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Abstract. Three-dimensional (3D) interpretation of electromagnetic (EM) dsta is still in its infancy, due to a 
lack of practical numerical solutions for the forward problem. However, a number of algorithms for 
simulating the responses of simple 3D models have been developed over the last ten years, and they have 
provided important new insight. Integral equation methods have been more successful than differential 
equation methods, because they require calculating the electric field only in small anomalous regions, rather 
than throughout the earth. Utilizing a vector-scalar potential approach and incorporating symmetry 
through group theory improves the general 3D integral equation solution. Thin-sheet integral equation 
formulations have been particularly useful. Much recent research has focused on hybrid methods, which are 
finite element differential equation solutions within a mesh of limited extent, with boundary values 
determined by integrating over the interior fields. An elegant eigencurrent technique has been developed for 
calculating the transient response of a thin 3D sheet in free space, but general 3D time domain responses have 
only been calculated by Fourier transforming frequency domain results. Direct time domain calculations 
have been carried out only for 2D bodies. 

1. Introduction 

With the development of accurate, flexible, and reliable digital field instrumentation 
electromagnetic (EM) methods of geophysics now are limited mainly by a lack of 
interpretation capability. Layered earth (1D) interpretations often are used when they 
do not apply, because calculating the response of a 2D or 3D model requires a 
complicated numerical solution and a large amount of computer time and storage. 
Inversion techniques are well developed for 1D cases, hut are very difficult to apply for 
2D or 3D models. Thus in most cases interpretation of data must be accomplished by 
estimating the parameters of simplified 2D or 3D models of the earth using numerical 
solutions for forward calculations. 

Differential equation (finite element and finite difference), integral equation, and 
hybrid methods have been used. Differential equation (DE) solutions are easiest to 
implement, and they result in large banded matrices. Because the entire earth is 
modeled on a grid, DE methods are preferable for simulating complex geology. Integral 
equation (IE) formulations involve more difficult mathematics, but the unknown fields 
only need to be found in anomalous regions. Thus IE solutions are less expensive for 
calculating the response of one or a few small bodies and hence are more useful for 
evaluating field techniques, for designing surveys, and for calculating interpretation 
catologs. Much recent research on 3D modeling has focused on hybrid methods, which 
attempt to combine the advantages of DE and IE solutions. Due to the numerous 
possibilities for theoretical and programming errors, it is necessary to compare results 
computed by different methods before a numerical solution can be considered valid. 
Too many results have been published without convergence checks and cross checks. 

The subject of 3D EM interpretation is too large for a single review paper. I shall 
concentrate on reviewing the status of 3D numerical solutions, since further progress in 
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this area is essential for improving EM methods of geophysics. Thus, I will not be able 
to treat scale modeling, which has provided much of our insight regarding 3D EM 
responses. Furthermore, it will be impossible to cover the various methods of 3D or 
quisi-3D interpretation of data, or inversion methods. 

Theoretical formulations for total and secondary fields are derived in the first section, 
since they have not been presented in a unified manner before. Integral equation 
solutions, including a number of recent improvements, are considered next; they have 
been the most successful for 3D problems. Finite element and finite difference solutions 
are discussed next, followed by a section on hybrid methods. The final section discusses 
recent progress in time domain EM modeling. Checks between competing solutions are 
emphasized throughout, since validation is such an important aspect of numerical 

modeling. 

2. Theoretical Formulations 

Figure 1 shows a practical 3D model, consisting of an overburden layer of conductivity 
~r 1 , a host rock of conductivity o- z, a 3D body of variable conductivity %(r) imbedded in 
the host rock, and a basement of conductivity ~3. Due to attenuation in the Earth, only 
low frequencies are of interst, so that displacement currents can be ignored. 
Furthermore, the effects of conductivity changes usually dominate those of magnetic 
permeability changes, so that we can set # =/~0 everywhere. 

As illustrated in Figure 1, the source of the EM field can be either an impressed 
electric current Jv (a large loop or grounded wire) or a magnetic dipole with moment per 
unit volume mp formed by a small loop of current. 

2.1. TIME DOMAIN EQUATIONS 

The coupled space and time dependence of the electric e and magnetic h fields is 
described by Maxwell's equations: 

Oh(r, t) Omp(r, t) 
V x e ( r , t ) = - # o  ~t #o 0t 

V • h(r, t) = ~e(r, t) + jp(r, t). 

(1) 

(2) 

\ Jp / mp o-=0 

o-  I 

o- z 

% 

Fig. 1. Model of a 3D body in a layered earth. 
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Taking the curl of (1) and substituting (2), yields a vector diffusion equation for the 
electric field: 

Ojv Omp. 
v • v • e + # o ~  = -~ ,o~7 - my  • 0t (3) 

Similarly, taking the curl of (2) and substituting (1) yields a diffusion equation for the 
magnetic field: 

( V x h )  Oh ( ~ ) 0 m p  
v •  - -  + ~ o ~ = V •  -~,o ~ .  (4) 

Equations (3) and (4) illustrate the important point that, due to attenuation in the 
Earth, EM methods of geophysics are based on a diffusion, rather than a wave, 
phenomenon. Hence, we cannot expect to achieve high resolution of structures at 
depth. Furthermore, the detailed shape of a body at depth is not important for 
numerical modeling. 

We can write (3) as 

0rap 
-V e+ v(v o,+ 

Taking the divergence of (2), we find: 

V" (~re) = aV" e + Vcr. e = - V ' j p .  

Substituting for V �9 e in (5) yields 

( 7 )  1 0rap V2e+V e ' - - - , U o a ~ = / . t o ~ - - ~ "  ~ -  V(V-jv)+poVX 0 t '  (6) 

assuming that the source is in a region of homogeneous conductivity. 
Equation (4) can be rewritten as: 

! v • 2 1 5 2 1 5 2 1 5  + . o ~ = l - v •  0 t '  

o r  

1) 0my. -VZh+V(V'h)~-crVxh xV +#oa~=V xjp-/~oa 0t 

The divergence of the magnetic field is non-zero only at a magnetic source; taking the 
divergence of (1), we see that 

V-h  = - V - m  v. 

