  = E*(t), (17) 
) 

where 

Z*(t) = Z(to)" tr e'~ and 

E*(t) 1 f o o  K(to) e so)tdto f o  = - E(to)" = g ( r )  E ( t - r )  d r  

Since K(t) and Z*(t) rapidly decrease at t -~ co, when R(w) is suitably selected (it 
is sufficient that K(t), Z*(t) = 0 ( t - l - a ) ,  a > 0) the convolution integral equation 
(17) should exist for any bounded functions. Let us select K(to) as a sufficiently 
narrow-band function, then 

- % )  - -  - t o o )  
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and 

i~,o, 1 f ~oo_R(0) ) eiO,, da~ K(t) = Ko(t) e , K o ( t ) -  2 ~  

and now on the basis of (17) we shall obtain: 

2(0)o) Ko(r) ei~~ dr = Ko(r) ei~~ dr .  (18) 
0 

That is, the values of the variations H~o(t) and E~o(t) are filtered by means of 
K(0) - a)0) and at any instance of time are related by 

2(0)0)'Ho)0(t) = E~o(t ). (18') 

This equality is the basis of the technique of the variation narrow-band filtration. 
One may not require the band of the filter K(0) - 0)o.) to be narrow to high 

degree. In this case it should approximate the impedance Z(0)) in the transmission 
band of the filter and with the desired accuracy by the truncated Taylor series, 
using the impedance analyticity in the vicinity of 0)o, (0)o - 0) > 0): 

2 ( 0 ) )  = 
2(")(0)0) 

~=0 n!in (i0)--iwo)n (19) 

AS a result the integral equation (17) goes again over to the algebraic one of the 
more general form: 

"~ 2(")(0)~ H~o(t ) = Eo)o(t), (19') 
n = 0  /7! 

where Hn~o(t) = H(t) * K(")(t) is the variation H(t), filtered by the filter K(~)(t) = 
d"/dt"Ko(t ) e '~176 with the frequency characteristic (i0) - i0)0) ~ �9 - 0)o). The 
equality (19') should exist at any instant of time t and therefore permits one to 
obtain a redundant system of equations to determine 2("1(0)0). The technique 
based on the solving of Equation (19'), is called "the generalized mathematical 
filtration method". As compared with the technique of the narrow-band filtration 
(18'), the more general many-term approximation of impedance is more attractive 
because it permits application of wider filters in the frequency domain and, hence, 
of shorter filters in the time domain. This circumstance leads to a more time-local- 
ized determination of the impedance characteristics and to a reduction of the total 
length of the variations necessary for processing. Another advantage of the method 
of generalized mathematical filtration is that it permits effective application of a 
priori information when approximating the impedance. The approximation (19') 
allows for the impedance analyticity within a circle of radius 0)o centered at the 
point 0)0 of the real axis 0). However this method permits application of other ways 
of approximating 2(o9) within the transmission band of the filter, for example (9'). 
In this case one may take into account that the impedance, in the conditions dis- 
cussed above, belongs to an even narrower class of functions which are analytical 
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on the entire complex plane o3, except the negative imaginary half-axis. 
The methods of the same kind result from the Parceval equality for the general- 

ized functions (11). When integrating with respect to 0) (16) we obtain: 

<&0)). 2(0)), = <&,o), K(0))) (20) 

Let us suppose, for example, that K(0)) belongs to the space of integer functions, 
being finite in the time domain. If R(o)) is selected, as in the case (18), in the form 
of a function of sufficiently narrow bandwidth then, on the basis of (20) we have: 

< & 0 ) )  2(0)), K(0) - 0)o)> = z(0)o) <&0) ) ,  K(0) - O,o)) = 

= ( ~ ( 0 ) ) ,  K (0 )  - o)o)) (21)  

according to (11) we have in the time domain: 

Z(0)~ H(t)R~ e-i~~ f E(t)R~ r (21') 

where T is the domain of the finite function K(t). This equality is the basis for 
determining 2(0)) by means of the Fourier transform of the functions H(t) and 
E(t), multiplied by a time-window. In the U.S.S.R. the method is named "the 
method of momentary spectra". It is a complete analogue of the narrow-band filtra- 
tion technique, in which the time window moves continuously along the axis t. Now 
it is not difficult to form, on the basis of (20) and (11), a corresponding analogue of 
the method of generalized mathematical filtration. The transfer function values in 
the frequency domain are directly determined by means of all these methods using 
transforms in the time domain. 

