
DIRECT AND INVERSE PROBLEMS IN LOCAL 

E L E C T R O M A G N E T I C  I N D U C T I O N  

Z. TARLOWSKI 

Institute o f  Geophysics Polish Academy o f  Science, 00-9 73 Warsaw, Pasteura 3, Poland 

Abstract. Various methods of solving direct and inverse problems in local electromagnetic induction 
are presented. In the section dealing with direct problems some improvments are suggested in the 
finite difference method in the case of two-dimensionai modeling. Two ways of dealing with inverse 
problems are presented, the first continous, the other parametric. Emphasis is laid upon algebraic 
aspects of dealing with one-dimensional inverse problems. 

1. Introduction 

The main task of mathematical modelling in electromagnetic induction is to discover the 

distribution of the Earth's electrical parameters. 
In direct problems we assume the shape of the primary sources and the distribution 

of electrical parameters of  the model to be known. What we are looking for is the value 

of the vectors of the electromagnetic field in the whole space. 
In inverse problems, the distribution of the model's electrical parameters is obtained 

from observation of the electromagnetic field of  the Earth. In all the inverse methods 
used to date, the main problem is the ability to solve the direct problems effectively, 

either analytically or numerically. 
We are approaching a scientific description of the algorithm which, being based on input 

data, would automatically give handy and reliable information about the distribution of 

the Earth's electrical parameters. The ideal situation would be when, knowing the precise 
shape of the primary sources, we could fix the distribution of the Earth's electrical para- 
meters three-dimensionally. Despite the significant progress made towards solving these 

problems, the present situation is far from ideal. 
Only direct one-dimensional problems can be solved analytically. Real direct two- and 

three-dimensional problems must be solved numerically. Some progress has been made in 
solving direct two-dimensional problems. One can observe two tendencies. The first 
depends on the improvement of the boundary conditions of  the problem. The other is 
based on the improvment of  the methods for solving the systems of linear equations 

resulting from the discretization of the problems. 
Progress has also been made in three-dimensional modeling (Dey, 1978; Hohman, 

1978, Pridmore, 1978; Dawson and Weaver, 1979), but we are not yet in a position to 

apply this practically in direct and inverse problems. 
The characteristics of  a given method when applied in practice should be effectivness 

and flexibility. It seems that even the solutions of  two-dimensional problems are not 
always satisfactory, and it is perhaps useful to draw attention to the practicality of some 

of the methods. 

Geophysical Surveys 4 (1982) 395-404. 0046-5763182/0044-0395501.50. 
Copyright �9 1982 by D. Reidel Publishing Company. 



396 Z. TARLOWSKI 

2. Direct problems 

Let us look first at a direct two-dimensional problem, mentioning particularly the nu- 
merical methods. For a numerical solution to this problem there are several available 
methods e.g. the t~mite difference method, the finite element method or the integral 
equations method. 

Of these, the most practical in two-dimensional direct problems seems to be the f'mite 
difference method, which enables a set of linear equations to be formed easily for solving 
the problem. When using the method of finite elements for an irregular grid, problems arise 
in producing flexible and effective input data for the computer program. On the other 
hand, in the integral equation method Green's function can not always be easily found 

for a wide range of problems. 
Many researchers have been trying to improve the effectiveness and precision of the 

f'mite difference method. 
In order to explain the electromagnetic induction for time.harmonic fields in two 

dimensions we must solve the boundary value problem for Helmholtz's equation. 
For an E-polarization case we have: 

__ ( 1 )  
~y2 ~z 2 

For a B-polarization case we have: 

and r~ depend on the physical parameters of the medium and the frequency of the 
source of the field. 

After integrating Equations (1) and (2) at each mesh point (Varga, 1962) and em- 
ploying an irregular five-point difference scheme to their new forms, Tarlowski (1978) 
obtained a set of linear equations with a symmetrical, non-hermitian matrix A, with 
complex elements. 