Thus we finally obtain: 

( 1 )  Oh 0my 
VZh + crV x h • V - , o ~  = # o ~ - -  - V(V �9 my) - V x jr. (7) 
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Equations (6) and (7) are general point equations for the total electric and magnetic 
fields, and they apply to the time-invariant case if the time derivatives are set to zero. 
Either of them can be solved numerically by time stepping, and then the other field can 
be calculated using (1) or (2). If, for example, only the magnetic field is desired, it would 
be advantageous to solve for it directly, since numerical differentiation introduces 
errors. 

The primary fields, which would apply everywhere if the body were absent, satisfy the 
equations: 

cqhp ~mp 
V • e p =  = # o ~ - - # o  Ot (8) 

and 
V • hp = o . e  v + j,, (9) 

where a .  is the 'normal' (layered-earth) conductivity with the body not present. These 
primary fields usually are in the form of integrals that can be evaluated numerically. 

Subtracting (8) from (1) and (9) from (2) yields equations for the secondary fields: 

~h~ 
V • es = -~to  c~t (10) 

and 

or  

V • h~ = cre~ + ffaev (1 la) 

v • hs = o~.es + j~, (1 lb )  

where a a = a - a .  is the anomalous conductivity at a point. In Figure 1 a a is non-zero 
only in the body, where it becomes a a = ~r b - a . .  The quantity ]~ is the equivalent 
(scattering) current that replaces the body and is the source of the secondary field; it is 
given by j~ = aae. 

Comparing (10) and (1 la) with (1) and (2), we see that the DE for es is the same as that 
for e in (6), with the magnetic source terms deleted and with ]p replaced by aaev: 

v   +V(os 

since V �9 ep is zero in the body, the only place where a a is not zero. 
Similarly, the secondary magnetic field is given by modifying (7) in the same way: 

V 2 h s + o ' V  x h~ x V - P ~  t~t = - ~  • \ a  vj 

: 

or, substituting (8) 

V2hs + tyV x h s x V - / ~ o a ~  = #Oaa~  - - aV x ev, (13) 

since a~ is zero at the position of the impressed magnetic source. 
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Notice that the sources of the secondary electric field in (12) are currents and charges 
in the volume on the surface of the body, where aa and Va, are non-zero. The sources of 
the secondary magnetic field in (13) are volume and surface currents in and on the body. 
The reasons for solving (12) and (13) rather than the equations for total fields are that 
they require fine spatial discretization only in the body, and that they permit the use of 
larger time steps, since the source is a smoother function of time. 

2 . 2 .  F R E Q U E N C Y  D O M A I N  E Q U A T I O N S  

To obtain equations in the frequency domain, we perform a Fourier transformation, 
using the pair 

o0 

F(r, ~) = ~ f(r, t ) e - ~ t d t  (14a) 

- - o 0  

1 
I F(r' ~~ e~'t d~~ (14b) f (r ,  t)  = 

- - o 0  

which amounts to assuming an e ~'t time dependence. Then (6) becomes 

From (7) we have 

V2H + aV x H • V ( 1 )  + kEH= icOl~oaMp - V(V " M p ) -  V X Jp, (16) 

while from (12) 

Finally, from (13) 

with 

and 

k 2 = _ i ( O k t o a  , 

Equations (15)-(18) are the differential equations to be solved for the total and 
secondary electric and magnetic fields in the frequency domain. In the case of total 
fields, away from sources the other component can be found using the frequency 
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domain versions of (1) and (2): 

V x E = -icO/zoH 

V x H = a E .  

For secondary field solutions 

(19) 

(20) 

the other component can be calculated using the 
frequency domain versions of (10) and ( l lb) :  

V x Es = - i ~ # o H s  (21) 

V x He = a.Es + Js. (22) 

To formulate an integral equation, we treat Js in (22) as a source current. In a whole 
space the secondary electric field would be given by 

E~ = - iCo#oA - V~0, (23) 

where A and ~0 are vector scalar potentials for the Lorentz gauge, given by 
t . I  

A(r) = ~J~(r') G(r, r ' )dr ' ,  (24) 

V 

and 

1 f V  Js(r ')G(r,r ')dv',  (25) ~o(r)  = a.  

t~ 

where G is the scalar EM Green's function: 

e-ik.lr--r'l 
G(r, r') - 4~lr - r'l (26) 

For a body in a half space, an additional term, given by Wannamaker and Hohmann 
(1983), must be added to (23) to account for the layering. Thus the secondary field is due 
to currents and charges; the charges occur at discontinuities in Js = GE. 

By adding the primary field to (23) we get a singular Fredholm integral equation of 
the second kind for the total electric field, which we can write as: 

E(r) = Ep(r) + l f f(r ,  r')" E(r ' ) '  E(r')aa(r' ) d r ' ,  (27) 

V 

where fq is the half-space dyadic Green's function. (Wannamaker and Hohmann, 1983) 

2.3. N U M E R I C A L  SOLUTIONS 

All numerical solutions in the frequency domain and numerical solutions for the spatial 
dependence in the time domain can be placed in the context of the method of moments 
(Harrington, 1968), also called the method of weighted residuals or the Bubnov- 
Galerkin method. The spatial variation of any of the equations derived above can be 
written 
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LU = g, (28) 

where L is a differential or integral operator, f is an unknown field, and g is a source 
term. 

Approximatingfby an N-term sum of suitably chosen expansion functions, 

N 

f(r) = Z a.f.(r), (29) 
n = l  

are substituting in (28), we obtain 

N 

Z a.Lf.  + e = g, (30) 
n = l  

where e(r) is the error of approximation. 
Next we define a set of N weight functions, Wm(r) and a suitable inner product, which 

is just an integral over some volume in the Earth. Then we take the inner product of (30) 
with each w m �9 

N 

Z a, (w,,,  L f , )  + (win, ~) = (Win, g ) ,  
n = l  

(31) 

m = 1 , 2  .... ,N. 

