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Abstract. The main results in the theory of the interpretation of geopotential fields are generalized to 
the case of arbitrary variable electromagnetic fields by means of elaborating electrodynamic analogues 
for the integral of the Cauchy type. 

The generalized Kertz method for separating a variable electromagnetic field into parts related to 
the sources located in different regions of space is elaborated on the basis of this technique. The 
generalized Kertz method allows the selection of external and internal, normal and anomalous parts of 
the geomagnetic field, as well as the separation of geomagnetic anomalies into the surface and deep 
components caused by conductivity inhomogeneities in the Earth's crust and upper mantle. 

The theory of analytical continuation of variable electromagnetic fields in a conducting medium 
is also developed in the present work using the technique of analogues for the integral of the Cauchy 
type. It is shown that analytical continuation of a field downwards permits the determination of the 
location and form of deep geoelectric inhomogeneities according to the configuration of the isofines 
of flux functions for magnetic and electric fields. 

1. Introduction 

Elaboration of effective methods for the interpretat ion of  electromagnetic anomalies 

caused by inhomogeneities in the structure of  the Earth's crust and upper mantle is the 

challenge in today 's  geoelectric methods.  Solution to this interesting problem meets a 

variety of  difficulties related to the necessity to divide beforehand the fields into the 

external and internal,  normal and anomalous, surface and deep parts, as well as to the 

determinat ion o f  the parameters of  deep geoelectric inhomogeneities. Various approaches 

to the solution of  these questions have been discussed in the following publications: 

Rikitake,  1966; Schmucker, 1970; Roki tyansky,  1972, and in numerous other papers. 

However, there is a long way to go to finish the problem. If  the degree of  perfection of 

the methods for solving the inverse problem in geoelectric sciences could be compared 

with that,  for example,  in gravimetry and magnetometry,  then, without  any doubts ,  the 

comparison would be in favour of  the latter. At  the same t ime,  there are a variety of  

problems in the geoelectric sciences which can be successfully solved using principles 

analogous to those well developed in gravimetry and magnetometry.  The problem con- 

cerns the separation of  anomalous fields and the determinat ion of  the geometry of  the 

bodies forming the anomalies. The majori ty of  the results in the theory of  potential  

(gravitational and static magnetic) fields have been obtained using the technique of  

the integral of  the Cauchy type for complex-analytical functions. In the present review 
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these results are generalized to variable electromagnetic fields by elaborating certain 
analogues for the integral of the Cauchy type. 

2. Electrodynamic Analogues for the Integral of the Cauehy Type 

It is worth remembering, first of all, how the concept of the integral of the Cauchy type 
is introduced in the theory of the functions of a complex variable. For functions of a 
complex variable the Cauchy integral formula is known, according to which from the 
values of the analytical function f(~') at the boundary C of a region D it is possible to 
determine f(z) everywhere in D: 

1 C~ J~_)d~ = ; (1) 

where z denotes any internal point of the region D confined by the contour C. If, on the 
contrary, the point z lies outside the region D, then according to Cauchy's theorem: 

1 ~C]~ f )d~_z_O. zED (2) 
2rri 

(D = D + C is the region D with the boundary C). The Cauchy integral (1) gives a repren- 
tation of the function f{z,), analytical in the region D, through its boundary values. 
However, this integral will make sense also in the case when an arbitrary contour C and 
a certain continuous function ~(f): 

1 
K(z)  = ~ _ , (3) 

on it are given in the complex plane. 
The integral (3) is called the integral of the Cauchy type, and the function ~0(f) is its 

density. The function K(z) defined by the integral of the Cauchy type has a number of 
remarkable features, the basics of which are the following 

(1) K(z)  is analytic at any point z which does not lie on the contour C. 
(2) If ~(f) are the boundary values on C of the function ~0(z),analytic everywhere in 

D, then K(z)  - ~o(z) within D and K(z)  - 0 outside D. 
(3) Limiting values of the function K(z) exist when z tends to a point on C from 

within and from outside the region D, however these limiting values are different, since a 
jump takes place when passing across C; the value of the jump is equal to the density 
r of the integral of the Cauchy type (the well-known formulas of Sokhotsky-Plemelj). 

In the theory of two-dimensional potential fields the integrals of the Cauchy type 
are of exceptional importance. With the help of these, methods of the separation of fields 
(Kertz, 1954) and those of analytical continuation (Strakhov, 1972) are elaborated, 
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problems concerning the ambiguity in solving inverse problems (Tsirulsky, 1969) are 

investigated and the location and form of the field sources (Strakhov, 1970) are deter- 

mined. 
We shall demonstrate that a theory similar to some extent to the theory of the integral 

of the Cauchy type for complex-analytical functions can also be developed for variable 

monochromatic quasi-steady electromagnetic fields. 
Let S be a smooth closed surface confining the region D in the space. Introduce the 

notations 

Fs a, V?: ffS l (", V)grad  a + [ XVl X al} dS ; 

- 1  
ps  (rq, G, U) = ~ f f  [ ,  x V]GdS" ; (4) 

s 

where n is the unit vector of the normal external to S. G = G(r q, r ~  is the fundamental 
Green's function for the Helmholtz equation: 

AG(r q , r #) = K2 G(r q ' r ta) -- 41rS(r q - r p) ; (5) 

(6 is the Dirac function), i.e. 

