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Abstract. The main results obtained during the last 5-8 yr in the solution of forward and inverse problems of 
3D induction studies are summarized. The up-to-date status of 3D modelling is presented and prospective 
improvements in the formulation and numerical solution of forward problems are discussed. Approximate 
techniques and practical aspects of 3D modelling are specially considered. 

The general scheme of 3D interpretation of electromagnetic geophysical observations is outlined and 
realistic formalized approaches to solving 3D inverse problems, namely direct inversion and formalized 
model fitting, are studied. 

O. Introduction 

The significant progress in the development of electromagnetic (EM) array observa- 
tions achieved during the last ten years made it necessary to elaborate the system of EM 
data interpretation in 3D environments. Theoretical studies of 3D problems have been 
carried out during the last twenty years or more, but not until a few years ago did these 
works become of practical importance and serious applied researches were begun. Now 
many publications concerned with 3D induction studies are well known. Still, we have 
no generalized reviews on this subject (except brief ones like Ward, 1980), but in many 
special papers meaningful discussions of the problems and outlines of 3D techniques 
have been presented (Weidelt, 1975a; Vasseur and Weidelt, 1977; Hohmann, 1978; 
Banks, 1979; Weaver, 1979; Dawson and Weaver, 1979, Fainberg, 1980; Zhdanov, 
1980; Pridmore et at., 1981; Lee et al., 1981; Stodt et al., 1981; Berdichevsky et al., 

1982; etc). 
It looks quite unrealistic to consider in detail the significant achievements in all of the 

numerous branches of 3D induction studies in a single review. Therefore the subject of 
this paper is restricted to the study of interpretation techniques of t ime-harmonic  EM 
field anomalies caused by local and regional 3D conductivity structures. Moreover, 
attention is paid mainly to the theoretical and computational aspects of the rational 
formulation and effective solution of 3D forward and inverse problems. These 
problems form the basis of the interpretation theory and, as it can be seen from the 
experience of 2D induction studies, their intensive development produces the evident 
progress in elaboration of the whole interpretation system. It is not surprising that 
these problems are prevalent in the majority of publications of recent years. 

It should be noted that general ideas of inhomogeneous media interpretation theory, 
well illustrated in 2D applications, can be expressed in the main in 3D formulations. 
This has been shown clearly in the last monographs of Berdichevsky and Zhdanov 
(1981, 1983). However, we have usually enough difficulties to overcome in the 
theoretical analysis and at the stage of numerical considerations. Really, in most 3D 
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algorithms, due to the vectorial description of EM fields and the increased dimension of 
coordinate space, the computational expenses are much greater than for their 2D 
analogues. So it is practically impossible for our limited computer resources to use a 
number of techniques standard in 2D interpretation. Therefore, to construct the 
methods of 3D interpretation, we really have to optimize theoretical formulations and 
computational algorithms in the search for effective approximate techniques. 

The most rapid progress has been seen currently in the field of 3D modelling and the 
last 2-3 yr have witnessed many important achievements. So the first and most detailed 
part of this review contains the discussion of the main advances and problems in the 
solution of 3D forward problems. In the second part, the first results of the formalized 
solution of the 3D inverse problems are considered. 

1. Modelling of EM Anomalies Caused by 3D Conductivity Structures 

In the sixties, 3D modelling capabilities in induction studies were practically limited 
only to the use of analytical representations derived for the simplest situations (e.g. a 
spheroid or an ellipsoid in a conducting space or half-space). In the early seventies, the 
development of general approaches for the solution of 3D forward problems was begun 
(Dmitriev and Zakharov, 1970; Zakharov and Ilyin, 1970; Tabarovsky, 1972b, 1975; 
Jones and Pascoe, 1972; Raiche, 1974; Lines and Jones, 1973; Weidelt, 1975a; 
Hohmann, 1975). First numerical results of that kind appeared in the last three papers. 
These experiments demonstrated the possibility of the accurate study of 3D models; 
however, it became clear that such computations needed the best computer resources. 
Therefore, the main task for the next years was to improve considerably the effective- 
ness of modelling techniques to make them a common practical to01. 

The further development of the mathematical foundations of 3D modelling was 
carried out in two main directions: (i) the integral equation approach, (ii) the direct 
solution of differential boundary value problems. To synthesize the advantages of these 
techniques, a third approach of hybrid modelling schemes was originated. 

Though we are not very far now from the mass use of 3D models in the practice of EM 
investigations, enough theoretical, computational and technological problems still 
exist in the field of numerical modelling. 

These problems will be discussed below in Sections 1.1 to 1.5 of the paper. The 
progress observed in mathematical modelling was supplemented by the advances in 
analogue scale modelling, discussed in Section 1.6. 

1.1. INTEGRAL EQUATION METHOD (IE). 

While the first results in this field were obtained by means of the surface integral 
equations (Dmitriev and Zakharov, 1970; Tabarovsky, 1972b, 1975), the volume 
integral equation technique was later found to be more suitable for the description of 
complicated geoelectric structures and became the main subject of further studies. 
Probably the clearest and most complete formulations of this technique were presented 
by Weidelt (1975a), Hohmann (1975), Dmitriev and Farsan (1980), Hvozdara (1981a, 
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b), Das and Verma (1981a, 1982), Wannamaker and Hohmann (1982). 
Though IE algorithms were usually presented in a rather general form, practically all 

the numerical calculations published were performed for the simplest model of a 
conducting brick submerged in a homogeneous half-space (Weidelt, 1975a; Hohmann, 
1975, 1978; Cauterman et al., 1979; Ting and Hohmann, 1981; etc). Only during the 
last 2 yr did the first results for the brick in a two-layered earth appear (Hvozdara, 
1981b; Wannamaker and Hohmann, 1982; Das and Verma, 1982). 