Requiring (Win, e)  = 0 for all m forces the error to be orthogonal to the weight 
functions, and (31) becomes 

N 

a. ( w , . , L f . )  = (w , . , g ) ,  (32) 
n = l  

which defines a matrix equation 

with 

and 

Z a  = g, (33) 

zm. = (win, L f . ) ,  

gm = (W, , ,g )  

to be solved for a, the vector of unknown coefficients. Then f, the approximation for f,  is 
given by (29). 

Pulse expansion functions, resulting in a step approximation, and delta weight 
functions generally are used for IE solutions in geophysical EM problems. Finite 
difference methods approximate the operator, as discussed by Harrington (1968). 
Finite element methods generally utilize the same linear, subdomain expansion and 
weight functions. For example, for tetrahedral subdomain elements, the nth expansion 
function for a linear approximation can be written (Pridmore et al., 1981) 

1 a2x a3y + a4,z. (34) f , (x ,  y, z) = a, + + 
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In the finite element method the expansion function is rewritten in terms of the nodal 
values ft., i.e., 

f~(x, y,z) = f~Nl(x,  y,z  ) + f~U2(x, y,z) + f3.N3(x, y,z  ) + 
+ f,4N4(x, y, z), (35) 

where the Ni are termed 'shape functions'. 
The finite element method seems to be a little better than the finite difference method 

for EM problems in geophysics, because it can handle abrupt and sloping conductivity 
interfaces with greater ease. Elaborate procedures are required to derive valid finite- 
difference approximations at conductivity boundaries (Jones and Thompson, 1974; 
Brewitt-Taylor and Weaver, 1976). 

3. Integral Equation Solutions 

Integral equation methods have been more successful than differential equation 
methods for 3D modeling, because it is only necessary to calculate the electric field in 
small anomalous regions rather than throughout the earth. Three dimensional DE 
grids quickly become unmanageable. 

Numerical results obtained by solving (27) using pulse basis and delta weight 
functions, were first published by Hohmann (1975) and by Weidelt (1975). A prismatic 
body is divided into N cubic cells of dimension A and the scattering current, Js = aaE, is 
assumed constant in each cell. Then the integral equation is approximated by the finite 
summation 

E(r) = Ep(r)+ ,=1 ~ fdv'ff(r,r ')  �9 Js". (36) 

t~ n 

The primary field Ev is just the layered earth field that would be present at r if there 
were no inhomogeneity. It is found by evaluating Hankel transform integrals 
numerically. 

The integration over the dyadic Green's function can be carried out numerically 
(Meyer, 1976) or analytically over the volumes and surfaces of the cells (Hohmann, 
1975) to obtain the equation 

1 N 
--J~(r) = Ep(r) + ~ F(r ,r . ) .J~ ~, (37) 
O'a n =  1 

where Js" is the polarization current in cell n, and F is the dyadic Green's function for a 
small volume of current, unlike if, which applies to an infinitesimal current element. 
Care must be taken in deriving F, because ff is singular at r = r'. 

To improve the solution, we now derive (37) in a manner similar to that described by 
Hohmann (1975), except that, following Harrington (1968), we approximate the 
derivatives of the scalar potential in (23) with differences. Also, instead of concentrating 
the charge (the V �9 J~ term in (25)) at the boundaries between cells, we distribute it 
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Fig. 2. Illustration of geometry for calculating the matrix element Z~]. 

uniformly over a volume extending from the center of one cell to the center of the next 
cell. As various authors have indicated, approximating derivatives with differences 
provides accuracy similar to that of higher-order basis functions but is much easier to 
implement on a computer.  See, e.g., Miller and Deadrick (1975), and Butler and Wilton 

(1975). 
Figure 2 illustrates the calculation of the x component  of secondary electric field at 

the center of cell m due to the x component  of current in cell n. If we denote the center of 
cell m as rm, the x component  of the vector potential from (24) becomes 

t l  

a~" = ax ( r , , )=  Jx"tG(r,,,r')dv', (38) 
i t  

which is the volume current contribution. 
The charge contribution to the electric field is derived from the scalar potential in 

(25). The derivative at the current discontinuity between cell n and cell n + 1 is 

approximated by 

~Jx j:~+l _ Jx" (39) 
8x ~ A ' 

and is distributed uniformly in a cubic cell, denoted n + in Figure 2, extending from the 
center of cell n to the center of cell n + 1. The charge at the other end of cell n is similarly 
distributed over cell n - .  Then the potentials ~0~_ and ~0~'"_ at points r,, + (A/2)i and 
rm - (A/2)R due to Jx" are given by (25), which becomes 
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and 

 :Ff( f (  ~-~, r ) dv G rm dv ~ - a .  A [_ G rm + + + ~-x, r' 
n - -  n ~ 

(40) 

~p~_ a . A L -  _ - ~ - ~ , r ) d v  + G ( r , . - ~ - ~ , r ) d v '  1. (41) 

Finally, Ex'~ is given by (23), which becomes 

E:,%" = -iCo#oAT" - ( ~o7" + - ~0m-")/A. (42) 

In terms of the method of moments, this solution is equivalent to using pulse 
functions for both current and charge and approximating the operator. To obtain F in 
(37), we need to evaluate the integrals in (38), (40), and (41) for each cartesian 
component of current. The integrals all have the same form: the scalar Green's function 
integrated over a cubic cell. 

We can write F as the sum of two components representing current and charge 
sources: 

F = F A + F~, (43) 

where, for illustration, the x component of secondary electric field at the center of cell m 
due to the x component of scattering current in cell n is given by 

m n  m n  

E~" = [F~x + FxxqJ " (44) r 3 X " 

From (38) and (42), we see that 

F~x = - im/~ o v', 

n 

while from (40), (41), and (42), we have 

_ 1 
F x x  - -  a ~  [ -  G r,~ + ~ i , r  dv + G rm + ~ i , r '  d r ' -  

n- n + 

(45) 

f G(rm - A , \  , ~ff, r ) dv ]. (46) 

n n-[- 

The other elements of the dyadic Green's function can be derived by analogy. 
For our case of a body in the Earth we divide F A and F~, into primary and secondary 

parts, where the secondary parts account for the earth-air interface and any other 
layers, as described by Hohmann (1975) and Wannamaker and Hohmann (1983). 