G(rq ' rp  ) _ 1 . exp(-KI r q - r u I). 
Ir q - r U  l 

We call the electrodynamic analogues for the integral of the Cauchy type the following 
expressions: 

H(rq) 

E(r q) 

=FS(r q, G, U) + opS(r q, G, V) ; 

=FS(r q, G, V) + ir q, G, U) ; 
(6) 

where co, p, a are certain positive constants subject to the condition: - iwgo = K 2 ; U, V 

are vector functions defined on S called the densities of the integrals of the Cauchy type 
and related to each other by: 

( U , n )  = __i div [nX V] 
6 d p  s 

(V,n)  = __1 div [nX U] 
U s 

Here div S is the symbol for the surface divergence. 
The principal features of integrals (6) allowing us to call these analogues for the 

integral of  the Cauchy type, are the following: 
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(1) Everywhere in the space, except on the surface S, expressions (6) describe the 
functions satisfying Maxwell's equations for a quasi-steady monochromatic field;assuming 

a time factor exp(-icot): 

curl H = oE 

curl E = leo#/-/ 
(7) 

Therefore, the constant o and /~ introduced earlier are identified with the electrical 

conductivity and magnetic permeability for a homogeneous conducting medium, and co is 
identified with the circular frequency of field oscillations. 

(2) If densities (6) are the limiting values on S of the functions h and e satisfymg over 
the region D confined by S Maxwell's equations 

curl h = oe , 

curl e = ico/Jh , 
(8) 

then outside S analogues for the integral of the Cauchy type are equal to zero, and within 
S are equal to h ande: 

{ 0 ; q ~ D  { 0 ; q ~ D ;  
H(rq)= h(rq) ;qEl~  E(rq) = e ( rq ) ;qED;  (9) 

If the fundamental Green's function G is substituted in expressions (6) by an arbitrary 
solution g of the Helmholtz equation in D, then 

FS(r q, g, h) + opS(r q, g, e) - 0, 

(10) 
F S (r q, g, e) + icolxpS(r q, g, h) = 0, 

where 

zSg(r q) = K2 g(r q) ; q E D. 

(3) For the limiting values of electrodynamic analogues for the integral of the Cauchy 
type at the surface of integration S, formulas similar to the conventional Sokhotsky-Plemelj 
formulas in the theory of the integral of the Cauchy type are valid, namely 

n+(r ~ = lira H(r q) =FS(r ~ , G, U) + opS(r ~ G, t0 + 1_ U(rO ) (11) 
q~O 2 
qED 
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H-(r ~ = lim H(r q) 
q-+O 

=FS(r ~ G, U) + opS(r ~ G, I 0 - 1U(r~  

where r ~ is the radius-vector of the point 0 situated on the surface S. The same relation- 
ships hold for the function E(rq). 

From the latter formulas it follows that: 

H+(r ~ - / / - ( r  ~ = U(r~ 

E§ ") - E-(~ ~ = v C ) .  
(12) 

Consequently, when passing across the surface S analogues for the integral of the Cauchy 
type undergo a jump, the value of the jump being proportional to the corresponding 
densities. 

The aforementioned properties of analogues for the integral of the Cauchy type allow 
us to solve the problems of  separating a variable electromagnetic field into different parts 
and of continuing it into arbitrary regions of a conducting medium, i.e. the fundamental 
problems in the theory of interpretation of geomagnetic fields. 

3. Separation of Variable Electromagnetic Field into the External and 
Internal Parts (The Generalized Kertz Method) 

One of the first problems resulting from an analysis of the natural variable electromag- 
netic field of the Earth, is its separation into external and intemat parts. The separation 
of the field into external and internal parts, first of all, allows us to determine whether the 
heterogeneity observed in the distribution of the variable geomagnetic field at the surface 

of the Earth (the geomagnetic anomaly) is related to the inhomogeneity of ionospheric 
currents exciting an external field, or to the heterogeneity in the structure of the Earth's 
interior. Thus the separated internal part of the geomagnetic field is the principal object 
for further investigations. 

The fundamentals of the procedure of separating the geomagnetic field into external 
and internal parts was elaborated in the classical works of Gauss in application to the 
analysis of a field on a sphere. 

These investigations have been developed lately in the following works (Vestine, 1941; 
Kertz, 1954; and Nedyalkov, 1965), where methods have been presented for the separa- 
tion of the potential fields prescribed on an arbitrary surface of observation S. The 
technique elaborated above for the analogues for the integral of the Cauchy type permits 
us to extend these methods to variable electromagnetic fields. 

Let E and H be electric and magneticfields excited in a homogeneous unbounded space 
with conductivity o by two systems of sources of arbitrary nature located within the 
regions D1 and D2 (Figure 1). The fields E and H can be represented in the form of the 
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sum of two fields: 

E = E 0 )  + E ( 2 ) , H = H ( ' ) + H ( 2 ) ,  

Q 
(13) 

Fig. 1. The generalized Kertz method for separating a field into the external and internal parts. 

where the components E 0 ) ,  H(1) are related to the sources in D1, and E (2),//(2) with 
the sources in D2. The electromagnetic field at infinity satisfies the radiation condition. 

We formulate the problem of the determination of the fields g l ) ,  El), E(2) and t/(2) 
from the given values of H and E at the surface S, i.e. we formulate the problem for the 
separation of the electromagnetic field into parts related to the sources located on different 
sides of the surface S (the positive direction of the normal to S is from the region D1 to 
Da ; the region confined by S we denote as D). 