1.1.1. 3D Volume Integral Equation and Its Discrete Formulation 

Let us consider a geoelectrical model (Figure 1) consisting of a 1D normal conductivity 
distribution a , ( r )=  a,(z) and an arbkrary anomalous structure Aa which is zero 
outside the finite and, in general, multiple region V: 

I o,(r') + Aa(r'), r' ~V, 
G(r 1) 

o-.(r'), r' ~V. 
The vector integral equation for the electric field in the region V can be presented as 
follows (Weidelt, 1975a): 

E(r) = E"(r) + I t } (~ (r,r')Jv(r') dVr,, 

V 

(1.1) 
Jv(r ')=Aa(r ')E(r ') ,  reV, r 'eV; 

here E" and (~ are the electric field and the electric Green's tensor for the normal model. 
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Fig. 1. Geoelectric structure in the formulation of IE modelling problems. 
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When Equation (1.1) is solved, the field outside V can be determined by means of the 
following integral formulae: 

E(r) = E"(r) + (ffd~(r,r ') Jv(r') dE.,, 

V 
(1.2) 

P,k = Aak " f f fd~(r i ,  r')dVr ,. 
V 

It looks advisable to improve the discretization scheme in (1.1), though this involves 
very cumbersome representations of the linear system coefficients. This subject was 
discussed by Harrington (1968), Poggio and Miller (1973), Stenger (1978), Petrick 
(1978), Ting and Hohmann (1981). 

(1.3) 

1.1.2. Numerical Solution of  Discrete IE problems 

In determining the coefficients of system (1.3) we face the problem of the effective 
calculation of the volume integral I~ik . Vector elements of the tensor dE(r, r') can be 
interpreted as electric field vectors at a point r, in the normal conductivity model, due to 
the presence of elementary electric dipoles of unit moment located at a point r' and 
orented in the principal coordinate directions. The calculation of the EM fields of a 
dipole in a 1D medium is a standard problem which is usually solved by means of the 
Hankel transform. The corresponding representations of the tensor de(r,r ')  for the 
multi-layered normal model were derived by Weidelt (1975a). Only the vertical 
integration of d ~ in (1.3) can be done analytically in this case. 

H(r) = Hn(r) + ] l lGH(r,r ' )Sv(r ' )dVr, ,  r~ V, r 'e V; 

V 

where in the second formula H n and eH are the magnetic field and the magnetic Green's 
tensor for the normal model. 

The traditional approach to the numerical solution of Equation (1.1) is to subdivide 
the region Vinto a set of elementary cells { Vk, k = 1, K }, where some local parameteri- 
zation of the electric field and anomalous conductivity should be constructed. Usually 
the Cartesian coordinate system is taken and rectangular elementary cells are chosen, 
while the functions Aa(r) and E(r) are considered to be piece-wise constant: 

E(r) = E~ = E(rk), E"(r) -- E~ --- rn(rk),  A~(r )  = Aak,  reVk, 

where r k is the centre of the cell V k. 

Under this simplest assumption, the problem (1.1) reduces to the vector linear 
system: 

K 

Ei = E'I + ~ ('ik Ek, i = l,  K ; 
k = l  
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Weidelt (1975a) and Hohmann (1975) introduced some simplifications which made 
it possible to express the whole of the integral i~k as a Hankel transform. Usually the 
tensor d E is decomposed into a singular part d Ee, the Green's tensor of a homogeneous 
space, and a regular part d Es taking into account the layered structure of the model. 
The integration of the primary tensor d EP is performed analytically (Weidelt, 1975a; 
Das and Verma, 198 la). The integral of the secondary tensor d Es, in the form of Hankel 
transform, can be evaluated numerically by means of modern fast linear filtering 
techniques (Das and Verma, 1981a, b, 1982) or by using methods based on the 
deformation of the integration contour in the complex plane. (Tabarovsky and 
Morozova, 1981; Viurkov and Dreizin, 1982). An alternative idea is to carry out the 
whole integration numerically. Wannamaker and Hohmann (1982) achieved a 
significant saving by using a procedure which involved a 3D cubic interpolation 
scheme. 

One more approach for the accurate and fast Greens tensor volume integration can 
be based on the following 2D Fourier transform representation: 

dE(r, r ' ) =  Fj-y I [~(k  x, k,, z, r')] = 

(1.4) 
co l;f 

4rc2 ~E(kx, kr, z,r') e-i(xkx+yky)dk~dkr 
- c l o  

Here the 'spectral' tensor ~ has a simple known exponential dependence on the 
Cartesian coordinates of the source vector r'. After substituting (1.4) into (1.3) and 
transposing the Fourier and volume integrals, the latter one can be evaluated 
analytically. Therefore, the calculation of coefficients I~k is reduced to a 2D numerical 
inverse Fourier transform. Representations like (1.4) seem also to be useful in the 
calculation of normal fields generated by finite-size sources, as used in existing 
controlled source systems. 

1.1.3. Linear System Solution 

The matrix of system (1,3) is filled and its dimension is rather high (in simple 
experiments of Ting and Hohmann (1981) up to 800 scalar complex equations were 
used and the model of Hvozdara (1981b) required 3000 equations). When the region V 
is subdivided into K cells, the number of operations for matrix computation is 
proportional to K 2, while the direct system solution leads to expenses proportional to 
K 3. So the latter expenses become dominant as K increases, though this effect can be 
reduced when the symmetry of the model is taken into account (Tripp, 1982). 

Only the first steps have beenmade up till now in searching for optimal algorithms in 
this field. Weidelt (1975a) applied a Gauss-Seidel iterative method and found its 
convergence reliable only for conductivity contrasts less than 100. Hvozdara (1981b) 
achieved rapid convergence for contrasts of about 100 (with an improved initial 
approximation). There are several examples of the use of direct (elimination) methods 
(Ting and Hohmann, 1981; Das and Verma, 1982; Wannamaker and Hohmann, 
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1982). Also the approach of approximate reduction of the filled matrix to the banded 
form seems to be interesting (Poggio and Miller, 1973). From the physical point of view 
that means the neglect of mutual induction between distant elementary cells Vk. 