A = ReA + i l m A  (3) 

Matrix A is such that its real part Re A is a positive-definite matrix which is fixed, 
enabling us to express matrix A as: 

Re L(Re L) T= Re A + Im L(Im L) T, (4) 

Where L has the following form: 
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L l (l = 1,2 ..... N) a lower triangular matrix (MxM) 
U 1 (l = 1,2 .... , N-l)  an upper triangular matrix (MxM) 

N and M size of gird (Wieladek et aL, 1980). 
Matrix A is a sparse and large matrix. These systems of equations are often solved with 

the use of iterative methods, which are, however, not always effective since matrix A is 
non-hermitian. In many cases straight methods turn out to be more effective for solving 

such systems. From the decomposition of matrix A by the Chotesky-Banachiewicz 

method we can write down the finite algorithm of the solution to the set of linear 

equations which requires 2M3N+O(M2N) multiplications. While the Gauss-Seidel iteration 

method requires M2/6 iterations for the same number of multiplications, which is usually 

insufficient for the required reduction of the norm of the residual vector. 

The numerical tests show the great effectiveness of this algorithm. For a problem 
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The numerical test of the Gaus-Seidel and Cholesky-Banachiewicz methods (Wieladek et  al., 
1980). 
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where M=39, N=39 and a model as in Figure 1, the reduction of  the residual vector norm 
in the Cholesky-Banachiewicz method was 0.36 • 10 -21 , while in the same number of  

operations it was only 0.5 x 10-4 in the Gauss-Seidel method.  
Brewitt-Taylor and Johns (1977) used the diakoptic solution of  two-dimensional 

induction problems. In this case the problem was divided into segments which were 
partially solved separately and then joined together by the application of boundary con- 

ditions at the edges of  the segments. The advantages were: (a) a large problem was 

reduced to more manageable pieces, (b) in the solution of  similiar problems only those 

segments whose conductivity was different needed be re-solved. 
To find an asymptotic expression of  an electric field in a non-conducting region and 

over long distances starting at the beginning of  a co-ordinate system, Weaver and Brewitt- 

Taylor (1978) used improved conditions in an E-polarization case. 
In an E-polarization case, the precision of  the solution was increased by using a smaller 

approximating grid (Figure 2). 
None of  the methods at present available for solving electromagnetic induction pro- 

blems in the Earth can be considered satisfactory when we assume conductivity to be a 
function of  three variables. The finite difference method usually requires a lot of  com- 
puter time and mass storage, and allows the analysis of  simple three-dimensional struc- 

tures (Jones and Vozoff,  1978). 
A more effective solution is obtained when formulating the problem in vector integral 

equation terms (Weideldt, 1975), but it is somewhat restrictive in its applicability since it 

requires the anomalous region to be surrounded by a 'normal '  i.e. layered structure. 
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Fig. 2. The real and imaginary parts of the electric field at the surface of the conductor. The solid 
( ) and dotted ( .......... ) lines show the fields calculated on the large and small grids for standard 
boundary conditions. The broken line ( . . . .  ) shows the field calculated on the small grid with the 

improved boundary conditions (Weaver and Brewitt-Taylor, 1978). 
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In many cases, particularly where the channelling of induced electric currents in the 

oceans around islands and other geographic features near a coastline are taken into 

consideration, the region of laterally varying conductivity is effectively confined to a thin 

layer at the surface of the Earth. The conditions under which this approximation is valid 

have been examined by Weaver (1979). 
A new method for solving problems in three-dimensional induction, in which the Earth 

is represented by a uniformly conducting half-space overlain by a surface layer of variable 
conductance was presented by Dawson and Weaver (1979). 

Unlike previous treatments of  this type of problem, the method does not require the 

fields to be separated into their normal and anomalous parts, nor is it necessary to assume 

that the anomalous region is surrounded by a uniform structure; the model may approach 
either an E- or B-polarization configuration at infinity. 

The solution is expressed as a vector integral equation in the horizontal field at the 
surface of the Earth. 

3. Inverse Problems 

The inverse problems are often ill-posed, which means that small changes in the input 
data lead to big changes in the solution. Inverse problems are nonlinear. Various methods 

are now used to solve such problems. One can mention here gradient, Marquardt, Monte 
Carlo or linearization methods. 