We calculate the integral of the Cauchy type: 

H(r q) = FS(r q, G, 11) + apS(r q, G, E). (14) 

In conformity to (9): 

I H(2)(r q) ;qED . 
H(rq) = I -HO )(rq) ; q ~  ' 

Since the fields//(1 ) and t/(2) are continuous in the neighbourhood of S, then 

(15) 

It  *(r ~ = n(2)(r~ , 
H-(r  o) =_/_/(1)(rO)" (16) 

Substituting formulas (1 I) into (16) we obtain: 

H(1)(r ~ ) : 1H(r~ -I i8(r  ~ G, It) - apS(r ~ G, E) ,  

H(2)(r ~ = 1H(r~ + b-S(r ~ G, tl) + opS(r ~ G, E) ,  

and in a similar manner for the electric fields: 

(17) 
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E0)(r o) = 

E(2)(r o) = 

E(r ) - l~(r  ~ G, E) - iwl~S(r  ~ G, H), 

1E(r~ + FS(r ~ G, E) + i w ~ ( r  ~ G, It). 
(18) 

It is (17) and (18) that give the solution to the problem pointed out in the title of this 
section. 

The method developed (which may be called the generalized Kertz method) can be 
used widely in solving inverse problems in the geoelectric sciences; for separating the total 

electromagnetic field of  the Earth into the external and internal parts or into the contri- 

butions from various conducting zones within the Earth. 

4. Separation of a Field into its Normal and Anomalous Parts 

This problem is one of the central problems for the analysis of  a field. In the electrical 
reconaissance methods using artificial fields the abovementioned problem is solved 

relatively easily since the prescribed source normal field can always be calculated, and the 
anomalous field is obtained by subtracting the latter from the observed field. In studying 

variations in the natural electromagnetic field of the Earth such an approach cannot be 
used, since our concepts of the sources of  the field are very schematic. At the same time, 
for separating a variable geomagnetic field into normal and anomalous parts a method 

can be used representing a development of the Kertz method and based on the difference 
in the space distribution of the normal and anomalous fields caused by the fact that the 
sources of  the normal and anomalous components of the field are disposed on different 

sides of the surface of observation. 
To illustrate this method we consider a model consisting of two half-spaces IV (the 

upper) and II § (the lower) divided by a piecewise smooth surface S (Figure 2). The half- 

spaces II- and II + are characterized by conductivities 

o (/) 1 = 1 , 2  

where the index l = 1 refers to 17-, and l = 2 to 1I +, and each has constant magnetic 

permeability #o" 
In the lower half-space there is a region of inhomogeneity Q with some conductivity 

o(r q) = ~0) + Aa(rq), q C Q, (19) 

different from that in lI +, where q is the point of observation. The electromagnetic field 
is excited in the medium by an arbitrary system of sources located in the region P, in the 

upper half-space. 
Considering a quasi-steady monochromatic field we shall write the main equations for 
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/7- 0') 
o" 

/7 § ~(2) 

Fig. 2. The model of the medium consisting of two homogeneous half-spaces I1 + and I]- separated by 
�9 § 

the surface S. There is a region of inhomogeneity Q m 11 . 

the vectors o f  the electric E and magnetic H fields. 

At any point  of  the space, except the points belonging to the regions P and Q the 

Maxwell equations are valid: 

curl H = o(l)E 
curl E = iwl.toH (20) 

where 

l = 1 at qEI I -  - P, and I = 2 at q~II  + - Q. 

In the region P: 

curl H = 0 (1)E + P ,  

curl E = ico~oH, 

where 1 ~~ is the density of  external currents. 

In the region Q: 

c u r l H  = o(2 )E + AoE = o(2 )E + ]Q, 
curl E = iwt2oH , 

(21) 

(22) 

where i ~2 is the density of  excessive electric currents in the region Q. 

Thus, relationship (22) makes it possible to consider the lower half-space II § as every- 

where uniform, the presence of  the region Q being taken into account by means of  the 

excessive currents and charges. 
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The electric and magnetic fields can be represented in the form of the sum of two 

fields, i.e. the normal and anomalous fields: 

E =  En + Ea , t t =  ttn + I t  a (23) 

The normal part describes the field excited by external currents in the absence of an 
inhomogeneity (2xo = O) and the anomalous part - the field caused by the inhomogeneity. 
In other words, the anomalous field can be regarded as that of the charges and currents 
j12 distributed over the region Q. This field propagates in a two-layered medium. 

The normal field is represented in the form of two f ie lds -  the primary (~n '~n)  and 

secondary % , ~ n ) :  

where the primary normal field characterizes a field of external currents in the homoge- 
neous space with the parameter O(0 and the secondary field - a field of the currents 
induced in the half-space II +. In a similar way, the anomalous field can be represented in 
the form of the sum of  the 'primary' ( H ,  if,.)and 'secondary' (~ ,~F) f ie lds :  

tzt" ~z/" 

 =go %, %, (25  

where the primary anomalous field characterizes the field of the charges and currents 
induced in the region Q and propagating in the homogeneous space with the parameter 
o (2) and the secondary field is the anomalous field resulting from the interface S. Conse- 
quently, the 'primary' anomalous field is that excited by the inhomogeneity Q in the 
unbounded homogeneous space with the parameter O(:), i.e. it is 'pure anomaly', which 
is not complicated either by the external sources, or by the influence of the interface S, 
therefore the separation of this field considerably simplifies the solution of the problem 
concerning the determination of the heterogeneity region Q. From Equations (23), 
(24) and (25) it follows that the field observed at the surface S can be represented in the 
form of the sum 

and similary for the electric fields. Now we consider methods for the separation of the 
total electromagnetic field into the normal and anomalous parts and for the separation of 
the primary normal and anomalous fields under the condition that the parameters of the 
half-spaces II- and II § (o(1), o(2)) are known. 