The integrals in (45) and (46) only need to be evaluated for the primary parts of the 
Green's function, and they all have the same form: 
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['e-ik.lrm-r'[ 
I =  J 4 ~  m --~7 I dr'. (47) 

v 

The shape of the cell is not important for this volume integration, so we can replace the 
cube by a sphere of the same volume and integrate analytically as described by 
Hohmann (1975). 

In more concise notation, (37) becomes 

1 N 
_ _ j m  = Epm + E Fro. "J: ' ,  (48) 
O'a n= 1 

where j r ,  and J~" are the scattering currents in cells m and n, respectively. 
Rearranging (48) yields 

n__~l [ F . n - ~ a , ~ m n l ' J s n = - E p m ,  (49) 

in which 

= ~ r J ,  m ---- t/ 
~mn (C,m #n, 

where J is the unit dyadic and C is the null dyadic. 
Writing (49) for each of the N values of m yields a partitioned matrix equation 

Z"  Js = -Ep ,  (50) 

to solve for the polarization current in the body. The elements of the impedance matrix 
Z are themselves 3 x 3 matrices, given by 

Z,~ n -- F,n - 1finn. (51) 
r a 

Figure 3 shows the improvement in the 3D integral equation resulting from 
distributing the charge over a volume rather than concentrating it on the surface of a 
cell, and from approximating the derivative of the scalar potential by a difference. The 
source is a plane wave at 1 Hz, with electric field normal to the long axis of a prismatic 
conductor, so the response is primarily due to current channeling. Since the effects of 
the ends of the body are small for this source polarization, near the body the 3D results 
should be close to the 2D profile shown. Note the much improved agreement for the 
new formulation. 

The impedance matrix is full, with dimension 3N x 3N, where N is the number of 
ceils into which the body is divided. Because the cell size must be less than a skin depth 
in the body and less than the depth to the top of the cell, matrix computation time and 
storage can be excessive. However, as Tripp and Hohmann (1983) show, the impedance 
matrix for a body with two vertical symmetry planes can be block diagonalized using 
group theory. The similarity transformation that block diagonalizes Z is the same as 
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Fig. 3. Improvement in 3D integral equation solution resulting from using a vector-scalar potential 
formulation for the secondary field. 

the one that  diagonalizes the group representation matrices R. The diagonalized matrix 

R '  is given by 

R '  = t ; a U  (52) 
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where U is easily derived using group theory. Then the block diagonalized impedance ~ 
matrix is given by 

z '  = u z u  (53) 

In the new basis, the scattering problem becomes 

Z'J  s' = -Ep' ,  (54) 

which is much easier to solve than (50). The scattering current in the original basis is 
given by back transforming: 

J: = UTJ: '. (55) 

Since the basis transformation is inexpensive, this procedure is superior to a direct 
solution. 

The block diagonalized impedance matrix is composed of four sub-matrices, each 
with dimension (3N/4) • (3N/4). Thus the transformed matrix requires only a fourth 
of the storage required by the original matrix. The number of operations required for 
inversion is smaller by a factor of 12. Because it is only necessary to store one of the four 
sub-matrices in core at a time, core storage is reduced by a factor of 16. Matrix 
formation time for a symmetric body, including the similarity transformation, is about 
one third of that for a general body. A symmetric 3D body is a very useful geophysical 
model; these savings are significant, because they result in greater accuracy and/or 
greatly reduced computation costs. 

In many cases the IE solution can be improved further by subdividing the body into 
rectangular prisms rather, than cubes, as discussed by Wannamaker and Hohmann 
(1983). Modifying the basic solution is simple, since the integration over a prism can be 
treated as a summation over cubic sub-cells. Rectangular cells are useful for ap- 
proximating an elongated body, because the scattering current varies more rapidly in 
the short direction of the body. 

Figure 4 illustrates such a case and shows the accuracy that can be obtained for a 
purely inductive response. The source is a plane wave with the electric field in the long 
direction of the body, which has a conductivity contrast of 1000 with its half-space host. 
Since the body is about 10 skin depths (in the host) long, the 3D results should be the 
same as those for a 2D body of the same cross section. The 2D and 3D horizontal 
magnetic field results for a profile over the center of the body shown in Figure 4 are in 
good agreement, particularly for the finer discretization. The finer discretization 
consisted of 168 cells (504 unknowns) per quadrant of the body in plan view, and the 
results were computed in about 70 hr on a Prime 400 computer, while the coarser 
discretization required only 7 hr. 

A major unsolved problem with the integral equation technique, at least for 
controlled-source applications, arises from the disparity in sizes of the current and 
charge terms in (43) for low but non-negligible host conductivity. The important 
information contributed by the induction operator F A seems to be lost when the two 
terms are added. Lajoie and West (1976) avoided this problem by solving for curl-free 
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discretizations. The source is a plane wave with electric field in the x direction. 

and divergence-free scattering currents on a thin 3D plate in a conductive half space. 
Their results provided important new insight into EM responses of 3D bodies. 
Understanding the relation between current channeling and induction, based largely 
on their work, has been a major breakthrough in EM applications. Figure 5 shows a 
typical result from their work. The model is a 3D plate in a conductive half-space 
excited by a large source loop. Even with a half-space resistivity as high as 3000 ohm-m, 
the response is quite different from the free-space (p = oo) response. As the half-space 
resistivity decreases, the EM response of the plate changes completely, with the 

imaginary part changing sign at 200 ohm-m. 
Dawson and Weaver (1979) discussed an integral equation solution for an in- 

homogeneous thin sheet representing the upper crust. Their solution is very useful for 
interpreting geomagnetic and MT data. Ranganayaki and Madden (1980) and Vasseur 
and Weidelt (1977) also developed inhomogeneous thin sheet solutions. 