(6) Now let us discuss the problem of direct determination of the pulse transient 
characteristics of the transform functions, a sufficiently wide-band filter K(0)) in 
(17) being selected for this aim. In this case one may consider Z* (t) as a regularized 
pulse impedance characteristic, the relationship (17) being considered as an inte- 

gral equation for its determination. Now Z*(t) does not contain the unintegrable 
singularity at zero. It decreases sufficiently rapidly (not slower than 1/t ~/2) at 
t ~ oo that one may go over to the finite upper limit T: 

Z*( r )  H( t - -  r) d r  = E* (t) (22) 

This form of the integral equation with respect to Z*(0  is suited to solving the 
problem numerically. The transient functions Z*(t) being derived as a result may, 
without any difficulties, be transformed to corresponding frequency characteristics. 
A similar problem is investigated in [10]. However, from our point of view, they 
may properly become the basis of the following interpretation of MT-data in its 
transient version. The relevant calculations of such characteristics over horizontally 
layered models have demonstrated their higher resolving power than one with the 
frequency characteristics 2(0)). It may be expected they should have some advan- 
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tages inherent to other electromagnetic methods, using transient fields, in the 
conditions of horizontally inhomogeneous media too. 

Distortions of Z* (t) because of low-frequency filtration may be easily takria in to 
account in the frequency domain by means of the known frequency characteristic 
of the filter 2(0)) = Z*(0))//~(0)); however in the time domain they (Z*(t)) may 
essentially be distinguished from Z(t) at small time-values. In view of this circum- 
stance it is more expedient to use here another method of the regularization of Z(t) 
based on the formation of the space of basis functions which become zero at t = 0. 
Such functions may be formed simply on the basis of observed MT-variations. 
Actually, owing to both the linear relationship between field variations and its in- 
variancy under an operation of time-shifting, one may use, as the kernel of the 
convolution operator and the right-hand side of the equation (7), the difference in 
the values between directly observed field variations and shifted ones in an arbi- 
trary time interval T, rather than these variations proper. One may select these 
shifts so that the values H(t) at the shifted points are equal and therefore H(t ) -  
H(t + T) = 0. Then the convolution equation may be written: 

foZ(r)[H(t~ - - ~ - r] d r  E(tj) E(tj+ Tj) (23) r) H(tj+ i = _ 

for all points tj and shifts Tj, obeying these requirements (Figure 3). The singularity 
of the function Z(r)  at r --" 0 becomes integrable and the integrals (23) exist if the 
continuous differentiability of the variation H(t) may be assumed. To solve equa- 
tion (23) numerically it is sufficient to collect the required number of points tj and 
shifts ~i; that seems to be always possible. Reducing the problem of determination 
of Z(t) to (23) is an alternative way of regularizating the transfer functions as 
compared to (22). 

It is necessary to note the particular features which reveal themselves as a result 
of sampling the initial data in equation (22). After sampling H(t) and E(t) in a step 
A t their spectrum is known to be the periodic function (Figure 4) with the period 
2f,~ = 1/A t. As a result the spectrum of the sought transfer function (for example 
2(0))) becomes periodic too with the same period, the transfer function proper 

- -  i - -  

F i g .  3. The scheme for the formation of the basic functions, which have reverted to zero in any given 
time moment setting t = t k. 
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Fig. 4. Sampled field components H(t) and their spectra together with the transfer functions, which 
correspond to sampled field variations in the frequency and time domains. 