It is easy to obtain a solution to this problem using the general method of separating 
the fields outlined in Section 3. Specifically, by using formulas (17) for the fields pres- 
cribed at the upper (marked by the index ' - ' )  and lower (marked by the index '+') sides 
of the surface S, we obtain: 
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tta-(rq ) = 2FS (r q, G(1), H~) + 20( ' )pS (r q, G(1), Ea), 

Hn(rq ) = -2FS(r q, G (2), [In) - 2a (2)PS(rq, G (2), E~) (27) 

where q E S. (Indices (1) and (2) at the Green functions denote that the latter are taken 
either for the upper half-space with the wave number K1, or for the lower one with the 
wave number K2, respectively). Similar formulas for the electric field are obtained by 
interchanging H and E and replacing o( 1 ,~) by iwpo. 

At the interface the following conditions are fulfilled: 

a ( ' )  - o ( ~ )  
E + = E -  + a ( O  (E- ,  n)n,  H + = H - ,  (28) 

where n is the unit vector of the normal to the surface S directed to the lower half-space. 
With allowance for (28), Equation (27) can be reduced to the form: 

n(r q) = - 2FS(r q, G (2), H - H a )  + 2FS(r q, G 0),  Ha) - 

_ 2o(2)pS(rq, G(2),E _Ea)  + 2aO)pS(rq, GO),Ea). (29) 

An expression of similar form is also obtained for the electric field. 
These vector equalities form a system of 6 integral equations involving 6 unknown 

functions (Exa, Ey a, Eza , Hxa, Ity a, Hza ). So, the problem of the separation of the total 
field into normal and anomalous parts is, in the general case, reduced to the solution of a 
system of integral equations. Methods for solving this problem for plane and spherical 
surfaces S are described in the following works: Zhdanov (1973b), Berdichevsky and 
Zhdanov (1973, 1974). 

At the same time, the problem of selecting the primary normal and anomalous fields is 
solved directly using integrals (17): 

H~n(r q) = ~tt(rq)_ FS(r q, G(1),H) - a(1)pS(rq ' G(1), E), 
0t (30) 
H (r q) = Itt(rq)+FS(rq, G(2), H) + o(2)pS@ q, G(2),E), 
0) a 

and by analogy for the electrical fields. 
For example, if S is the surface separating the non-conductive atmosphere (a(1) --- 0) 

from the homogeneous conductive Earth (a(2) = a) containing the heterogeneity region 
Q, then formulas (30) can be written as: 

(rq) = 1H(rq) + 1 ff{(n, H)gradpGo + [[n X HI X gradpGol}dS g, //  
0) n 

S (31) 

l J[ / Ha(rq) = ] H ( r q ) - ~  (n,H)gradgG + [ [ n X H ] X  gradgG] dS u -  

o 
47r ff [n X EIGdS u ; 

S 
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where Go = 1/Ir q - r/a I is the Green's function for the Laplace equation and where 

G = exp ( -  K [ r q - r ~ I ) / I r  q - r/a I is the Green's function for the Helmholtz equation. 

Thus, the primary normal magnetic field is determined directly from the magnetic 

field at S without any additional information, and to obtain the primary anomalous 

magnetic field it is necessary to know the conductivity cr of the homogeneous part of the 
Earth and, in the general case the electrical field at an arbitrarily shaped surface S. 

5. Separation of Geomagnetic Anomalies into the Surface and Deep Parts 

Electromagnetic anomalies can be subdivided in accordance with the nature of their 
heterogeneities into two groups: (1) the surface anomalies caused by electrical inhomoge- 
neity of the near-surface layer of the Earth; (2) the deep anomalies related to the action 

of conductive zones in the Earth's crust and upper mantle*). 
In interpreting electromagnetic anomalies one has, first of all, to determine to which 

of the above groups they belong. Most frequently, in practice both types of anomalies 
are observed simultaneously, i.e. the anomalous field represents the effect of two sources 
electromagnetically interrelated. The latter circumstance leads to essential difficulties in 

obtaining results from depth, since shallow inhomogeneities distort the field under 

observation. Therefore, the separation of electromagnetic anomalies into the surface and 
deep part is the challenge in the theory of interpretation. The principles of  solving this 

problem are later set forth on the basis of the general theory for the separation of fields 

described above. The main idea of this method consists in the fact that the electromag- 

netic field being observed is related to three systems of extrinsic currents: (a) a system 
of Ionospherical currents, (b) a system of the currents induced in the near-surface inho- 
mogeneous layer, (c) a system of the excessive currents filling the deep geoelectric inho- 
mogeneities. The separation of these fields occurs by means of separate determination 

of the components stipulated by every one of these sources. 

To illustrate the method we change the model of the Earth considered in Section 4 
supposing that at the interface, i.e. at the surface S there is a thin conductive Price sheet 
with the surface conductivity ~(r/2), /sES continuously varying along S (Figure 3). The 

upper half-space I I -  is an insulator. As in Section 4, we suppose that the medium below 
the sheet S is homogeneous, but that in D the conductivity varies according to an arbitrary 

law: 

)(r { a = const , q ~ D , 
0(2 q )  = a + A a ( r q )  , q E D  . 

* This classification differs from that of Schmucker (Schmucker, 1964) by the fact that transitional 
and deep anomalies are united in one class of deep anomalies. Such a unification is stipulated by the 
method for the interpretation of transitional and deep anomalies that can be elaborated using the same 
principles and differs from the method for the interpretation of surface anomalies. 
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13- ~ , : 0  otmosphQz~z 

~- 5 

o) 

11- ~. ~ o atmosl~ 

Fig. 3. (a) The model of the Earth containing surface and deep geoelectric inhomogeneities and 
excited by the currents ]P; (b) the model of the homogeneous Earth excited by the currents] P, ]D, jS, 

In such a model the region D models a deep geoelectric inhomogeneity, and the sheet 
S approximates the near-surface inhomogeneous layer of the Earth. As above, a field in 
the model is excited by the external ct~rrents ]1' in the region P C II-. The electromagnetic 

field in the model satisfies the equations: 

(1) in II-  

curl H =]P , curl E = iwtzoH. 