Recently Das and Verma (1982) and Wannamaker and Hohmann (1983) presented 
numerical results, based on similar volume integral equation solutions, for a 3D body 
in a layered earth. The former results are for magnetic dipole excitation and the latter 
for plane wave excitation. Considerations pertaining to the numerical solution are the 
same as those described above; the only change is that the dyadic Green's function is 
more complicated. Wannamaker and Hohmann are able to keep the computer time 
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about the same as for a homogeneous half space host by computing the Hankel 
transforms on a table and interpolating them during matrix formation. 

4. Differential Equation Solutions 

Finite difference formulations for 3D scattering have been discussed by Lines and Jones 
(1973) and by Zhdanov et al. (1982). Instead of (15), Lines and Jones approximated the 

equation 

V 2 E -  V(V .E) + kZE = 0, (56) 

for a plane wave source. Jones and Vozoff (1978) presented MT results based on a finite 

difference solution of (56). 
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Zhdanov et  al. (1982) recommend solving (15) rather than (56) by the finite difference 
method. Then it is possible to use a 7-point scheme for the finite difference approxi- 
mation, and, furthermore, the second term in (15) vanishes in regions where conduc- 
tivity is constant. However, they did not show any 3D numerical results. 

Reddy et  al. (1977) published 3D MT results based on a finite element (FE) solution 
of (56). They used the Galerkin technique with linear basis and weight functions in 
hexahedral elements. They alleviated the problem of discontinuous normal electric 
fields by specifying smooth, rather than abrupt, conductivity boundaries. Thus the 
second term in (56) results in a volume rather than a surface chargedistribution, as in 
the integral equation approach discussed above. They found that conductivity 
contrasts greater than 10 result in errors greater than 10 ~o up to three node spacings 
from a conductivity boundary. 

Pridmore et  al. (1981) presented a 3D FE solution for controlled-source EM 
applications. They formulated the problem by minimizing a functional, but since the 
Galerkin approach yields the same equations, that probably is an unnecessary 
complication. They used tetrahedral elements for the DC problem and hexahedral 
elements for the EM problem, and, to reduce storage requirements, they solved the 
system of equations using a point successive over-relaxation method. The optimum 
over-relaxation factor W is determined by observing the behavior of certain nodal 
values during iteration. Typically, a DC problem requires 100 iterations, while EM 
problems require more. 

Figure 6 shows a comparison between FE results of Pridmore et  a l. (1981 ) and results 
computed using the IE solution described above. The model is a conductive prism 30 m 
deep with width 30 m, length 120 m, depth extent 90 m, and resistivity 1 ohm-m, which 
is a standard test model proposed by Braham et  al. (1978). The transmitter is a fixed 
vertical magnetic dipole with moment 4rcA-m 2 operating at 1000 Hz, and profiles of the 
secondary vertical magnetic field are shown for half-space resistivities of 30 and 
100 ohm-m. 

The IE solution, which used 96 cells and did not take advantage of symmetry, took 
only 5 minutes CPU time on a Univac 1108 computer. By comparison, the FE solution 
took about 3 hr for 200 iterations, although slightly less accurate results could b e  
calculated in half the time. Since the FE equations are solved iteratively, computations 
for another transmitter position would require the same amount of computer time. 
However, IE results for other source positions can be calculated with little additional 
computer time. 

In Figure 6a, the IE and FE results for a conductivity contrast of 30 are in good 
agreement. However, the agreement deteriorates for a contrast of 100, particularly for 
the real part of the field, as shown in Figure 6b. As Pridmore et  al. (1981) show, the 
agreement is very poor for a contrast of 1000, again especially for the real component. 

5. Hybrid Solutions 

Three dimensional DE solutions with boundary conditions imposed at great distances 
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have not been very successful. The large grids required result in unreasonable amounts 
of computer time and storage. Thus recent DE research has focused on hybrid 
approaches, combining DE and IE solutions, as a means of limiting mesh size. 

Finite element discretization of (15) yields a matrix equation for the electric field: 

L E  = 0 

For either of the hybrid cases shown in Figure 7 we can partition (57) into 

(57) 

(58) 

where subscript v denotes electric fields in the interior (volume) of the mesh, and 
subscript b denotes electric fields at the boundary nodes. From (58) we can write 

LyrE v = -LvbE b. (59) 

However, we can calculate the field on the boundary in terms of the field inside the 
mesh using (27), which becomes 
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Eb(r) = E~(r) + IN(r, r')" E~(r')g.(r')dr'. (60) 
,d 

The matrix version of this equation is 

E b = RE v + E~, (61) 

where R is M • N with M the number of boundary nodes and N the number of interior 
nodes. 

Substituting (61) in (59), we obtain 

(Lv~ + LvbR)E~ = - L~bE ~. (62) 

In the direct hybrid method (62) is solved for E~, and then (60) and the corresponding 
equation for magnetic field are used to calculate the fields outside the mesh. The matrix 
Lv~ + L~b is full, asymmetric and N • N. 

The advantage of the hybrid scheme illustrated in Figure 7a is that the integral in (60) 
is not singular: r is never equal to r'. However, the FE solution inside the mesh is 
plagued by the problem of discontinuous electric fields at conductivity boundaries. On 
the other hand, for the hybrid scheme of Figure 7b the FE solution operates in a 
homogeneous region, but evaluation of (60) at singular points on the surface of the 
mesh is very difficult. 

Lee et al. (1981 ), developed an iterative hybrid solution, by asstiming an initial guess 
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for Eb, the boundary field, calculating Ev, then finding a new Eb using (60), and 
proceeding iteratively. Their results agree with the FE and IE results shown in Figure 6 
for a low-contrast (ab/a. = 30) model. However, their MT results for a body with 
a conductivity contrast of 200 do not agree with our IE results as shown by Figures 8 
and 9. 

Figure 8 compares TM-mode MT apparent resistivity results for a 2D body 
computed by the FE method with IE results of Wannamaker and Hohmann (1983) and 
hybrid results of Lee et al. (1981) for a 3D body with the same cross section. The body 
has a conductivity contrast of 200, and the frequency is 0.01 Hz. For this mode of 
excitation the electric field is perpendicular to strike; thus electric charge on the 
boundaries of the body, which is required to maintain continuity of normal current, is 
the main source of the MT response at low frequencies. Since surface charge is included 
implicity in the 2D formulation for this mode, the 2D and 3D results should be about 
the same. We have carefully designed our descretization of the 3D body for the IE 
solution based on convergence checks, and our 3D results are close to the 2D results. 
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The overshoot at the edge of the body in the 3D case is to be expected; it is due to 
current channeling. The 3D hybrid results of Lee et al. (1981) on the other hand, differ 
considerably from the 2D results over the body. 