1.1.4. Approximate Solution of 3D Integral Equations 

Facing significant computational effort in the accurate solution of IE modelling 
problem, we need some fast modelling techniques producing qualitative or rough 
quantitatiye estimates of EM anomalies suitable for the different stages of 3D 
interpretation. The first possibility here is connected with the limitation of the linear 
system solution accuracy. Another opportunity consists of the use of the rough 
discretization of the integral operator in (1.1) (Dmitriev et al., 1980). The simplest 
approach can be produced by the following assumption: Jr(r) = Aa(r)E"(r), reV, so 
EM fields outside inhomogeneity V are directly determined by the use of operators 
(1.2). This technique was found to be useful in 2D formulations (Kaufman, 1974; 
Zakharov, 1979; Varentsov, 1981) and made possible the construction of fast 
formalized 2D model fitting procedures (Zhdanov and Varentsov, 1980, 1982; 
Varentsov, 1981, Berdichevsky and Zhdanov, 1981, 1983), while Le Mouel and 
Menvielle (1982) applied quite the same idea in quasi-3D modelling. Now a 3D 
algorithm is presented with the integration in (1.2) carried out in the spatial frequency 
domain. Using (1.4), the anomalous electric field in this domain can be expressed as 
follows: 

e~(k~, ky, z) = Fxr[E~(x, y, z)] = 
(1.5) 

Aa I I I g~(kx, ky, z, r')E"(r') d Vr'. 

V 

The expression for the magnetic anomaly h a = F~y[H a] takes just the same form. For 
the particular model of a brick-like structure in a layered medium with plane wave 
excitation the integral in (1.5) is analytical and so the modelling problem is reduced to 
the numerical 2D Fourier transform inversion. The anomalous field (1.5) is over- 
estimated because the self induction in Vis neglected. It may be very rough (close to the 
equivalent dipole response) in the case of an isometric inhomogeneity (Figure 2), but it 
seems to be useful for express-modelling of 3D conductivity structures which are 
elongated in the direction of the normal electric field. 

1.2. DIFFERENTIAL EQUATION METHOD (DE) 

The method is based on the direct numerical solution of boundary value problems 
derived form Maxwell's equations. The modelling region M is chosen with suitable 
boundary conditions and usually is much greater than the region V containing the 
conductivity anomalies (Figure 3a). Finite differences (FD) or finite elements (FE) are 
the most common discretization techniques here. Using these techniques the whole 
region M is covered by the system of cells (elements) and linear equations are written for 
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Fig. 2. 3D anomalous magnetic express-modelling response (produced by formula (1.5)) on profile (x > 0, 
y = 0, z = 0) for a conducting brick of variable strike extent placed in a homogeneous conducting halfspace. 

the field values at grid nodes or for the coefficients of some local approximations of the 
field. The coefficients of these equations depend only on the local conductivity 
distribution and the local grid geometry and can be determined without significant 
computational effort. 

The first application of FD technique in 3D modelling was made by Jones and his 
colleagues (Jones and Pascoe, 1972; Lines and Jones, 1973; Jones and Vozoff, 1978; 
Jones, 1978). Numerous calculations for the models of practical interest were 
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Fig. 3. Geoelectric structure in formulation of DE modelling problem (a) and hybrid modelling schemes (b, 
c): (1) modelling region boundary, (2) interfaces of the normal conductivity structure, (3) action of the 
integral operator (1.2) to determine boundary field, (4) boundary field dynamic correction using the 
analytical continuation technique. 

performed using their programs (see references in: Ramaswamy e t  al . ,  1980; Lam e t  al . ,  

1982). Further developments were produced by Yudin (1980, 1981, 1982), Zhdanov 
and Spichak (1980), Varentsov and Golubev (1780), Zhdanov e t  al.  (1982). The FE 
approach was elaborated in 3D induction studies firstly by Reddy e t  al .  (1977) and then 
by Pridmore (1978), Pridmore e t  al .  (1981). 
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Now, by means of these techniques, we have an opportunity to study more 
complicated models. However the accuracy of such computations should not be over- 
estimated while the corresponding costs are extremely high. The necessary improve- 
ments in the DE approach were specially considered by Pridmore and Sill (1978), 
Pridmore et al. (1981), Zhdanov et al. (1982). The most critical aspects of these 
problems will be discussed below. 

1.2.1. Boundary Value Problem Formulation 

At this stage we have to chose the field in terms of which the DE problem is to be posed 
(electric or magnetic, total or anomalous) and to obtain the differential equation as well 
as to determine the modelling region and the conditions on its boundary. When the 
whole set of EM field components should be modelled the DE problem formulation for 
the electric field looks more advisable (Jones, 1978; Yudin, 1980; Pridmore et al., 1981 ; 
Zhdanov et al., 1982), though if only the magnetic field is to be studied, the opposite 
choice is natural (Sheen, 1978). It is useful to decompose the geoelectric model, as in the 
IE method, into normal and anomalous structures and here we have justification to 
consider general 2D and even 3D normal models a,(r) (Figure 3a). 

The anomalous field DE problem formulation produces some advantages at the 
stage ofdiscretization because the anomalous field structure is more simple and smooth 
in the regions with sharp spatial variations of normal field and normal conductivity. 
Although the supplementary task of the normal field calculation arises, the improve- 
ments of discrete approximation may compensate (Sheen, 1978; Yudin, 1980). In this 
formulation there is no need to assume 1D conductivity structure near modelling 
region boundaries. It is especially effective to study a set of models with the same 
normal conductivity distribution (for example, in model fitting procedures). 