(Z(t)) becoming also sampled. Though in this case non-integrable singularities of 
the function Z(t) vanish, at small steps Z(t) increases sharply and the values of the 
sampled function Z a (t) in these steps may not be equal to those of the initial con- 
tinuous function in these points. As the spectral frequency band of the functions 
H(t) and E(t) is not bounded rigorously, the same differences arise between Za(o) ) 
and Z(o)) at the frequencies in the vicinity of fm and therefore bounding prefiltra- 
tion of analog data by means of the filter K(t) becomes additionally important. On 
the other hand one should take into account all these distinctions between initial 
and sampled values of the transform functions in interpretation. There is a special, 
fundamental, distinction for the function Z* (t) in the time domain. If bounding 
prefiltration is correct the values Z a (t) are equal: 

Ze(t) = 2o)m e i~ do) -- 2 ~o=(ZR cos cot - Z j s i n  o)t) do) (25) 

where 2 R -- Re Z(o)), Zj -- Im 2(o)), o)m ---- 2~fm. At t < 0 this integral is not equal 
to zero in the general case because of the equality: 

(2R cos o)t + 2 ,  sin o)t) do) = 0 

for the initial function exists only when being integrated over - oo < co < oo. This 
denotes the sampled function Zd(t ) is not causal. It must be taken into account 



274 B.S. SVETOV AND M. I. SHIMELEVICH 

when one solves the system of algebraic equations arising from sampling (22'). 
(7) The Equations (22) and (23) too is an integral equation of the first kind and, 

therefore, may have no accurate solution and may prove to be non-unique or un- 
stable. An accurate solution may not exist because of the experimental nature of 
the input data and due to the presence of noise in the kernel and in the righthand 
side E* (t). In such a case, it is necessary to seek a so-called quasisolution, i.e. such 
a function Z*(t) which, having been subjected to convolution with H(t), gives a 
synthesized E*(t) value showing the minimum deviation (for example, in a quad- 
ratic metric) from the known fight-hand side. The solution may be non-unique if 
the spectrum of its kernel is zero in some region. The non-uniqueness of the 
problem may be excluded if the solution allows for the availability of a priori infor- 
mation about the 2* (o~) analyticity in the upper half-plane of the complex frequen- 
cy &. The instability of the problem means that the small variations (i.e. noise) in 
the right-hand side of (22) (E* (t)) or in the kernel of the equation H* (t) may give 
rise to substantial changes of the solution. Such a situation may arise when the 
kernel spectrum appears to be comparable in some region with the noise spectrum. 
In such cases the use of certain a priori information about the solution is the only 
cardinal way of improving its stability. From this viewpoint, if specific information 
about the examined geoelectrical profile is absent, our best knowledge concerning 
the sought function is that it can be represented, in the cases qualified above, 
through an exponential spectrum of the form (9). A less effective, but more general, 
method for regularizing the solution is to reduce the initial problem (22) to the 
problem of minimizing the smoothening functional according to Tikhonov [11]: 

M ( z * )  = I1[4(t) �9 z * ( t )  - E*(t)[IL2 + (25) 

The first term in the right-hand side of (25) designates the quadratic norm of the 
deviation of the electric field synthesized using a certain transfer function Z*(t) 
from the measured field, f2 (Z*) is the stabilizing functional which in the simplest 
case is a norm of the deviation of the solution Z*(t) from a certain hypothesis 
substantiated by a priori information in the space of L 2 or W2 ~ (of the square inte- 
grable functions together with their first derivatives). The factor a designates 
parameter of regularization: as a increases, the solution is rendered more and 
more stable and, simultaneously, more smoothed and artificially forced towards the 
hypothesis adopted. The correct choice of the parameter a is of great importance 
when solving (25). The parameter must be sufficiently small in order that the 
discrepancy of the synthesis is comparable with the measurement error and must 
be sufficiently great in order that noise in the right-hand side of the equation does 
not affect the solution too strongly. By virtue of the broad dynamic range of the 
sought solution, a stable and, at the same time, non-smoothed solution may be 
obtained if the parameter a is a function of (t). The solution stability depends to a 
great extent on the form and spectral completeness of the function H(t). The 'quali- 
ty' of this function may be verified, for example, by the method of 'standard exam- 
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pie'. The resultant approximate solution Z(t) is taken to be an accurate solution and 
is used to synthesize, on the basis of a given H(t) value, an electric field which is 
afterwards disturbed by an artificial noise comparable with measurement errors. 
Again, the integral equation is solved by the regularization method and a novel Z(t) 
is found. If the latter differs from the initial function within admissible limits, the 
found solution is considered as suitable; otherwise, the solution is to be sought 
using another realization. 