(2) in II + 

curlH = o(2)(rq)E, cur iE= iCogoH. 

(32) 

(33) 

At the sheet S the boundary conditions 

[ n  x ( H  § - H - ) ]  = - ~E  r , 

[ n  X ( E  § - E - ) ]  = 0 .  
(34) 

are fulfilled, where the indices ' - '  and '+' denote the field components on the upper and 

lower side of  the surface S, E r is the electric field tangential component on S, n is the 

unit vector of the normal to S directed downwards. The tangential components of the 

electric and magnetic fields are continuous at the surface s confining the region D (Figure 
3(a)). At infinity the fields satisfy the radiation condition. 

Equations (33) and the boundary conditions (34) can be presented in the form 

curl H = oF, + jO, curl E = iw~toH; (35) 

[ n  X ( H  § - H -  ) ]  = - j S ,  [n X (E + - E-)]  = 0 ;" ( 3 6 )  

where [D and jS  are the volume and surface densities of the excessive currents in the 

region D and sheet S, respectively: 
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]D = AoE , j S  = ~Er . (37) 

Therefore, the model of the inhomogeneous Earth excited by the currents jP(Figure 
3a) is equivalent to that of the homogeneous Earth excited by the currents]P,] D, jS. All 

heterogeneities are substituted by these excessive currents (Figure 3(b)). Consequently 
the electromagnetic field in the model can be represented in the form of the sum of the 

P, D and S-components caused by the excessive currents in the regions P, D and sheet S, 

respectively: 

H = H P  + H D + H S, E = E P  + E D + E S . (38) 

According to the terminology accepted above the P-component of field represents the 
normal field and the sum of the D and S components gives the anomalous field 

H n = H  P, H a = H  D + H  S ,  

E n = E  P, E a = E D + E  S, 
(39) 

Thus the D-component can naturally be identified with deep anomalies, and the S-compo- 

nent with surface anomalies. The problem describing the separation of electromagnetic 

anomalies into the surface and deep ones is therefore reduced to the separate determina- 
tion of the D and S components. Let us solve this problem. 

If the total fields on the upper side of the surface S- ,  viz.: H-, E- are known, then it 

will be possible to separate the total field into the normal and anomalous parts using the 

procedure set forth in Section 4, in so far as the sources of the corresponding components 
are on different sides of the surface of observation S-. Further, under the condition that 

the sheet conductance ~ can be assigned, it is possible to select theD andS field components. 
By using the boundary conditions (36) it is possible to calculate the fields H + and E + on 

the lower side S + of the sheet. After mapping the field on the surface S +, the P and S 
sources turn out to be over the surface of observation S +, and the D-sources under it. 

Consequently, if we use the method of separating the fields described in Section 4 to the 
//+ and E + fields, then we shall obtain the 'anomalous' field H*, E* consisting only of the 

D-component: 

H* = HP + H S, E~ = EP + E S, * E *  = E D . (40) I-Ia = l i D '  a 

The S-component of the field in accordance with (39) and (40) is determined by simple 
substraction: 

e s - - e 2 _ e  " (41) 

For the purpose of interpretational convenience, it is useful to select the primary 
depth anomalies HD(1), ED(1), i.e. the fields excited by the currents jD in a homoge- 
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neous unbounded medium with the parameters o, /lo. This problem is solved directly 
using quadrature formulas of the type (30), if the fields H +, E § are known on the lower 
side of the sheet. 

What is the physical sense and practical meaning of the operation of separating the 
primary deep anomalies HD(1), ED(1)? 

According to definition, the primary deep anomaly is the field excited by the currents 
.i D in a homogeneous isotropic medium. The density of currents jD is defined not only 
by the parameters of the deep inhomogeneity, but also by the external currents ]P and 
the surface inhomogeneity S. However, the currents ]D are localized in the space exclus- 
ively within the region D, therefore, the field HD(1), ED(1 ) allows US in principle to 
determine the geometry of deep inhomogeneities and their location in space. Thus, the 
effect of] P and S on the field is preserved, but their sources are as if transferred in the 
space and are concentrated within region D. Consequently, we can consider the primary 
deep field as an anomaly in its 'pure' form, complicated neither by external sources (in 
the sense mentioned above), nor by the surface heterogeneities S. The selection of such 
a field is of convenience from the viewpoint of searching for the deep inhomogeneities 
D. 

6. Analytic Continuation of Variable Electromagnetic Fields in a Conductive Medium 

In interpreting gravitational and static magnetic anomalies the methods of analytic 
continuation are widely used and consist of the reconstruction of the field distribution 
within a domain from its values known at the surface of observation. These methods are 
a powerful tool for solving a number of inverse problems in gravimetry and magneto- 
metry. 

The possibility of transferring the ideas and methods of analytical continuation of 
potential fields to variable electromagnetic fields was first considered in the works of the 
Indian geophysicist Roy (Roy, 1968, 1969). We give below the general solution to this 
problem based on the technique of analogues for the integral of the Cauchy type. 

The problem of the continuation of electromagnetic fields is, in the general case, 
formulated in the following manner. 

Let D be a region in the half-space confined by two surfaces S and E. The following 
situations are possible: 

(a) The surfaces S and E are closed, E being entirely within S (Figure 4(a)). 
(b) The surface S is of infinite extent, separating the whole space into the lower 

II + and upper II- half-space, and N is closed, E being entirely situated in II + not inter- 
secting with S (Figure 4(b)). 