The traditional boundary conditions used in modelling problems are those ap- 
propriate to the normal field (Jones, 1978; Yudin, 1980). The most common are the 
Dirichlet type conditions in which the corresponding normal field values are assigned 
to the solution on the modelling region boundary (total field formulation) or set to zero 
there (anomalous field formulation). In both cases the boundary should be placed 
sufficiently far from conductivity anomalies for the anomalous field values on it to be 
neglected. 

To diminish the size of the modelling region, the boundary conditions may take into 
account the anomalous field structure and thus be valid when the boundary is close to 
geoelectric inhomogeneities. Integral operators can be applied for this purpose and 
ideas of that kind will be discussed in the next section. Another way is to study the 
asymptotic behaviour of the EM field far from geoelectric inhomogeneities. This 
approach proved to be very effective in 2D modelling (Weaver and Brewitt-Taylor, 
1978; Varentsov and Golubev, 1980; Varentsov, 1981; Zhdanov et al., 1982). 

A 3D analogue of the Weaver-Brewitt-Taylor condition, valid in a nonconducting 
halfspace (air, model basement), where the field attenuation is the most slow, was 
suggested by Varentsov and Golubev (1980), and applied to a FD modelling scheme 
(Zhdanov et al., 1982). Formulated for the anomalous electric field in the atmosphere, 
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this condition takes the form of the following first-order differential equation: 

d d d 
Dl[Ea](r)=O(1/r2), D I = I  +X~x x + y ~ y y + z ~ z  z = l + r ' V ;  (1.6) 

where the origin of the coordinate system is taken on the earth's surface closest to the 
centre of anomalous region V (Figure 3a). The use of Equation (1.6) on the boundaries 
in the atmosphere could greatly decrease the modelling region (compare regions M and 
M a in Figure 3a), while the numerical solution of the DE problem does not differ 
appeciably from the case when the 'normal field' boundary conditions are chosen. 

1.2.2. Numerical Solution of  Boundary Value Problems 

The discrete formulation of 3D DE modelling problems is studied in detail by Pridmore 
et al., (1981 ), Yudin (1981) and Zhdanov et al. (1982). In both FE and FD approaches 
the regular subdivision of the modelling region is considered and linear equations are 
constructed for the field values at the nodes of this grid. The linear system coefficients in 
FE schemes are derived by means of the Galerkin method (Reddy et al., 1977) or by 
using the variational formulation of the problem (Pridmore et al., 1981). The linear 
equations produced by FD methods can be obtained in terms of an integro-interpo- 
lating (balance) technique (Zhdanov and Spichak, 1980; Zhdanov et al., 1982) or by 
using the variational approach (Yudin, 1981). 

All the approaches generate linear systems with quite similar structures and high 
dimensions (up to tens of thousands of scalar complex equations). So the problem of the 
optimal choice of linear system solution algorithm is of great importance. The system 
matrix has a banded structure and, due to the regular grid geometry, the band is also 
regular with a dominance of completely zero diagonals. However, the bandwidth is 

�9 relatively larger than in the 2D case and the solution by direct methods is realistic now 
only in the case of rather small dimensions (less than thousands of equations). 
Significant progress could be achieved with the help of specialized elimination 
algorithms taking into account the specific structure of the matrix band. Another very 
interesting approach contains the use of semi-iterative procedures. For example, 
combining approximate but fast and compact matrix decomposition with the con- 
jugate gradient iterative method can cause a significant increase in effectiveness (in 
comparison with pure iterative or direct methods) and has been achieved in DE 
problems similar to those in 3D induction studies (Kershaw, 1978). However, valuable 
improvements can be introduced by traditional iterative techniques, such as the S.O.R. 
method (Pridmore et al., 1981, Zhdanov et al., 1982; Varentsov and Golubev, 1982). 
Here we face two main problems: how to optimize the convergence of iterations and 
how to control the accuracy of the solution (i.e. where to stop the process). Several 
algorithms, of the prediction-correction type, to select iterative parameters were 
designed for 2D modelling (see references in the last two cited papers) and can be 
modified for 3D applications. To accelerate convergence, it is useful to improve the 
accuracy of the initial approximation, for example, by using a set of 2D solutions. 

The problem of internal accuracy control is studied specially in Zhdanov et al., 1982. 
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The best approach to estimate the total modelling error consists of examining the 
validity of some general relations attributed to the EM field in the model. For example, 
the accuracy of the formulae (1.2), when applied to the grid solution, can be studied 
(Zhdanov et al., 1982) and the two following criteria to halt the iterative process are 
derived (E a is evaluated iteratively and a 1D normal model is considered). The first of 
them controls the absolute value of the modelling error: 

IlE"(k) - IIfGFAa(E" + Ea(k)) OVII/IIE"(k)II <~ go (1.7) 61k)= 

V 

here k is an index of iteration and the vector norm is defined in the observation region. 
The second criterion takes into account the change of the first estimate during the 
iterative process: 

(1/Ak) �9 15 ̀k- ~k)l/5'k) ~< gl (1.8) 

which indicates the situation when the DE problem discretization errors are much 
greater than the errors of the linear system solution. 

Usually after the solution of the linear system it is necessary to determine the grid 
values of all other EM field components. The direct FD approximation of the 
appropriate Maxwell's equation leads to significant errors on rough grids. The 
accuracy may be improved if anomalous fields are considered and a realistic solution 
approximation is substituted into the differential operator of Maxwell's equation. 
However, in models with a 1D normal structure and finite conductivity anomalies, it 
seems preferable to obtain the EM fields in the observation domain by means of integral 
operators (1.2) applied to the electric current distribution modelled inside the 
inhomogeneities (Sheen, 1978; Pridmore et  al., 1981; Yudin, 1982). 

1.3. HYBRID MODELLING SCHEMES 

Let us consider now the class of modelling algorithms in which the combination of the 
IE formalism with DE techniques produces a new kind of computational scheme called 
hybrid. 