Additional and essential causes of the instability in the obtained solutions arise 
from the vectorial character of equation (7). The main problem which has to be 
solved in this case is to find the necessary set of basis functions in (7). First of all, 
the basis functions should be independent in the sense of (3), i.e. none of them can 
be found from others using a convolution with some transfer functions. More strict- 
ly, if such transfer functions have nevertheless been found in a certain realization, 
their values will be substantially different in another realization. In the frequency 
domain the equality (3) is equivalent to a low coefficient of multiple coherence of 
one of the functions with respect to the rest of them. The second requirement is 
that their number should be such that the transfer functions found stably from (7) 
would cause a small discrepancy in the righthand side of the equation. In practice, 
the concrete choice and determination of the number of basis functions are made 
when solving (7). The solution for (7) is sought by successively raising the number 
of basis functions from n ~ 1. In this case the synthesis discrepancy must decrease 
monotonically, while the solution stability can deteriorate. The addition of a linear- 
ly-dependent function to the basis leads only to a rapid rise of instability without 
reducing the synthesis error. The basis is regarded as chosen when a stable solution 
can be obtained with a synthesis discrepancy comparable with the measurement 
error of the right-hand side. 

(8) A brief description of algorithms of the integral equation and the general- 
ized mathematical filtration methods is given hereafter. We do not describe an 
algorithm of generalized harmonic analysis method because different modifica- 
tions of this method are presented in [12]. We suppose that selection of field reali- 
zations satisfying a two-component system of linear relationships among the MT- 
field components was carried out beforehand. As an example we consider the 
problem of impedance tensor components determination. The processing algor- 
ithm for the integral equation method involves the steps: 

(a) MT-field component variations are filtered by a rather wide-band filter 
K(t) + R( o) 

Eo*(t ) = Eij(~)*K(t--v), i = j = l ,  2=x,y .  

After this the problem is reduced to one of seeking the filtered pulse transfer 
function impedance tensor components Zi* (z-) from a vector integral equation of 
the form: 

30=1i  
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(b) After replacing the integrals with the integral sums the system of linear alge- 
braic equations for values of sought functions Zij (rK) on a given time set ~1, r2, ... 

TLS 

L S  2 

2 Y  * Zji K HKl i ~ Ej'~, i = X, y = 1, 2, l = 1, M (27) 
K ~ l i = I  

~H ~LsM is established. Here l K~f K = l, ~= 1, i = x, y is matrix with the elements being deter- 
mined by sampled magnetic field variations Hi(t), i =  x, y; Ej'~ is a column vector 
with elements being determined by sampled electric field variations Ej (t) filtered 
by means of a filter K(t); LS and M are the lengths of a sought solution and field 
realization expressed in sampling intervals accordingly. 

(c) The algebraic equation system (27) of dimensionality M x 2LS  for j - -  x, y is 
solved by the regularization technique. The solution is thought to be acceptable if 
the discrepancy of the system (27) solution does not exceed a given threshold 
value. 

(d) The Fourier transforms of found functions Zi* (t) are calculated and normal- 
ized by the filter frequency characteristic/s 

The MT-data processing algorithm based on the generalized mathematical filtra- 
tion method is: 

(a) In accord with (19') one may form the redundant linear algebraic equation 
system for coefficients of a Taylor series of scalar impedance. In the tensor case one 
sets up a similar algebraic equation system to the following 

d 2 

~, ~',ajiKPmi=Ej~, j = x ,  y = l ,  2, l = l , M ,  (28) 
K = l i = I  

where 

{Pmi} ~/K=I, ~=1, j = x , y  

is a matrix with elements determined by sampled values of magnetic field varia- 
tions Hi(t), i = x, y filtered by means of the derivatives of the bandpass filter K A (t) 
of K-order; Ej~, l---- 1, M, ]---- x, y is a column vector with elements determined by 
sampled electric field variations Ej(t), j = x, y being filtered by means of the band- 
pass filter KA (t), aji K are the sought coefficients of a Taylor series of impedance 
tensor elements Zji, M -- the length of realization, expressed in sampling intervals, 
N -- the number of terms in a truncated Taylor series. 