(c) Both the surfaces S and 2; are of infinite extent, E lying entirely in I1 § not inter- 
secting with S (Figure 4(c)). 

Let the magnetic field H and electric field E satisfy everywhere in D the Helmholtz 
equations: 
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2 f f t  - K 2  H = O, 

Z k E - K 2 E  = O, 

where K 2 = - ia~g o o = const. 

(42) 

(43) 

S 

a) 6) 

/r /7" 

Fig. 4. On formulation of the probIem on the continuation of electromagnetic fieId. 

We assume that at the surface S the values of  the H, E fields and their normal derivatives 

3H/On, aE/On, are known. 
At infinity the radiation condition is fulfilled. It is necessary to determine the H, E, 

fields everywhere within D. 
In such a formulation the problem of the continuation of electromagnetic field is 

reduced to the Cauchy boundary-value problem, the uniqueness of solution of which is 

well known. However, of importance in the continuation problem in the geoelectric 
science is the circumstance that the boundary E of the region D, within which the field 

satisfies Equations (42) and (43), is usually unknown. Moreover, the aim of continuation 

is frequently just the determination of this boundary. 
Note, too, that the problem formulated above is related to the class of incorrectly 

posed problems of mathematical physics, in so far as infinitely large variations in solutions 
may result from small variations in the initial data. Therefore in the numerical continua- 
tion of electromagnetic fields the use of  corresponding regularizing algorithms is needed. 

Zhdanov (1973a) shows that the continuation problem can be reduced for a number 
of important cases to the spatial transformations of a field. Here we give the general 

scheme for elaborating such methods. 
Note, first of all, that as a result of Maxwell's equations, the normal derivative of the 

magnetic field can be expressed in terms of the electric field and tangential derivatives 
of the magnetic field, and vice versa, the normal derivative of  the electric field can be 
determined from the values of the magnetic field and the tangential derivatives of the 

electric field on S. 
It is therefore possible to formulate the continuation problem just for the electromag- 

netic fields E, H given on S and continued in D, and this problem possesses a unique 

solution. 
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For obtaining the integral representations of the analytically continued electromagnetic 
field we shall use the technique of electromagnetic analogues for the integral of the 
Cauchy type. Consider the point q from D. In accordance with (9): 

H(r q) = FS(r q , G, 1t) + opS(r q, G, E) + 
+FF'(r q , G, H) + oP]~(r q, G, E) , (44) 

where G is defined by formula (5) with the wavenumber K from (42) and (43). 
Thus, for solving the problem of electromagnetic field continuation it is sufficient to 

calculate the integrals F ~ and pE in terms of field values at the surface S. 
Suppose, that such a region 7(q), NCT(q) exists, where the expansion: 

G(r q, r ti) = f f(r q , a ) g  (S2, rU)da (45) 
~2 

is vafid, the functions g(~2, r/t) everywhere in 7(q) satisfying the Helmholtz equation: 

Agg(~2, r li) - KZ g(a, r u) = 0. (46) 

Substituting (45) into the integrals F ~, PG and changing the order of integration 
we obtain: 

F~'(r q, G, 1-1) + oPZ(r q, G, E) { } (47) 
= f f(r q , s FZ'(~2, g, 1-1) + oPZ(~2, g, E) da. 

[2 

During this instant, according to (10) and under the radiation conditions to be fulfilled 
at infinity, by virtue of (46), 

Hence: 

FZ* S(n ' g, ~ +:oeZ + S(a, g, a3 = O. 

F~'(~2, g, H) + oP~'(~, g, E) = - b-S(f2, g, I D - oPS(f2, g, E). (48) 

Consequently, expression (44)may be written in the form: 

H(r q) = FS(r q, G, 1"10 + opS(r q, G, E )  - 

- -  f f(rq, a)  { FS(a,  g, I-l) + oPS(~2, g, E) } da . 
fZ 

(49) 

A similar formula for the electric field is obtained from (49) by substituting E for H, 
H for E and o for ico/a o. It is formula (49) that solves the problem for the analytic con- 
tinuation of the field into the region D. 
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Therefore, the continuation problem is reduced to the search for the expressions of 
the type (45) that allow us to represent the Green's function in the form of a sum of 
products of two functions depending on the coordinates of the point of observation q 
and the coordinates of the point of integration/a. As is known, such expansions are in 
practice realized in those orthogonal coordinate systems, in which the variables in the 
Helmholtz equation are separable (Morse and Feshbach, 1953). 

In the three-dimensional case there are 11 basic separable coordinate systems for the 
Helmholtz equation: (1) rectangular, (2) circular cylindrical, (3) elliptical cylindrical, 
(4) parabolic cylindrical, (5) spherical, (6) conical, (7) parabolic, (8) elongated spheroidal, 
(9) oblate spheroidal, (10) ellipsoidal, and (11) paraboloidal. 

In the two-dimensional case for the Laplace equation (K = 0) all the coordinates 
obtained by conformal transformation of the rectangular coordinates are separable, and 
for the Helmholtz equation those coordinate systems are separable that are formed by 
confocal conical sections. 

For 7(q) it is therefore possible to take any region confined by the coordinate surfaces 
(or by the lines in the two-dimensional case) of that coordinate system, in which the 
variables in the Helmholtz equation are separable. 