An obvious approach to construct a hybrid scheme is based on the use of integral 
boundary conditions. It is natural to apply here integral expressions (1.2) which present 
the solution outside the inhomogeneous region in terms of the internal field. So the 
modelling region M can be reduced to a rather small domain M n containing all 
conductivity anomalies (the normal model having a 1D structure, as in Figure 3b). This 
idea was elaborated by several authors (Sheen, 1978; Petrick, 1978; Petrick et  al., 1981 ; 
Lee et al., 1981). The first numerical results were published by Lee et  al. (1981). 

By employing such an approach, a linear system with a specific structure is generated 
(Sheen, 1978; Lee et al, 1981). The discretization at boundary nodes is typical for the IE 
method, while at internal nodes either the FD or FE technique is used most frequently. 
The problem posed for the anomalous electric field produces the following system: 
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Abb/ LELI LR J 
where the subscripts i and b indicate internal and boundary equations, Aii is a square 
banded matrix (as in DE problems), Abb is the unit matrix, Aib is sparse and Abi is filled 
rectangular. 

When solving (1.9) for the internal field, E~, the following system was adopted (Lee et  

al.~ 1981): 

(A u - AfbAb, ) E~ = R~ - A ,bR  b. (1.10) 

Though the modelling region is now substantially diminished, the number of internal 
unknowns is still of the order of thousands. The application of direct algorithms to this 
system with a filled matrix is difficult and a semi-iterative approach seems more 
suitable. Lee et  al. (1981 ) proposed inversion of the banded matrix Aii and the following 
iterative scheme: 

E~(o) = O, E~.(o) = A s ,  1 n,; 
E~(k) = (1 - w)E~(k - 1) - W[AbiE~i(k - 1) - Rb] (1.11) 
E~(k) = - A ~.x [A,bE~(k ) _ R,], k = 1, 2 .. . . .  

where the coefficient w, which promotes the stabilization and acceleration of con- 
vergence, is in inverse proportion to the conductivity contrast in the model. 
Satisfactory convergence (after tens of iterations) with the simplest conducting brick 
model was achieved only with conductivity contrasts less than several hundreds. 

It seems preferable, following Sheen (1978), to reformulate the system (1.9) in terms 
of the bouladary field: 

(I  - AbiAiT 'Aib  ) E~, = R b - Ab~A ~ 'Ri, (1.12) 
I is the unit matrix. 

The dimension of this system is determined by the number of boundary unknowns and 
is relatively small (several hundreds). The effective application of a direct method of 
solution is quite possible here. Having solved the system and stored the inverse matrix 
A~ T 1, it is easy to expand the solution inside the modelling region: 

E~ = - A,T '(A,bE~, - R,). (1.13) 

The main computational costs in this approach are concentrated at the stages of: (i) 
inversion of the banded matrix A, (the matrix dimension is significantly smaller than 
that of the DE problem) and (ii) direct solution of the linear system (1.12) with a filled 
matrix, (with a much smaller dimension than the corresponding IE problem). So the 
scheme (1.12-1.13) looks advantageous when compared with the standard application 
of IE and DE techniques, though still we have no numerical results here. 

Another kind of hybrid scheme was introduced by Yudin (1982) which was based on 
the iterative solution (using Seidel's technique) of a standard anomalous field DE 
modelling problem with inhomogeneous Dirichlet type boundary conditions corrected 
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periodically during the iterative process. Initially the boundary field values are set to 
zero. The dynamic correction is performed by means of analytical continuation of the 
grid solution away from the surfaces, S -+, of the inhomogeneous layer, L, containing all 
conductivity anomalies (Figure 3c). The continuation of 3D EM fields in 1D media is 
carried out using a spatial frequency domain algorithm (Berdichevsky and Zhdanov, 
1981). In this approach the conductivity distribution should be one-dimensional only 
outside the inhomogeneous layer L. This is an advantage over the previous hybrid 
schemes. However, the convergence of the iterative process described has not been 
proved and needs a special study. 

1 . 4 .  P R A C T I C A L  PROBLEMS OF  3D M O D E L L I N G  

We have considered above the main approaches to the solution of general 3D 
modelling problems. Each of them has its own advantages and difficulties and the 
suitable applications, where these approaches could be the most effective, should be 
outlined. 

The IE technique is becoming a standard tool to study models with local in- 
homogeneities of a rather simple structure. This class is of great importance in 
theoretical and methodical 3D investigations (Cauterman et  at., 1979; Stodt et  at., 

1981 ; Sandberg and Hohmann, 1982; Das and Verma, 1982). A new generation of cost 
effective computer programs dealing with multi-layered models containing several 
inclusions with an arbitrary conductivity distribution is now appearing (Wannamaker 
and Hohmann, 1982; Das and Verma, 1982). 

The DE approach is still the only possibility to analyse models with complicated 2D 
normal and 3D anomalous conductivity structure. The improvements summarized in 
Section .1.2 could produce substantial progress in DE modelling, without diminishing 
its simplicity and universality. We are waiting to obtain advanced DE programs which 
implement these improvements (primarily, the asymptotic boundary conditions and 
internal accuracy control). However, the development of controlled source DE 
modelling may be substantially limited by the lack of effective direct algorithms to solve 
the corresponding linear systems with a different set of right-hand side vectors. 

The hybrid technique looks to be the most suitable for models of middle range 
complexity, but its effectiveness should be better established by numerical experiments. 
Moreover, an important aid to the progress of 3D modelling would be the comparison 
of results from existing computer programs, with emphasis on computational effective- 
ness and universality. As a result of this comparison, the optimal applications and the 
actual directions for further development of 3D modelling approaches could be 
conceived more clearly and concretely. The first set of tests models was adopted by 
international conferences in Australia (Sydney, 1977) and U.S.A. (Berkeley, 1978) and 
the results of several comparative calculations were published recently (Pridmore et  at., 

1981, Das and Verma, 1982; etc). 
As we approach the stage of mass scale 3D modelling applications, we have to pay 

much more attention to the problems of rational computer implementation of 
modelling algorithms (Pridmore and Sill, 1978.) Really, the formal optimization of 
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programming code, as well as the optimal use of hardware options, could be nearly as 
effective as theoretical or computational improvements. To succeed in the solution of 
these problems, the development of specialized computer systems is desirable. 
Organization of data banks of modelling results would be possible by the use of such 
systems and investigation, comparison and distribution of modelling programs could 
be performed more effectively. 