(b) The equation system (28), of dimensionality M X 2N for j - -  x, y is solved 
by the regularization method. The solution is acceptable if the discrepancy of the 
system (28) solution does not exceed a given threshold value o. 

(c) The coefficients ajiK, which have been found from the equation system are 
used to determine the elements of the impedance tensor Zj~ in the range [coo - A, 
co o + A ] in accord with the expression: 
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d 

Zji(oo) = Z a/iK(iog-ia)o) Ir i , j = x , Y .  (29) 
K = I  

The solution is repeated in a given set of the frequencies co 0 . 
(9) For an estimation of the processing errors one sets some noise in the right 

sides of equations (27) or (28) and solves them several times. 
The power of the noise adopted is approximately equal to the power of the solu- 

tion discrepancy for the assumed problem without noise. For the noise the function 
of the form 

I 

S(t )  = ~, a i s i n ( w i t +  cpi ) (30) 
i=1  

is used. Here a i are given coefficients (for instance ai = 1, i = 1, 2, . . . ,  T), w i - -  is a 
set of frequencies within the frequency bound of the variations, q~, is the set of 
random numbers distributed in accordance with some law (for instance, uniform- 
ly). Specifically o) i may be distributed uniformly in a linear scale (white noise) or in 
a logarithmic one (logarithmic noise). The latter maintains an equal perturbation of 
observed MT-field variations in relatively equal intervals of the frequency band. 

The envelope of the found family solutions determines the allowable interval of 
solution variation. 

To estimate accuracy, robustness and resolving power of the different processing 
programs a system of tests are designed, using a set of calculated field variations for 
a given media with a known impedance. As a model for time variations of the 
magnetic field the function 

H(t) = Eai i(t) + s(t)  (31) 
i 

is used. Here ~i ( t )  = (t/qi) 2 e-'/q'; S( t )  - -  is the function, determined by (30); 
a/; q / - -  are given numbers. The electric field variations are calculated as a con- 
volution of the media transfer function with the magnetic field. 

Next we shall demonstrate two tests to analyse the integral equations method. In 
the first test (test B) the impedance of a 1-D medium is used. The model consists of 
two S-planes (the planes with a given longitudinal conductivity $1, $2), the separa- 
tion $1, from S 2 is d. This test is used for scalar problems. The second test (test D) 
is applied to tensor problems. 

The impedances of two different 1D-media as well as 2D-media derived from 
numerical modelling of some standard geoeleetric profiles are used as impedance 
tensor elements. 

(10) Now we present some results of processing model and field MT-data. In 
Figure 5 the model variations of H(t )  and E( t )  (test B) and the realization of a 
noise signal (of the type (30)) are shown. The noise signal is selected so that the 
spectral properties of the noise and of the observed field E( t )  are close to each 
other. Families of solutions of the scalar problem of test B processing for 20% 
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Fig. 5. The test B (the scalar problem) (a) MT-model variations H(t) in the form of (30) and E(t), 

(b) a realization of a logarithmic white noise. 

noise as well as the theoretical impedance curve are shown in Figure 6. It is seen 
from Figures 5 and 6, that consistent results (for the modulus) are obtained over 
the range of the periods from Tmi~ = 30 dt to Tma x = LR, where LR = 1024 dt is 
the realization duration and dt is a sampling interval. The appropriate range for the 
phase is Tmi, = 60 dt, Tma x = LR. Beyond the ranges the processing errors rapidly 
rise. 

In figure 7 the model variations of test D are presented. The impedances of two 
different 1D-models built up from two S-planes are used as the impedance tensor 
elements. The results of the processing of the model variations of test D are shown 
in Figure 8. The case (a) is without noise and (b) is with 15% noise in the field E(t). 
For comparison the results of processing the same data by means of the generalized 
harmonic analysis method are also given. The worse determination of the imped- 
ances Z~x (especially when noise is added) is explained by the fact that the values 
Zxx are an order of magnitude below Z~y. 
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Fig. 6. The family of curves resulting from integral equation method procesisng of the model  varia- 
tions (the test B) in cases of different 20% noise in the field E(t ) .  The sampling interval is dt  = 1; the 
duration of  the realization L R  = 1024 tit, the length of the sought transfer characteristic is 

L S  = 80 d t. I Z 0 (T)[, arg Z 0 (T)  are the exact theoretical carves. 
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FILE : T~,ST -D3 

Fig. 7. The test D-3 (the tensor problem) MT-model  variations H(t) in the form of (30) and (E(t), 
dt = 6 1  s ; L R  = 1024dt .  