In recent years the linearization method has attracted much attention, and therefore 

we want to discuss here its mathematical aspects. 

We would like to present here two different approaches in formulating the problem 

of finding the distribution of electric conductivity of  the Earth in the one-dimensional 
case, when the observations of the electromagnetic field at the Earth's surface are given. 

The first approach, let us call it parametric inversion, can be found in many works, 
e.g. Jupp and Vozoff (1975a). 

The Earth models are determined by N free parameters, which we can write as the 

X = (X1, X 2, .... X N ) T .  vector 

The input data are based on M observations, which can be written as the vector 
d : (d l ,  d~ ..... dM )T. 

The direct problem generates a set of model data for each x, which can be expressed as 
a vector function as follows: 

g(x) = (gl (X), g2 (X) . . . . .  gM(x)) T. 

where gi (x) is the value predicted by the model, and corresponds to the observation d i. 
The inverse problem is to find values of x such that it matches d in some sense, which 

in this case is the minimum of the root mean square relative error between model and 

data, 
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l1 %-gi) F(x)= i=1 (S) 

The problem of finding the minimum of function (5) is usually ill-posed and non- 
unique. 

We may try to improve the situation by reformulating the problem, adding a certain 
regularization term to expression (5). We thus obtain a new problem, often easier to solve 
than the initial one. 

The second approach is based on the assumption that the Earth's conductivity is a 
continuous function of depth (Oldenburg, 1979). 

For the electromagnetic induction in a one-dimensional structure we have a 
differential equation: 

d2 G 
d& + ic~176 = 0. (6) 

From Equation (6) we can obtain Riccati's equation: 

dR 
- -  - icoR2-tio(z) = 0, (7) 
dz 

where R(z, co) = B(z, co) / E(z, co) is a transfer function. 

A perturbation in conductivity 6 o is followed by a perturbation 8 T in the transfer 
function; between these we can write the dependance: 

fiR(O, co) = f lao(z) (E(z, co)~ 2 8re(z) dz, (8) 
0 \8(0, ] 

where m(z) = In (1/o(z)). 
For practical reasons it is often more convenient to look separately at the phases and 

amplitudes of the transfer function. 

Finally, we can write down expression (8) for each frequency ~o/as follows: 

O o  

6 ~  = f G/(z)~m(z) dz, (9) 
o 

for j=l ,  2 . . . .  , M, and G/denotes the amplitude or phase kernel, and T. the corresponding ] 
transfer function. 

To construct a model we first choose an initial approximation too(Z) and compute the 
transfer functions T.. We assume fi T i to be the difference between ~ / - T j ,  where ~ is 
the observed datum. 

Solving M equations of the type (9) we find fim(z), and the new model rna(z) = too(Z) 
+ 6m(z). 

The rate of convergence will be determined by the root-mean-square relative error e, 
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We see that in this case we must solve an ill-posed problem, since our aim is to solve 
Fredholm's integral equation of the first kind. 

Structural appraisal of the model is carried out by considering averages of the model at 
any depth of interest (Backus and Gilbert, 1970). 

(11) <mOo)> = J m(z)A(z ,zo)  dz, 
o 

where A(z ,  Zo) = ~M 1 t~(zo)Gj(z) is called the averaging function. 
The coefficients ai(zo ) are a set of constants which are computed to make the averag- 

ing function a delta-like function. 
The importance of the averaging functions is that they help us to interpret the numerical 

results. All models which are linearly close to the constructed model and which reproduce 

the observations have the same average (m(zo)). 

Parametric inversion and continuous inversion lead to the solution of systems of linear 

equations in the least squares sense. 
Let us now turn our attention to the algebraic aspects of the numerical solution of the 

set of linear equations. 

A x  = b, A(MxN) ,  M>~N. (12) 

This set of equations often arises from discretization of ill-posed problems and the task 
of solving such sets of equations in inverse problems is very important. 

We are looking for a solution of (12) in the least squares sense, so we have the mini- 
mum problem 

min (llAx - b 112). (13) 
x 

In many methods for ill-posed problems, A in (12) is replaced by a modified matrix 
A such that the difference A-A is small and the condition number of A is of moderate 
size. 