Many important practical problems appear at the stages of model design (autom- 
ation of model description, formal generation of interface parameters for modelling 
programs, etc.) and presentation of modelling results (choice of standard and optional 
sets of modelled EM data, elaboration of formats of data presentation, computer 
storage of modelling results, etc). However, we are now only beginning to understand 
these problems. 

1.5. QUASI-3D MODELLING 

In many important geoelectric situations, 3D conductivity anomalies can be ap- 
proximated using inhomogeneous thin layers or axially symmetric structures, i.e. by 
objects with 2D anomalous conductivity distributions. In such classes of models we still 
deal with 3D EM anomalies while the dimension of the modelling problem is 
diminished. Therefore, it becomes possible (i) to study much more detailed models than 
in general 3D cases with the same computational effort or (ii) to reduce significantly the 
computational cost in comparison with 3D modelling, without the loss of accuracy. 

The most investigated quasi-3D structure is the fundamental Price-Sheinmann 
model consisting of an infinitesimally thin conducting sheet, with a surface conductivity 
distribution S(r~) = S, + AS(r~), rs = (x, y), placed between the non-conducting at- 
mosphere and underlying 1D conductivity structure cr,(z). When the anomaly AS(rs) is 
finite (nonzero only in the region V) we can easily reformulate the problem in terms of 
the general IE approach (Section 1.1). So the Equation (1.1) takes the form (Weidelt, 
1977; Vasseur and Weidelt, 1977); 

E,(r) = E~"(r) + ] I tds~(r,r')J,(r') dVr', r,r'sV; 

V 

J,(r') = AS(r')E~(r'), Es = (Ex, Ey, O), (1.14) 
r = ( x , y , 0 ) ,  r ' =  ( x ' , y ' , 0 ) ,  

The 'surface' tensor G~, is related to the 3D tensor G~, of the corresponding normal 
section {S,, ~,(z)}. The practical application of this technique was discussed by Weidelt 
(1977), Vasseur and Weidelt (1977), Menvielle et al. (1982). 

The main limitations in the formulation (1.14) is the finite size of the inhomogeneous 
domain V. This difficulty was overcome in the method presented by Dawson and 
Weaver (1979), Weaver (1979, 1982). They derived a 2D integral equation for the total 
electric field Es, and considered models in which the derivative of the conductivity 
normal to the edges of the model vanished outside V. Besides Fainberg and Zinger 
(1980) formulated the integro-differential problem in terms of the anomalous electric 
field, assuming a 2D normal conductivity distribution S,(r~) and using for a normal field 
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the results obtained in the global modelling scheme (Fainberg, 1980; Fainberg and 
Zinger, 1980). These authors elaborated an original iterative solution of the problem 
which was convergent for an arbitrary distribution S(rs). We should mention also the 
developments of the FE solution of the Price equation (Egorov and Palshin, 1981) as 
well as the two-sheet modification of the Price analysis (Ranganayaki and Madden, 
1980). 

A significant improvement to a thin sheet model consists in the replacement of classic 
Price-Sheinmann boundary conditions by more accurate analogues. The correspond- 
ing generalization was made by Dmitriev (Dmitriev and Gushchina, 1979) and then by 
Berdichevsky and Zhdanov (1981, 1983). So a new class of quasi-3D models called 
'inhomogeneous thin layers' (with finite thickness and 2D conductivity distribution 
Aas(rs) ) was originated. The first modelling technique here (Debabov, 1976) was 
constructed on the basis of Dmitriev's conditions. The problem was reduced to a 
system of scalar integro-differential equations, posed for TE and TM field mode 
potentials, and solved iteratively. The significant acceleration of computation was 
achieved by the transition to the spatial frequency domain. Using this approach, a 
variety of models was investigated (Golubtsova, 1981). The same boundary conditions 
were applied in the scheme with two inhomogeneous thin layers (Dmitriev et  al., 1981 ). 
More general conditions were employed in the modelling problem by Zhdanov and 
Tikhomirova (1982). For the case of a 3D field and 2D anomalous conductivity 
structure, the integral equation for the magnetic field was formulated directly in the 
spatial frequency domain and solved iteratively. 

The advantages attributable to quasi-3D thin sheet and axially symmetric models 
were presented by Dmitriev and Barashkov (1980): see also (Berdichevsky et  al., 1982). 
The study of general axially symmetric models, in terms of the IE approach, was 
established by Dmitriev, Ilyin, Kaufman, Tabarovsky, and Zakharov. The last results 
here were presented by Zakharov and Nesmeyanova (1977), Barashkov (1981). 

Now the quasi-3D modelling seems to be quite a usual tool of 3D interpretation, at 
least for the problems of deep induction studies (Ad~m et  al. ,  1982; Weaver, 1982). One 
of the main tasks for the near future is to conduct the comparative analysis of the variety 
of known techniques and to choose the most effective of them. Another important 
problem is to improve the criteria of validity of quasi-3D approximations of natural 
geoelectric structures. 

1.6. A N A L O G U E  SCALE M O D E L L I N G  

This method is free of some of the difficulties inherent in numerical modelling. In the 
main the costs here do not depend so much on the complexity of the modelled 
conductivity structures and excitation-observation systems. Analogue modelling 
techniques have been used in induction studies for a long time, but rapid progress has 
been seen in this field during the last 5-10 yr. The sensitivity of EM measurements was 
improved, a high level of automation achieved, the minicomputer control of modelling 
process introduced and new materials appeared which could be used to model middle 
range conductivity contrasts. The up-to-date means of 3D scale modelling facilitated 
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various investigations of complicated geoelectric structures in the fields of prospecting 
and deep EM studies. 

