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The initial phase of any inversion of geophysical data must examine the question of the existence of globally dis-
tinct solutions. Previous inversion studics for global electromagnetic induction (GEMI) data are reviewed from this
point of view. A basic inversion strategy for geophysical data is considered. It is concluded that future progress de-
pends on the use of synthetic data to resolve questions about the potential constraining power of GEMI data.

1. Introduction

In the general field of geophysical data inversion, a
number of independent methods such as Monte Carlo
inversion (Press, 1970; Anderssen et al., 1972}, lineari-
zation (Backus and Gilbert, 1967, 1970), hedgehogging
(Keilis-Borok and Yanovskaya, 1967), and edgehogging
(Jackson, 1973) have been applied, but little attention
has been paid to what the general philosophy under-
lying data inversion should be. We therefore aim to
examine this question here, at least from the point of
view of inverting GEMI data, and thereby generate a
basis for the comparison of methods proposed to
date.

1.1. Direct inversion through the use of an inversion
formula

Though an inversion formula is known for frequen-
cy response GEMI data, it does not yet have a satisfac-
tory computational implementation, because knowl-
edge of the whole frequency response spectrum is re-
quired for one of the spherical harmonic modes (see
Bailey, 1973, p. 238). The available frequency respon-
se data are in fact very limited, because of the nature
of the observational problem involved. While the
known inversion formula for frequency response
GEMI data cannot be used now, it may have theoreti-
cal importance. It may illuminate the underlying non-

uniqueness problem and the extent to which different
types of data constrain solutions. Though some such
aspects have been examined (see, for example, Bailey,
1970, 1973; and Weidelt, 1972}, full advantage of its
potentialities does not appear to have been exercised.
For example, no use of it has been made to investigate
which sections of the frequency response spectrum
exert the strongest constraints.

1.2. Linearization of the problem formulation

In recent years, linearization of the problem formu-
lation has played an important role as a tool in geophysi-
cal data inversion. Much of its popularity is due to the
work of Backus and Gilbert (1967, 1968, 1970), who
have formalized it as a tool in geophysics, though the
essence of the technique dates back to Newton (see,
for example, Rall (1969, chapter 4); and Vainberg
(1964, chapter 8)), and the Backus-Gilbert framework
is quite general. In the mathematical literature, it is
often referred to as the Newton-Kantorovich method
(see, for example, Mikhlin and Smolitskiy, 1967). In
a geophysical context, many authors have stressed the
essential limitations of the method (for examples from
the geophysical literature see Jackson, 1973, introduc-
tion; and Backus and Gilbert, 1970, section A.1), but
none, except for Sabatier (1974, section 4), have ac-
tually illustrated explicitly the pitfalls which surround
its use.
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In Section 2, we aim to show that:

(A) The use of linearization can lead to the intro-
duction of assumptions which are not compatible with
the assumptions which underlie the problem formula-
tion.

(B) When using a linearization method, there is no
guarantee, unless the contrary is established, that, for
a given starting solution, the method:

(i) Will not oscillate (without converging), or

(ii) Will converge to the solution which is closest to
the starting solution.

1.3. Direct numerical methods of solution

When using the word linearization, it is necessary
to distinguish between the linearization of the problem
formulation and the use of linearized numerical meth-
ods to help solve the non-linear formulation by some
direct procedure. Sometimes they yield the same
computational procedure, but often they don’t. (For
example, compare the linearization method of Parker
(1971), which neglects the quadratic term in a fre-
quency response version of the Lahiri and Price (1939)
equations, with the direct methods examined by
Anderssen (1968), where no terms are neglected be-
cause the Lahiri and Price (1939) equations are linear
when the conductivity distribution is known.) Both
have their problems, but the former is more invidious
than the latter when it yields a formulation which
does not reflect the character of the non-linear formula-
tion from which it has been derived (see Sabatier,
1974, section 4).

When inverting data, it must be explicitly assumed
that unless the contrary is established, given data
support globally distinct (““G-far” in the Backus and
Gilbert (1970) terminology) solutions.

The interpretation of what is meant by a globally
distinct solution is problem dependent. For example,
the definition of “G-far” solutions of Backus and
Gilbert (1970) is qualitative rather than quantitative.
For this reason, we shall regard two solutions as being
globally distinct, if a geophysical explanation of each
must appeal to basically different geophysical, physical,
chemical and geochemical concepts. For example, we
should regard as globally distinct two solutions which
are identical except that one has a large sharp discontin-
uity while the other does not. In the context of free
oscillation data inversion, Anderssen and Cleary (1974)

have shown that the geophysical behaviour and inter-
pretation of Earth models depends heavily on the size,
sharpness and position of the discontinuities which
they contain.