Figure 9 shows the same comparison for TE excitation, in which case the electric field 
is parallel to strike, so that there is no surface charge in the 2D case. Since the secondary 
electric field due to surface charge at the ends of a 3D body is important at low 
frequencies, it must be very long if its response is to be similar to that ofa  2D body. We 
find that our 3D IE results converge to 2D results as the strike length is increased 
beyond a skin depth in the host medium. For  the short body of Figure 9, the difference 
between 2D results and our 3D results is to be expected. However, the apparent 
resistivities computed by Lee et al. (1981) appear to be too low. 

As shown by Figure 8 and as discussed by Ting and Hohmann (1981), one can 
interpret TM-mode MT data on a profile over complex elongate 3D models using a 2D 
finite element or finite difference algorithm. However, TE-mode modeling is of little 
value, because, charge on the ends of 3D bodies is not taken into account. 



THREE-DIMENSIONAL EM MODELING 47 

6. Time Domain EM Modeling 

Transient EM (TEM) techniques have gained widespread acceptance for mineral 
exploration in the last five years. However, numerical simulation of TEM responses is 
still in its infancy. Results can be calculated directly in the time domain, or, indirectly, 
by Fourier transformation of frequency domain results. The former method permits the 
study of the evolving current system in the earth, a necessity for gaining insight into 
TEM behavior. However, the latter method probably is more efficient for cases where 
several transmitter positions are desired. Numerical solutions by both methods are 
required both for their particular advantages and for validation of results. 

6.1 .  TIME STEPPING SOLUTIONS 

The relevant differential equations, (6), (7), (12), and (13) are initial value problems and 
they can be solved by time stepping. The spatial variation is approximated by a FE or 
FD method, and the time derivative is approximated by a finite difference formula. 
Implicit methods require matrix inversion, while explicit methods do not. 

So far, only 2D line-source problems have been solved; in that case the DE, from (6), 
is 

02er dZe r ~ey ~j~ (63) 
~x 2 + ~ - # o a ~ -  = ~to &. 

For the usual step current source, the right-hand-side of (63) is an impulse. Kuo and 
Cho (1980) presented numerical results based on a FE formulation in space and a 
central difference approximation in time. To achieve stability, they used a Gaussian 
function for the impulse. They found that their results agreed qualitatively with field 
data, but they did not show a quantitative check. 

We( Oristaglio and Hohmann, 1982) have developed a numerical solution to (63), in 
which the time derivative of the electric field is approximated by 

~ey _ 1 (e,+ 1 _ e,_l) ' (64) 
& 2At 

where nodal values of ey at t = nat are denoted by e". The spatial derivatives also are 
approximated by differences. Variable grid spacing is necessary to permit a large 
enough grid that the analytic solution for a line source can be imposed as the boundary 
condition in the Earth. For the typical grid point shown in Figure 10, the central 
difference approximations are: 

2 n e n n eij 2 | / ,+ l,j _}_ ei'_ 1,jx~ 
6~X~ "~ Ax l  + Ax i  + 1 \ A x i  +1 A x  i / I  

n + l  n - 1  
eij + eij 

Ax l  Ax i  + 1 
(65) 

~2enj 2 (e l ,  j+ 1 + 

~Z 2 "~ Azj + A z j +  1 \ A z j +  1 Azi ] 

n + l  n - I  
eij + eij 

Az~ Azj+ 1 ' 
(66) 
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Fig. 10. 
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where, following Dufort and Frankel (1953), we have replaced the electric field at the 
central point at time n A t by 

n ~- 1[ n + l  ei j ~ e i  j +eTj 1), (67) 

which, remarkably, yields a scheme that is both explicit and unconditionally stable. 
The conductivity is taken as a typical weighted average (Brewitt-Taylor and Weaver, 
1976). 

Since the field in the air satisfies Laplace's equation, the grid can be terminated at the 
earth's surface using upward continuation, which is another advantage of an explicit 
method, in addition to the absence of matrix inversion. 

The TEM integral equation corresponding to (27) in the frequency domain is 
t 

e(r,t) = ep(r, t) + t [g(r ,r ' ; t  - t ' ) ' e ( r ' , t )+r , ( r ' , t ' )<ra(r ' )d t 'dv ' ,  (68) 

v0 

where, for a whole space, e.g., the dyadic Green's function is derived using the time 
domain version of (23): 

Oa 
eS = - # o ~  - V~0, (69) 

with, from (24) and (25) 
/ .  

a(r) = ljs(r ')g(r,r ') dr', (70) 
V 

and 
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~o(r) = l f v  " js(r')g(r,r')dv '. 
Y 

The time domain scalar Green's function g(r,r'), 
transforming (26) is: 

g(r, r') = (yotr.)1/2 e x p  [ - (#oa. Ir - r'l)2/4t] 
8rc3/2t3/2 

(71) 

obtained by inverse Fourier 

(72) 

Other terms must be added to account for the earth-air interface and any other 
horizontal layers. 

6 . 2 .  TRANSFORMATION OF FREQUENCY DOMAIN RESULTS 

The frequency domain system function H(co) for an electromagnetic field component 
and the time domain impulse response h(t) for the same component are related by the 
transform pair 

H(co) = ~ h(t)e-~'t dt (73) 
, d  

0 

and 
1 

| H(co) e ~~ dco, (74) h ( 0  = 

since the impulse response is causal. 
Although the inverse Fourier transform can be approximated by a discrete Fourier 

transform using an FFT algorithm, the number of frequency domain data points 
necessary for accurate estimation of h(t) is large and their calculation is expensive. As 
Lamontagne (1975) has observed, simple interpolation of a sparse set of H(co) values 
does not solve the problem; the discrete inverse Fourier transform of interpolated field 
values is sensitive to the particular interpolant used, and the calculated impulse 
response is usually not causal. 