The most detailed investigation of models with subsurface conductivity anomalies 
can be found in the work of Dosso and his colleagues. These studies contain a set of 
theoretical models describing 3D coast and island EM effects (Nienaber et al., 1977; 
Chan et al., 1981; etc.) as well as more complicated regional models of real coastal 
conductivity structures (Dosso et al., 1980a, b; Ramaswamy et al., 1980; Nienaber et 

al., 1981). Several types of field excitation were considered (Hibbs et al., 1978; 
Ramaswamy and Dosso, 1978; Miles and Dosso, 1979). The problem of modelling 
accuracy was specially studied using some simple analytical estimates (Ramaswamy 
and Dosso, 1978) and compared with numerical 3D modelling (Hibbs et at., 1978; 
Ramaswamy et al., 1980). 

New analogue laboratories to analyse a more general class of conductivity structures 
(subsurface and deep inhomogeneities in a multi-layered normal model) appeared in 
the USSR (Moroz et al., 1975, 1978) and in Hungary (~.d~m et al., 1981). 

The first laboratory is generally specialized in the examination of the resolving power 
of 3D MT and magnetovariational methods and the study of different excitation 
mechanisms of EM responses to deep crustal and asthenospheric conductivity 
anomalies (Berdichevsky et al., 1980, 1982). The Hungarian laboratory was designed 
to solve interpretation problems of EM controlled-source frequency sounding and 
profiling applied in 3D environments (Ad/tm et at., 1981). These and the latest results 
(Morrison et al., 1982; Olm and Frischknecht, 1982; Villegas-Garcia et al., 1982) prove 
the effectiveness of the scale modelling approach to the solution of methodical and 
interpretational problems of deep and prospecting EM methods. 

The comparison of 3D numerical and analogue modelling results was performed by 
several authors (Hibbs et  al., 1978; Ramaswamy et al., 1980; Lee et at., 1981 ; Das and 
Verma, 1982) and it can be seen that modern analogue models are often more detailed 
and at least as accurate as numerical ones (Ramaswamy et at., 1980). 

2. Outlines of Solution of 3D Inverse Problems 

Our minimal interpretative capabilities are directly dependent on the development of 
3D modelling. The simplest idea of how to interpret 3D anomalies is the selection of 
models available. In several recent investigations this approach provided quite 
satisfactory model fitting of EM array observations (Nienaber et al., 1981; 
Ramaswamy et al., 1980; Weaver, 1982; etc.). An automatic search for the best fitting 
3D model in an exisiting bank of modelling results seems to be realistic in simple 
geoelectric situations, as in the 2D case (Pelton et al., 1978). 

We can also use accurate 3D modelling techniques to study the conditions under 
which 3D anomalies are suitably approximated by 2D EM fields (high frequencies) or 
3D stationary fields (low frequencies), Comparative analysis of 2D and 3D modelling 
results (Ting and Hohmann, 1981) proved the assumption that 2D H-polarization 
interpretation methods could be useful to resolve the cross-section of an elongated 3D 
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inhomogeneity, while its strike extent could be traced from the 3D stationary field 
approximation. 

However, the main problem in the development of 3D interpretation system is the 
advancement of formalized approaches to the solution of general 3D inverse problems. 
Significant progress can be seen in the same field of 2D induction studies and this 
experience stimulates corresponding 3D activity. 

2 . 1 .  G E N E R A L  REMARKS ON THE SCHEME OF 3D INTERPRETATION 

The process of 3D EM data interpretation can be decomposed into the following main 
stages: 

(i) selection of the EM data to be interpreted; 
(ii) construction of a geoelectric model, i.e. definition of the normal (base) conduc- 

tivity distribution, primary excitation structure and formal description of the unknown 
anomalous (excess) conductivity distribution; 

(iii) choice of a modelling operator to relate the anomalous conductivity structure to 
the observed responses; 

(iv) mathematical formulation of the inverse problem and its regularization 
(reduction of an initially ill-posed problem to a well-posed one); 

(v) development of a constructive algorithm to solve the latter problem and its 
numerical implementation. 

The first two stages provide the formalization of initial information available and are 
based on the joint analysis of observed EM data and geoelectric models produced by 
the previous steps of 1D, 2D, and 3D interpretation and existing a priori geophysical 
and geological ideas. Though informal considerations can not be avoided at these 
stages, several formalized techniques have been devised to separate conductivity 
structures and EM responses into normal and anomalous parts, to distinguish between 
the effects of subsurface and deep EM anomalies, and to localize geoelectric in- 
homogeneities using the EM field analytical continuation technique (Beamish, 1977; 
Banks, 1979; Zhdanov, 1980; Berdichevsky and Zhdanov, 1981, 1983). Moreover, the 
resolving power of different 3D EM responses was studied in some classes of models 
(Jones and Vozoff, 1978; Ting and Hohmann, 1981 ; Berdichevsky et  al., 1982; Lain et 

al., 1982; etc.). 
The choice of modelling operator is dependent on the structure of the data selected 

and the geoelectric model constructed, the computational resources available and the 
requirements of inverse problem formulation. 

Now we consider the last two stages of the above scheme, namely the two main 
approaches to formulate and solve inverse problems (direct inversion and formalized 
model fitting) and to show the specific aspects of their 3D applications. 