This procedure is often called the regularization method (Tikhonov, 1963). 
The numerical solution of the linear system (12) can be completely analysed in terms 

of singular value decomposition (SVD) of the matrix A. 
The SVD of the matrix A can be expressed as follows: 

N 
A = U~-, F T = E a .uVT = v T (14) 

1 l l 

i=1 

where U=(ul, u2 ... . .  UN), V=(vl, v2 ... . .  VN), Z=diag (ol ,  a2 ..... aN). 
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Here U and V are orthogonal matrices and the singular values of matrix A can be 
assumed to be ordered so that 

01~> o2~> ... >/op/>~ 0. (15) 

A pseudoinverse solution of (12) can be expressed as follows: 

X = ~ (Oti/Oi)Vi ' o t i=uTb.  (16) ai~o 

Consequent upon the ill-posedness of the main problem, o i approaches zero rapidly for 

increasing i. 
From (16) it can be seen immediatly that small disturbances in the right hand vector 

b will result in large changes in the solution x. 
Let us now look at two ways of overcoming this difficulty. The first way that suggests 

itself is to truncate the expression (16) after k < N terms, this is the method of truncated 

singular value decomposition. In this case we get: 

k 
x~k) : ~. %/~ (17) 

i=1 

This procedure is equivalent to solving the modified problem: 

Ax (k) = b, (18) 

N 
where A - A  = ~ o.u.v T. 

' 1 1 1 

i=k+l 

Efficient numerical algorithms for computing the singular value decomposition were 
lately given in a work by Dongarra et  al. (1979). 

The second way, which seems to be more flexible than truncated SVD and which has 
received much attention in recent years, is the method of regularization proposed in- 
dependantly by Phillips (1962) and Tikhonov (1963). 

The minimization problem (13) is replaced by another problem, namely: 

min {}lAx - bl]~ +/allLxll~ } ,  (19) 
x 

where the L (pxN) matrix is usually a discrete approximation to some derivative operator 
and p is a parameter to be chosen. 

For the case L=I, where I denotes the unit matrix, the solution to problem (19) can 
be expressed in the following form (Golub, 1973): 

N 

xt, = • (oi/(o i + ~))~.v  r (20) 
i=1 

Thus, the effect of the regularization can be described as applying in the singular value 
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expansion a filter factor o]/(e~+#2). 

Compared to the method of truncated SVD, the method of regularization gives a 
smoother transition in the damping of components corresponding to small e/. 

Summing up, both methods expand the solution in the same set of  basis vectors v i, 
and it can be shown that they often give similar results (Varah, 1979). 

Finally, we can notice that even in the case of one-dimensional inverse problems we 

have to overcome considerable mathematical difficulties. The problem of effective 
solution of two-dimensional and three-dimensional inverse problems still remains an open 

question. 

4. Summary 

Methods used up to now for solving direct problems enable us to analyze two-dimen- 

sional models effectively. But current theory on solving three-dimensional problems does 
not allow us to cope practically with models reflecting real geological situations. 

In inverse problems, theory has developed in such a way as to permit its practical 

application to one-dimensional problems. But even in these cases, because of the ill- 
posedness of problems, the interpretation of sounding curves, which are obtained from 

the real experimental data, is usually non-unique. There are two kinds of approaches, the 
first parametric, and the second based on the assumption of a continuous distribution 
of electrical conductivity of  the Earth. Of these, the second seems to be more general 
and leads to an algorithm with faster convergence. 

Also, as regards two- and three-dimensional inverse problems, despite the theory in 
two dimensions (Weidelt, 1975c; Jupp and Vozoff, 1977b; Cerv and Pek, 1980), fully 
effective algorithms of two-dimensional inversion do not exist. 

From the practical point of  view, when we are handling real observational data, the 

interpretation of these data is not completely automated. It still depends on the sub- 
jective decisions of  the interpreter. In interpreting these data, limitations on the number 
of  unknown parameters must be imposed on the basis of the results of  other geophysical 
methodL 
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