Two different computational strategies have been
developed for the inversion of data. They are:

(1) Non-uniqueness modelling. For given data, deter-
mine the degree of non-uniqueness which they support
within given a priori bounds for the solutions.

(2) Refinement modelling. For given data and a suffi-
ciently accurate approximation to what is “thought”
to be a “correct” solution supported by the data,
determine a better approximation to this solution.

Though the use of (1), the possible existence of
globally distinct solutions to a given inversion problem
can be examined. In situations where the degree of
non-uniqueness (i.e., extent of the variation among
the globally distinct solutions), and hence the data,
does not support the existence of such solutions, we
obtain justification for the assumption of (2). If (2)
is applied when globally distinct solutions exist, then
an approximation to one of them is all that is obtain-
ed.

2. Linearization and a basic inversion strategy

We start by examining the effect of the linearization
of a problem formulation. For clarity, we examine a
rather simple problem, since justification for the con-
clusions reached (see (A) and (B) of the Introduction)
in the broader context of geophysical data inversion
can be found in Sabatier (1974, section 4).

For the problem of determining a zero of a one-
dimensional non-linear equation f{(x) = 0, the standard
linearization procedure is Newton’s method: for a
given starting solution x,, evaluate the iteration:

=xp — fO)If (xn)s n=0,1,2, ..

The theory which underlies its use, just like the results
of Backus and Gilbert (1970), for the linearization of
geophysical inverse problems, asserts that Newton’s
method converges, if:

(a) x, is sufficiently close to the required zero, and
(b) fix) is sufficiently well behaved in a neighbour-
hood containing both the starting solution and the zero.
If either fails to hold, then Newton’s method will

fail.

Xn+1
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To illustrate what can happen when either (a) or (b)
fails, we consider two examples.

Example 1. Consider the situation where:
) =x% —6x2 — 11

and the starting solution x, is given the values 0.5,
0.75, 1.25, 2.0. The results are shown in Table 1.
Since the zeros of f(x) = 0 are #(3 + 24/5)", we can
draw the following conclusions. There exist starting
solutions such that Newton’s method oscillates with-
out converging, converges to the zero which is not
the closest to the starting solution, and behaves nor-
mally. In the more general framework of geophysical
inversion,the first illustrates that linearization proce-
dures can oscillate without converging, while the
second shows that there is no guarantee that a lineari-
zation procedure will converge to the closest solution,
and that the convergence may be slow and via inter-
mediate-solutions which are very poor approxima-
tions to any of the possible solutions.

Example 2. For the odd function:
f&x)=xP exp (—x),  f(—x)=—f(x),

which has only one zero at x = 0, it is not difficult to
establish the following results:

(i) Forp > 1, Newton’s method fails to converge, if
the starting solution lies in either of the intervals
(—eo,—[(2p — D)/2]) or [(2p — 1)/2]% ).

(i) For p <3, Newton’s method fails to converge no
matter how close to the origin the starting solution is
placed.

The first results shows that, even for reasonable
looking starting solutions (points well on the origin
side of the maximum and minimum of f(x)), New-
tons’s method can fail to converge. The second shows
that there exist quite reasonable and simple functions
for which Newton’s method fails, because their behav-
iour in the neighbourhood of a zero is pathological.
For an example of a system of equations for which
the convergence of Newton’s method does not hold,
see Rall (1969, p. 190).

Situations of the nature cited in these two examples
have occurred in the application of the procedure of
Backus and Gilbert (1967, 1970) to geophysical data
inversion, but the possibility that it is a consequence
of linearization has been overlooked. For example,

p>0
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TABLE 1

Newton sequences {x,;n=0,1,..., 16} for the solution of
) =x* —6x* — 11

n Xpn Xy Xpn Xpn
0 0.5 0.75 1.2500 2.000
1 -17.614 ~1.1725 -1.2451 4.3750
2 -29.468 1.1049 1.2338  3.5235
3 -22.127 ~1.0360  —1.2092  3.0062
4 -16.629 1.004 1.1617 2.7796
5  —12.518 -1.0 ~1.0909 2.7351
6  -9.4512 1.0 1.0267 2.7335
7 -7.1739 -1.0 -1.0022  2.7335
8  -5.4993 1.0 1.0 2.7335
9 —4.2943 ~1.0 ~1.0 2.7335
10 —3.4708 1:0 1.0 2.7335
11 -2.978 1.0 -1.0 2.7335
12 -2.7716 1.0 1.0 2.7335
13 -2.7346 -1.0 -1.0 2.7335
14 -2.7335 1.0 1.0 2.7335
15 -2.7335 ~1.0 -1.0 2.7335
16  -2.7335 1.0 1.0 2.7335