These problems can be circumvented by treating (73) as an inverse problem for h(t) 
and utilizing the powerful stabilizing techniques of geophysical inversion theory, as 
shown by Lamontagne (1975). In a more recent work, Tripp (1982.) shows that the 
impulse response can be written in terms of a decay spectrum A(k): 

co 

h(t) = ~ A(k) e -k' dk. (75) 
i t  

0 

Thus we can solve (73), a Fredholm integral equation of the first kind, by the method of 
moments, utilizing exponential basis functions and delta weight functions. We 
approximate h(t) by 

N 
fz(t) = ~ A,e  -k,t, (76) 

n = l  
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where k, is the nth decay constant (reciprocal of the time constant). Substituting (76) in 
(73) yields 

H(og) = ~, a ,  (77) 
. = 1 k .  + io9" 

Incorporating delta weight functions 

Wm((.O ) = (~(0) --  (Dm) 

gives 

N 1 
E 1= ~ A, = H(COm). (78) 

Writing (78) for each of the M values of m yields a matrix equation 

K A  = H 

for determining the N values of A,. Then the impulse response is given by (76), and the 
response for any transmitter wave form is given by convolution. 

Tripp (1982) discusses the solution of (73) in detail. In general, N must be greater 
than M, and, since (73) is ill-posed, a generalized inverse or ridge regression solution is 
required. For many cases, ten frequency domain values are sufficient. 

Figure 11 shows a check between 2D time domain results obtained by inverse 
Fourier transforming integral equation results (Hohmann, 1975) and results calculated 
by the direct time domain finite difference solution of Oristaglio and Hohmann (1982). 
Line sources of current simulate the front and back of a large horizontal loop at the 
surface of the earth, and profiles over a conductive body are shown for four delay times. 
Plotted is the vertical magnetic field impulse response, which is equivalent to the time 
derivative of the step response. The latter is approximately what is measured by many 
practical systems. Note the migration of the vertical field cross-over back toward the 
body at later times as the currents in the body become more important relative to the 
half-space currents. 

The agreement between the two solutions is good. For the frequency domain 
calculations, the sampled frequencies ranged from 0.1 to 1000 Hz, and the cross section 
of the body was divided into square cells with edges shorter than one skin depth in the 
body. The finite difference solution used 20-m cells near the body, with the cell size 
gradually increasing to 400 m at the boundary of the grid. The time steps were 0.1 ~ts for 
the first 1000 iterations, 1 IXS for the next 400 iterations, and 2 ~ts for the last 17 000 
iterations, which carried the solution out to 35 ms. 

Recent work indicates that similar results can be computed with much less computer 
time if one solves for the secondary field using the equation: 

~2e~ 2 s 3 e r 3e~ ~3e~ (79) 
d x  2 + ~ - # o a ~ t -  = #oa~ Ot 

rather than for the total field using (63). Since the source is a smoother function of time 
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and the secondary field is a smoother spatial function at the earth's surface, one can use 
larger time steps and coarser spatial discretization. 

Annan (1974) developed an elegant method of calculating the frequency and time 
domain EM responses of a thin 3D plate in free space. Classically the response of a body 
whose surface coincides with a constant-coordinate surface, such as a sphere , is 
calculated in terms of analytic eigenfunctions, with no numerical solution required. 
Each mode in the eigenfunction expansion is decoupled from the other modes, so that 
the impedance matrix is diagonal. In contrast, for bodies of arbitrary shape, the 
impedance matrix for the IE numerical solution links the expansion function coef- 
ficients for the scattering currents with those for the primary electric field by a full 
matrix. 
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By diagonalizing the IE impedance matrix, Annan formulated a solution for a 
general body in terms of real eigencurrents expanded in the full-range expansion 
functions of his numerical solution. He found that for a body in free space the 
eigencurrent geometries are the same for all frequencies, and that each eigencurrent has 
the same frequency response as that of a simple loop circuit. Thus each mode 
contributes a single exponential decay in the time domain, and it is easy to calculate 
TEM responses by summing the decays for the first few modes. 

Tripp (1982) investigated a similar modal solution for a body in a conductive half 
space. He found that the eigencurrent patterns change with frequency, so that the 
modal solution has no advantage over a direct numerical solution. However, it still 
may be possible to formulate the problem in terms of complex modes that diagonalize 
the impedance matrix and that simplify calculations. 

Finally, Lee (1981) calculated the TEM response of a sphere in a layered earth by 
inverse Fourier transforming IE results. However, no TEM solution for general 3D 
bodies has yet been developed. 

7. Summary 

Progress in 3D EM modeling has been slow but steady over the last ten years. Integral 
equation solutions have been the most successful, and they have been improved by 
incorporating symmetry using group theory and by using a vector-scalar potential 
formulation for computing matrix elements. However, hybrid techniques, wherein 
finite element grids are reduced in size by computifig boundary values by integrating 
over interior fields, appear promising. Thin-sheet simplifications have provided much 
insight, both for EM prospecting and for crust-mantle studies. 

Much more research is needed, however. Frequency domain numerical solutions for 
3D bodies in a conductive earth are limited to low conductivity contrasts and simple 
bodies. Although transient EM (TEM) methods are becoming increasingly popular, 
numerical solutions for general models have only been developed for the 2D case. I 
hope that the discussion in this paper will stimulate interest in 3D TEM modeling. 

References 

Annan, A. P.; 1974, 'The Equivalent Source Method for Electromagnetic Scattering Analysis and its 
Geophysical Application', Ph. D. Thesis, Memorial University of Newfoundland, 242 p. 

Braham, B., Haren, R., Lappi, D., Lemaire, H., Payne, D., Raiche, A., Spies, B., and, Vozoff, K.: 1978, 
'Lecture Notes from the U.S.-Australia Electromagnetic Workshop', Bull. Aust. Soc. Explor. Geophys. 9, 
2-33. 