As an example, we consider a three-dimensional situation (c) with the surface S 
extended to infinity and with Z - the horizontal plane (Figure 4(c)). In the rectangular 
Cartesian coordinate system expansion (45) for the Green's function takes the form 
(Morse and Feshbach, 1953), 

G(r q, r/a) - - -  1 exp(_K~rq_r/al  ) 

I rq-r /a l  
+ 0 0  

1 fY • q _ X/a) +/3(yq _ y/a)] -T- v ( z q - z / a ) }  �9 dotdfl 
2hi  _ oo v 

(50) 

where v = x / a  2 +(32 + K  2', Rev>0. 

The sign ' - '  in expansion (50) is taken under the condition Z q > Z/a and the sign '+ 
under the condition Z q < Z/a. For our case Z q > Z / a  (the Z axis is directed downwards) 
By comparing (45) to (50) we assume: 

f (r  q , ~2 ) = 

g(~2, r/a) = 

2•iv e x p [ i ( a x q  - v z q ]  + [JYq) 

exp[- i(aX/a + fly/a) + vZ/a]. 
(51 
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Substituting (51) into (49) we obtain: 

H(r q) = FS(r q, G, I1) + apS(r q, G, E) + 
O 0  

+ D__2 texp(-vzq) exp[i(mYq+~Yq)]x 

x~sf{(n,H)~+[[nXHX~]+ia[nXE]}• (52) 

X exp[-i(eX/x + flyIX)] exp(vZ/~)dS#dad/3, 

where ~2 = (a, ~, iv), n is directed into the lower half-space. 
A similar formula for the electric field can be obtained by replacing E by H, H by E 

and a by iwl~o. These are the formulas that solve the problem of the electromagnetic 

field continuation from an arbitrary surface S into the region D up to the horizontal 

plane Y~. 
Formulas (49) and (52) give only the formal solution to the problem in the sense that 

for using these it is necessary to know the accurate and continuous values of the fields 

at the surface of observation. For a practical application of these formulas it is necessary 

to extend them by their regularized approximated representations. The simplest, but at 
the same time rather effective, method of regularization consists in limiting the range of 
interpretation of the 'frequencies' a and/7 by a finite cut-off frequency ~2 b. Expression 

(52) thus takes the form: 

H(rq)~ Hreg(r q) = FS(r q, G, I~))  + opS(r q, G, E (~)) + 

+ 1 7 b 7 b ff[(n,H(6))~2+[[n•215 
87rZ & b  --~2 b St J 

x lexp[-~(zq-zl~)] exp { i[a(xq-x~t) +fl(Yq- rU)]] dSl~dad~, (53) 

where H(6), E (6) are approximate values of the electromagnetic fields assigned at the 

surface S: 

~ ) ( r U )  = tI(rU) + ~H(ru), 

E(6 )(r la) = E(r I~) + 6,E(rla), 

~H, 6E are observational errors. 
The cut-off I2 b can serve as a regularization parameter. To determine the optimum 

value of ~2 b, it is necessary to know about a value of interference: 
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116H I1~, II o6E/KII~, (54) 

where 

116HII = x/fflSH(r I~) 12 dS I"t' (55) 

S 

The optimum frequency ~b can then be found on the basis of the Tikhonov-Ivanov 
optimum principle (Ivanov, 1966; Strakhov, 1969): 

[ILH (~)(r kt) - Hreg(r kt) II e - 6 e ]e __ min. (56) 

It is easy to work out formulas similar to (49)-(56) for analytical expressions for the 
continuation of electromagnetic fields into the regions confined by the coordinate 
surfaces of the other separable coordinate systems enumerated above. 

The aim of analytic continuation is, first of all, the detection of singular points, lines 
and surfaces, which by analogy with the methods of gravimetry and magnetometry can 
be regarded as effective sources of the anomalous field. The distribution of these effective 
sources reflects the geometry of the bodies with an excessive electrical conductivity. 

Zhdanov (1975) shows that the type and position of singular points, lines and surfaces 
of the analytically continued electromagnetic field are closely related to the form of the 
surface of deep inhomogeneities. It is known that under certain simple situations they 
may coincide with the elements of these surfaces. In particular, the ribs of conducting 
insertions or the edges of infinitely thin screens are the branch lines of the field. 

As a typical example, results could be presented for the continuation of the variable 
magnetic field in the model of Dmitriev and Zakharov (1968). The model consists of the 
nonconductive atmosphere in contact at Z = 0 with the conducting Earth, where an ideal 
conducting infinitely thin vertical strip exists at a certain depth. The field in the model 
is excited by a plane E-polarized wave propagating from above downwards. We give 
diagrams of the anomalous magnetic field vertical component real part and the field 
isolines in the vertical plane that are analytically continued into the lower half-space 
(Figure 5) (the diagrams for the imaginary part have similar form). As is clear, the field 
isolines are focused at the top of the conducting strip. This result corresponds to the 
general theory set forth Zhdanov (1975) in conformity to which the infinitely thin ideal 
conducting screen edges represent the singularities for the analytically continued electro- 
magnetic field. 