Parker (1971, p. 130), concludes that the lack of con-
vergence of his linearization method for the inverse
problem of electrical conductivity is due either to “the
starting model always being too far from the true struc-
ture®, or no Earth model exists which is compatible
with the data”. He neither acknowledges nor rules out
the possibility that the lack of convergence is a conse-
quence of the linearization used. Even though this
may not be the case (see, for example. Jady, 1974b),
it is a fact which cannot be ignored, as the above ex-
amples show.

For the simple case of Newton’s method treated
above, the validity of the linearization follows from
the validity of (a) and (b). For more complex prob-
lems, such as arise in geophysical inversion, the
validity of the linearization may fail to hold or will
only hold under additional assumptions (see, for
example, Sabatier, 1974, section 4).

On the basis of the above, we can conclude that
linearization is only applicable, if an approximate so-
lution is known which is sufficiently close to a
possible solution and if the resulting linearization
procedure is valid. Thus, the stage at which lineariza-

* Really a possible structure, since the data supports either
no or infinitely many solutions, but not the true structure.
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tion is applicable in a general modelling strategy is
when the local structure of the formulation is known;
i.e., at the refinement modelling stage.

However, we can only obtain the required local
structure information in one of two ways:

(1) Assume that we can determine this local infor-
mation from independent geophysical and geochemi-
cal results. Since the aim of geophysical data inver-
sion (especially, GEMI-data inversion) is usually
aimed at obtaining independent information which
can be used to clarify what the independent geo-
physical results are, this approach should be avoided
because of its potential circularity.

(2) Determine whether or not the data supports
globally distinct solutions.

Thus, in an inversion, the initial aim must be the
determination of whether or not the data support
globally distinct solutions, for depending on the
answer, the inversion must proceed differently. In
fact, we have the following possibilities:

(i) If there appear to be no solutions, then there
is an inconsistency within the data which must be
removed.

(ii) If there appear to be no globally distinct solu-
tions, then a model refinement procedure could be
applied, along with additional assumptions to test
additional hypotheses about the structure of models.

(iii) If there appear to be only two or three globally
distinct solutions, then we know that the data do exert
astrong constraining influence, and we can seek inde-
pendent geophysical evidence or data to reduce, if possi-
ble, the number of globally distinct solutions to one.

(iv) If there are many globally distinct solutions,
then we know that the data do not constrain the
models sufficiently strongly, and therefore attention
has to concentrate on improving the accuracy and/or
the determination of new data which impose new
independent constraints on models. In this case, it is
also necessary to check whether the nature of the data
is such than only qualitative information is resolv-
able.

We therefore conclude that the two steps of a
Basic Inversion Strategy for the inversion of (geo-
physcial) data must be:

(a) Test for the existence of globally distinct solu-
tions. If this is not done before a model refinement
procedure is applied or a specific solution is deter-
mined as the model which best fits the data, then it

has been tacitly assumed that either no globally dis-
tinct solutions exist, which may be a false assump-
tion, or that the solution generated is only the one
which best fits the data from a particular set of all
the possibilities.

(b) Proceed along the lines (i), (ii), (iii) and (iv)
laid down above, depending on the number of global-
ly distinct solutions discovered as a result of the im-
plementation of (a).

This inversion strategy represents a basis for assess-
ing proposed methods for GEMI-data inversion and
will be the one used in this paper.

3. A survey of GEMI-data inversion studies

In the light of the proceeding discussion, we now
classify the different types of GEMI-data inversion
studies proposed since 1955.

Our general conclusion must be that none has ade-
quately examined the extent of the underlying non-
uniqueness or made a systematic search for globally
distinct solutions. In one way or another, they have been
concerned with model refinement rather than non-uni-
queness modelling. Nevertheless, non-uniqueness has
been discussed. Anderssen (1968) has shown that
greatly different models can fit the data equally well.
Banks (1969) derived upper and lower bounds for his
“pest-fitting”” model, and showed that they were ex-
tremely broad. Using synthetic data, Anderssen
(1970a) has shown that the non-uniqueness is an in-
herent feature of the GEMI-data inversion problem
(due to the inadequate nature of experimental data)
and not solely a feature of inaccurate data. In addi-
tion, the quantized nature (i.e., sets of solutions of
basically different structure fit the data with the
same degree of precision) of the non-uniqueness
was established in that paper. Finally, using a lineariza-
tion of the GEMI equations, Parker (1971) confirmed
Bank’s findings.