Brewit-Taylor, C. R. and Weaver, J. T.: 1976, 'On the Finite Difference Solution of Two-Dimensional 
Induction Problems', Geophys. J. Roy. Astron. Soc. 47, 375-396. 

Butler, C. M. and Wilton, D. R.: 1975, 'Analysis of Various Numerical Techniques Applied to Thin-Wire 
Scatterers', IEEE Trans. on Ant. and Prop., AP-23, 534 540. 

Das, U. C. and Verma, S. K.: 1982, 'Electromagnetic Response of an Arbitrary Shaped Three-Dimensional 
Conductor in a Layered Earth-Numerical Results', Geophys. J. Roy. Astron. Soc. 68, 55-56. 

Dawson, T. W. and Weaver, J. T.: 1979, 'Three-Dimensional Induction in a Non-Uniform Thin Sheet at the 
Surface of a Uniformly Conducting Earth', Geophys. J. Roy. Astron. Soc. 59, 445462. 



THREE-DIMENSIONAL EM MODELING 53 

DuFort, E. C. and Frankel, S. P.: 1953, 'Stability Conditions in the Numerical Treatment of Parabolic 
Differential Equations', Math. Tables and Other Aids to Comp. (now, Math. of Comp.), 7, 135-152. 

Harrington, R. F.: 1968, Field Computation by Moment Methods, Krieger, Melbourne, Florida, 229 p. 
Hohmann, G. W.: 1975, 'Three-Dimensional Induced Polarization and Electromagnetic Modeling', 

Geophysics 40, 309-324. 
Jones, F. W. and Thompson, D. J.: 1974, 'A Discussion of the Finite Difference Method in Computer 

Modeling of Electrical Conductivity Structures', Geophys. J. Roy. Astron. Soc. 37, 537-543. 
Jones, F. W. and Vozoff, K.: 1978, 'The Calculation of Magnetotelluric Quantities for Three-Dimensional 

Conductivity Inhomogeneities', Geophysics 43, 1167-1175. 
Kuo, J. T. and Cho, Vong-heng: 1980, 'Transient Time-Domain Electromagnetics', Geophysics 45, 271~91. 
Lajoie, J. J. and West, G. F.: 1976, 'The Electromagnetic Response of a Conductive Inhomogeneity in a 

Layered Earth', Geophysics 41, 1133-1156. 
Lamontagne, Y.: 1975, 'Applications of Wideband, Time-Domain Electromagnetic Measurements in 

Mineral Exploration', Ph. D. Thesis, University of Toronto, 329 p. 
Lee, T. J.: 1981, 'Transient Electromagnetic Response of a Sphere in a Layered Medium', PAGEOPH 119, 

309-338. 
Lee, K. H., Pridmore, D. F., and Morrison, H. F.: 1981, 'A Hybrid Three-Dimensional Electromagnetic 

Modeling Scheme', Geophysics 46, 796 805. 
Lines, L. R. and Jones, F. W.: 1973, 'The Perturbation of Alternating Geomagnetic Fields by Three- 

Dimensional Island Structures', Geophys. J. Roy. Soc. 32, 133-154. 
Meyer, W. H.: 1976, 'Computer Modelling of Electromagnetic Prospecting Methods', Ph .D.  Thesis, 

University of California, Berkeley, 155 p. 
Miller, E. K. and Deadrick, F. J.: 1975, 'Some Computational Aspects of Thin Wire Modeling', in R. Mittra 

(ed.), Numerical and Asymptotic Techniques in Electromagnetics, New York, Springer-Verlag, 260 p. 
Oristaglio, M. L. and Hohmann, G. W.: 1982, Numerical Solution of Maxwelrs Equations in the Time 

Domain, Technical Program Abstracts and Biographes, Society of Exploration Geophysicists, 1982 
Annual Meeting. 

Pridmore, D. F., Hohmann, G. W., Ward, S. H., and Sill, W. R.: 1981, 'An investigation of Finite-Element 
Modeling for Electrical and Electromagnetic Data in Three Dimensions', Geophysics 46, 1009 1024. 

Raiche, A. P.: 1974, 'An Integral Equation Approach to 3D Modeling', Geophys. J. Roy. Astron. Soc. 36, 
363-376. 

Ranganayaki, R. P. and Madden, T. R.: 1980, 'Generalized Thin Sheet Analysis in Magnetotellurics: An 
Extension of Price's Analysis', Geophys. J. Roy. Astron. Soc. 60, 445457. 

Reddy, I. K., Rankin, D., and Philips, R. J.: 1977, 'Three-Dimensional Modeling in Magnetotelluric and 
Magnetic Variational Sounding', Geophys. J. Roy. Astron. Soc. 51,313-325. 

Ting, S. C. and Hohmann, G. W.: 1981, 'Integral Equation Modeling of Three-Dimensional 
Magnetotelluric Response', Geophysics 46, 182-197. 

Tripp, A. C.: 1982, 'Multi-Dimensional Electromagnetic Modeling', Ph. D. Thesis, University of Utah, 179 
p- 

Tripp, A. C. and Hohmann, G. W.: 1983, 'Block Diagonalization of the Electromagnetic Impedance Matrix 
of a Symmetric Buried Body Using Group Theory', 1EEE Trans. Geoseienee and Remote Sensing, (in 
press). 

Vasseur, G. and Weidelt, P.: 1977, 'Bimodal Electromagnetic Induction in Non-Uniform Thin Sheets with 
an Application to the Northern Pyrenean Induction Anomaly', Geophys. J. Roy. Astron. Soc. 51,669-690. 

Wannamaker, P. E. and Hohmann, G. W.: 1983, 'Electromagnetic Modeling of Three-Dimensional Bodies 
in Layered Earths Using Integral Equations', Geophysics (in press). 

Weidelt, P.: 1975, 'Electromagnetic Induction in Three-Dimensional Structures', J. Geophys. 41, 85 109. 
Zhdanov, M. S., Golubev, N. G., Spiehak, V. V., and Varentsov, Iv. M.: 1982, 'The Construction of Effective 

Methods for Electromagnetic Modelling', Geophys. J. Roy. Astron. Soe. 68, 589-607. 