Thus, the analysis of the spatial distribution of variable geomagnetic fields permits us 
to determine the location and character of sources for the field under study. Therefore, 
the procedure for the interpretation of analytically continued values for deep electro- 
magnetic anomalies is similar to those methods that are of use already for analyzing 
geopotential fields. In interpreting the analytically continued electromagnetic field values 
it is at the same time possible to use a number of important and very useful features that 
are the property of electromagnetic fields only. 
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Fig. 5. The analytical continuation of the anomalies of variable magnetic field over an infinitely thin 
ideal conducling strip (the graphs and isolines of Re Hz). 1 is the anomaly of variable magnetic field; 
2 are the isolines of anomalous field in the vertical plane obtained as a result of analytical continuation, 

As an example illustrating some of those features we shall consider the two following 

limiting cases. 
(1) We form the streamlines for the electrical field in a homogeneous conducting 

medium containing a nonconductive insertion (as an example of such a model the section 
can consist of a conductive cover and a nonconductive base). Then.by virtue of elliptical 
polarization of the field vectors (with dependence on time as: exp(-icot)) the streamlines 
at any point of the conducting medium will be in different directions at various moments 
of time, except for those coinciding with the nonconductive insertion contour (i.e. 
current at the conductor-insulator interface is parallel to the instilator surface). It is 
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expressed geometrically by the fact that streamlines for the real and imaginary parts of 

the E vectors describing the electrical field, are mutually intersecting and coincide only 

at the contour of a nonconductive body. 
(2) A similar pattern occurs in the streamlines drawn for the magnetic field in a 

uniform conducting (or nonconductive) medium having insertions of infinitely large 
conductivity (the conducting zones in the Earth's crust and upper mantle may serve as 
an example of  such a model). In this case the streamlines constructed for the real and 
imaginary parts of the H vectors describing the magnetic field are mutually intersecting 
everywhere in the conducting medium, except those streamlines which coincide with the 

conducting body contour (since the vector of magnetic induction directed along the 
normal to the surface of a conductor with infinitely large conductivity is equal to zero). 

As an example, results will be given for the system of vector lines for a model, in 

which a well-conducting body buried in a conducting half-space is excited by a plane 
E-polarized wave that propagates from above downwards (Figure 6). As is clear from the 
figure, the isolines of the real and imaginary parts of the stream function ff of the 

magnetic field H (i.e. the real and imaginary vector lines H) are reciprocally intersected 

everywhere in the conducting Earth and coincide only in the vicinity of the surface of 
the well-conducting body. 

The examples considered here allow us to conclude that the interpretation of the 

analytically continued values of variable electromagnetic fields under the present approach 

can be made in the following two stages: (a) the construction of the streamlines for the 
real and imaginary parts of  the vectors H and E (the 'real' and 'imaginary' streamlines), 

(b) the search for those curves (or surface in the three-dimensional case), where the 'real' 

and 'imaginary' streamlines coincide. It is thus desirable to continue the fields of various 
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Fig. 6. The isolines of the real and imaginary parts of the stream function ~ and magnetic field Hfor 
the model, in which a well-conducting body immersed into the conducting half-space, is excited by a 

plane electromagnetic wave. 
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frequencies and to study the frequency dependence of the continued field streamline 

systems. This produces a more stable determination of the contours of  conducting and 

insulating bodies, and minimises the observation and transformation errors. Note, finally, 

that by means of  the continuation methods it is possible to recalculate downwards not 
only the values of  the measured fields and stream functions, but also various parameters 

o f  the electromagnetic field (impedance, apparent resistance, etc.). Such calculations may 

be useful in the study of  heterogeneous media. 

As a result o f  the present review we may conclude that the technique of  analogues for 
the integral of  the Cauchy type allows us to extend a number of  achievements in the theory 

of  geopotential (gravitational and static magnetic) fields to time-variable electromagnetic 

fields. This opens a way for elaborating a unified approach to the problem of the inter- 

pretation of anomalies of  gravitational, magnetic and variable electromagnetic fields of  

the Earth. 

References 

Berdichevsky, M.N., and Zhdanov, M.S.: 1973, AN SSSR. Geomagnetism i aeronomia, v.XIII, No. 2. 
Berdichevsky, M.N., and Zhdanov, M.S.: 1974, AN SSSR, Geomagnetism i aeronornia, v.XIV, No. 3. 
Dmitriev, V.I., and Zakharov, E.V.: 1968, Izv. ANSSSR, Fizika Zemli, No. t l .  
Ivanov, V.N.: 1966, Zhurn. VychisL Ma tern. i Matem. Fiz. 6, N o. 6. 
Kertz, W.: 1954, Nachr. Akad. Wiss. Gottingen, Math. Phys. Kl. IIa, No. 5. 
Morse, P.M., and Feshbach, H.: 1953, Methods of Theoretical Physics, McGraw-Hill, New York, 

Toronto, London. 
Nedyalkov, I.P.: 1965,Izv. AN SSSR. Fizika Zemli, No. 12. 
Rikitake, T.: 1966, Electromagnetism and the Earth's Interior, Elsevier, Amsterdam, London, New 

York. 
Roy, A.: 1968, Geophysics 33. 
Roy, A.: 1969, Geophysics 34. 
Rokityanski, I.I.: 1975, 'Study of the anomalies of electrical conductivity by the method of magnetic 

variational profiling', Naukova dumka', Kiev. 
Schmucker, U.: 1964, J. Geogmagn. Geoelec., No. 15. 
Schmucker, U.: 1970, Bull. Scripps lnst. Oceanogr. Univ. Calif., 13. 
Strakhov, V.N. : 1969, Izv. ANSSSR. Fizika Zemli, No. 8, 9. 
Strakhov, V.N.: 1970,Izv. AN SSSR, Fizika Zemli, No. 9. 
Strakhov, V.N.: 1972, Izv. ANSSSR, Fizika Zemli, No. 11. 
Tsirul 'sky, A.V.: 1969,Izv. ANSSSR, Fizika Zemli, No. 6. 
Vestine, E.H.: 1941, J. Terrest. Magnetism Atmosph. Elec. 46. 
Zhdanov, M.S.: 1973a, Izv. ANSSSR. Fizika Zemli, No. 4. 
Zhdanov, M.S.: 1973 b, lzv. AN SSSR. Fizika Zemli, No. 6. 
Zhdanov, M.S.: 1975, lzv. ANSSSR. Fizika Zemli, No. 9. 