2 . 2 .  M E T H O D S  O F  3D DIRECT INVERSION 

This approach is based on the direct inversion of the modelling operator involved in 
inverse problem. The main results were obtained in quasi-3D models using both 
electric and magnetic simultaneous EM field observations. Berdichevsky and Zhdanov 
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(1981, 1983) formulated a scalar Fredholm integral equation expressing the anomalous 
surface conductivity AS in terms of the tangential electric and vertical magnetic field 
components in a model with ,an inhomogeneous Price-Sheinmann thin sheet and 
known 1D normal structure below. This equation requires, however, a numerical 
solution even in the simplest cases. Vasseur and Weidelt (1977) found a closed form 
inversion of the vector integral operator describing the anomalous electric field in 
(1.14). 

This operator can be considered as a convolution integral: 
oO 

o o  

I I G~(rs -- r~)Js(r' ) dry, E~(rs) 
-'JJoo (2.1) 

rs = (x, y), r; = (x', y )  

and an application of the deconvolution theorem produces: 

a~ = FL 1" [ ( ~ ) - 1 '  Fxy[E~]], g~ = F~y[G~]. (2.2) 

The anomalous conductivity AS is easily obtained from the equation Js = AS �9 E~. 
When a thin sheet is placed inside a conducting medium, algorithm (2.1), (2.2) can be 
generalized to determine the 3D sheet current vector Jv from the anomalous magnetic 
field: 

3v = V ; ) .  [(gB)-i .  F~r[Ha]], ~n = F~y[G"]. (2.3) 

The first, and still the only practical results in the application of direct inversion 
techniques were presented by-Banks (1979). The simplest model of a thin sheet in a non- 
conducting space was considered to interpret geomagnetic array studies in the region of 
the Kenya Rift. These calculations, being of practical interest, proved once more the ill- 
posed character of the direct inversion problem and the need to regularize the methods 
applied to obtain a stable solution. Really, the spatial frequency domain filtering 
operators in (2.2), (2.3) are not bounded at infinity, as is the case in the algorithm for the 
analytical continuation of the EM field downward from the earth's surface. The 
regularized low spatial frequency filtering devised in the latter case (Zhdanov et al, 
1978; Berdichevsky and Zhdanov, 1981, 1983), seems to be useful in direct inversion 
applications. Another way to stabilize the solution is based on the numerical 
approximation of the modelling problem by a discrete system like (1.3) and the use of a 
generalized matrix inversion technique to solve this system for the extended multi- 
component and multi-frequency set of surface EM observations (Vasseur and Weidelt, 
1977). 

In the general 3D case the reconstruction of the excess current distribution, J~, in 
modelling operators (1.2) looks also quite realistic, though the convolution formalism 
like (2.1)-(2.3) is not valid here and the inversion of (1.2) has to be performed 
numerically. The anomalous conductivity, Aa, can be found from the equation 
Jv = Aa �9 E a, and the anomalous electric field inside the region V is determined by 
substitution of the known distribution J~ in Equation (1.1) and further integration. 
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2.2.1. Formalized Techniques of 3D Model Fitting 

This approach is not as specific to the 3D case as is direct inversion. In fitting techniques 
the inverse problem is reduced to the minimization of a functional expressing the misfit 
between interpreted EM data and corresponding modelling responses. This problem is 
slightly dependent on the structure of the modelling operator (and on its derivatives 
with respect to unknown model parameters in gradient minimization schemes). 
Therefore, the functional minimization technique may be considered as a very broad 
and flexible interpretative tool which makes it possible to fit arrays of single-point 
estimates of conductivity functions (impedance, apparent resistivity, magnetic transfer 
functions, etc) as well as simultaneous EM field observations in the most general classes 
of geoelectric models. 

However, the computational effort here involves tens of modelling problem 
solutions and in general looks enormously high if accurate 3D modelling operators are 
applied. To construct effective 3D formalized fitting procedures, we could deal now 
only with the fastest approximate modelling techniques such as rough discretization IE 
solutions with predetermined Green's tensor arrays. At the stages of model parametri- 
zation, misfit functional formulation and minimization problem solution, the ex- 
perience accumulated in 2D cases (Weidelt, 1975b, 1978; Jupp and Vozoff, 1976; 
Oristaglio and Worthington, 1980; Zhdanov et al., 1980; Berdichevsky and Zhdanov, 
1981, 1983; Cerv and Pek, 1981; etc.) can be applied with evident modifications. For 
example, a 3D version of the tightening surfaces method (Zhdanov and Varentsov, 
1980, 1983; Varentsov, 1981) is easily formulated if based on the express-modelling 
technique (1.5). The main advantages of this low-frequency approach consist in the 
formulation of the misfit functional in the spatial frequency domain, compact one- 
function description of the anomalous conductivity structure and stable functional 
minimization performed in Tikhonov's regularization scheme. Another even more 
simple, but still useful, possibility is to interpret EM field observations in the spatial 
frequency domain by fitting the spectral EM responses of dipole distributions 
composed of single 'equivalent' dipoles, lines, sheets and boxes of dipoles with 
optimized locations, moments and orientations. These reponses can be presented 
analytically by elementary functions and so the fitting procedure could be very fast 
compared with the 3D direct inversion scheme involving the evaluation of currents, Jr, 
mentioned in the previous section. 

3. Summary 

A conclusion of this review is that several significant theoretical and numerical 
improvements could be introduced into existing 3D modelling approaches. At the same 
time, increased attention is to be paid to the numerical investigation of particular 
techniques, their comparative analysis in different classes of models and the evolution 
of technical aspects of 3D modelling in practical applications. 

3D inverse problems should become the main subject of theoretical studies and the 



74 Iv. M. V A R E N T S O V  

family of inverse problem formulat ions ought  to be extended. By using the experience of 
2D induct ion studies and advances in the theory of  ill-posed problems, stable methods 

for the solution of 3D inverse problems will be constructed. It  is quite realistic to expect 
the first, simplest techniques of this kind very soon. 

Finally, the great necessity to integrate 3D interpretation approaches  (on theoretical 

and technological  levels) with methods and results of 1D and 2D interpretat ion seems 
to be apparent  now. 
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