The presented results show that the integral equation method allows the proc- 
essing for significantly lower frequences than traditional spectral techniques, 
the maximal determined period reaching (0.5--1.0)LR. Within the range 
T=  10 dt + LR/IO the spectral and the integral methods are in good agreement. 

Realization of experimental field variations at a point in Bulgaria is shown in 
Figure 9a. In Figure 9b impedance curves, which are the result of the processing of 
this single realization by the integral equation method, are presented. The interval 
of possible discrepancy is shown by dotted lines. It is obtained by means of distur- 
bance of electric field variations by 25% noise (see previous point). This interval is 
characterized by variable reliability of the different transfer functions over different 
ranges. 

In Figure 10 the results of the processing of some realizations of experimental 
field variations by the integral equation and generalized harmonic techniques are 
given. They confirm the model results: the integral equation method supplies reli- 
able results within the range of periods Z m i  n = 15 dr, Tmax = (0.5 + 1.0) LR, for the 
generalized harmonic method this range is Tmi n = 10 dt and Tma x = LR/IO. It is of 
interest that beyond these ranges discrepancy of the curves, determined from 
different realizations, rises (see Figure 10a). In Figure 11 are the averaged imped- 
ance curves, which are obtained by three different processing methods on the same 
ensemble of realizations of equal durations (17 h). Curve 1 corresponds to the inte- 
gral equations method, the  curve 2 was derived by the method of generalized 
mathematical filtration and curve 3 was obtained by the generalized harmonic 
analysis. Comparison of the curves shows that on the one hand the results of 
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Fig. 8. Processing results of test D-3 by means of integral equation (IEM) and generalized harmonical 
(GHAM) methods (a) undisturbed model field variations; (b) model field variations disturbed by 15% 
noise; LR = 1024, (zx zx/x zx) are the exact theoretical curves: ( ) is for IEM; (ODD) is for CHAM. 
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Fig. 9. (a) An  observed realization of  the MT-field (Bulgaria) LR = 1024 dt ,  d t  ~ 6 1  s. (b) processing 
results of the realization by IEM. 

processing by the different methods in the same period intervals are equal to within 
10%. On the other hand the maximal derived period sequentially rises when one 
goes from the method of the generalized harmonic analysis to the integral equation 
method: Tm~ 3 < Tma~ 2 < Tm.x 1. 
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Fig. 10, Processing results of some observed realizations at one point in Bulgaria: (a) IEM, 
(b) GHAM. 
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Fig. 11. Comparison of MT-processing results by means of integral equation (1), generalized mathe- 
matical filtration (2), and generalized harmonic analysis (3) methods. 

C o n c l u s i o n  

(1) One of the main ways of improving accuracy of MT-data processing is by 
decreasing errors bound up with time variations in the field exitation model. One 
way of decreasing errors is by changing from ensemble field realization averaging of 
the transfer functions (that is necessary in statistical approaches of processing) to 
transfer functions determined from an isolated realization satisfying a system of 
two-component linear relationships of the MT-field, corresponding to uniform 
plane waves. The stage of selection of such realizations comes before transfer func- 
tion determination. 

(2) On the basis of the deterministic approach to MT-data processing involving 
apriori information On the transfer functions, it is possible to extract rather effi- 
ciently meaningful information from isolated realizations of MT-variations. In 
particular the integral equation and generalized filtration methods allow the trans- 
fer functions to be found for periods comparable with the realization duration. 

(3) The estimation of errors in the determined transfer functions from isolated 
realization may be based on repeated exitations of assumed data by artificial noise, 
which models the real disturbances of the data. Comparing the MT-field c o m -  
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ponent variations to each other by given transfer functions along given geoelectric 
profiles allows us to judge in an unbiased way the processing programs used from 
different viewpoints (errors, frequency band, resolving power, etc.). 
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