We classify the GEMI-data inversion studies since
1955 as:

(1) The electromagnetic frequency response method.
Several applications of this method for variations at
discrete frequencies have been made, and reviewed re-
cently by Price (1970). It was not until the work of
Banks (1969) that the full potentialities of the method
were implemented. Linearization of the GEMI equa-
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tions has only been applied for this class of methods.

(2) The direct solution of the Lahiri and Price
equations. In such methods, the time-domain external
and internal components of a magnetic disturbance
are used. By assuming a known structure (model) for
the conductivity, the Lahiri and Price (1939) equa-
tions can be treated as a linear parabolic partial differen-
tial equation and solved by standard numerical meth-
ods, such as finite difference methods, to determine
the internal field at the surface of the Earth corres-
ponding to a given external field and conductivity
model. The aim is to adjust the conductivity model
until the calculated internal field at the surface ap-
proximates the observed suitably closely. Except for
the odd publication (see, for example, Price (1970)
and Anderssen (1968)) little use has been made of
this method.

(3) Bailey’s causality method. This is an iterative
method which is based on the uniqueness theorem
of Bailey (1970).

(4) Weidelt’s implementation of the Gelfand-
Levitan method. This is the integral equation method
which arises when the Gelfand-Levitan method for
Schrédinger’s equation is applied to the GEMI equa-
tions (Weidelt, 1972).

Since, as Bailey (1973) points out, both he and
Weidelt have found that their methods do not per-
form as well as modelling methods when applied to
noisy and truncated data, the last two methods must
be regarded as unsatisfacory at this point in time.
However, this does not rule them out as potential
methods of the future. The recently published work
of Jady (1974a) gives some indication of the poten-
tialities of such methods.

The above list does not exhaust the methods
which could be applied. In particular, there exist two
methods which have not been implemented for
GEMI data, but which could be, and therefore de-
serve a mention. They are:

(5) Regularization. (See, for example, Lavrentiev
(1967).) In the implementation of this method, an
appropriate stabilization condition would be used to
restrict the classes of globally similar solutions around
the globally distinct ones to subclasses of smooth
ones. For example, we could reformulate the direct
solution of the GEMI equations as a non-linear pro-
gramming problem: for givena;,i=0,1,2,..., m,
with a,, # O:

R.S. ANDERSSEN

m
min E a.ilk(i)ll ,K([) = aix/axi
keWi=1 1

subject to the equality constraints that x (conductivity)
satisfy the GEMI equations, where W is some class of
smooth functions (e.g., W = C(") [0,1] the class of
functions defined on the interval [0,1] with continu-
ous mth derivatives). Other non-linear programming
formulations are possible.

(6) Monte Carlo inversion. This method is specifi-
cally designed to search for globally distinct solutions
which lie between a priori non-uniqueness bounds de-
fining the extent to which geophysically realistic solu-
tions can vary. A method for determining such bounds
for GEMI-data inversion has been discussed by Anderssen
(1970b). Any one of the methods (1), without lineari-
zation, (2) or (5) can be used to implement it along
the lines discussed in Anderssen and Seneta (1971,
1972), and Anderssen et al. (1972).

The advantage of (6), from the point of view of
the inversion strategy of section 2, is that it exhibits the
quantization present within the non-unique solutions
which satisfy the data and allows hypotheses about
the number of globally distinct solutions supported
by the data to be tested. It avoids the averaging in-
herent in the linearized estimates of the type derived
by Parker (1971).

Because the GEMI equations (viz., the Lahiri and
Price (1939) equations) define a linear formulation
for relating the internal to the external field at the
surface of the Earth once a model for conductivity
is specified, there does not appear to be a strong case
for using linearization methods of the type proposed
by Parker (1971) and Bailey (1973) for refinement
modelling, since both neglect terms which it is not
necessary to neglect. It can be argued that lineariza-
tion is only justifiable when the nature of the mathe-
matical formulation to be solved: (i) cannot be re-
formulated as a linear problem without neglecting
terms; (ii) methods for its solution are not known;
and/or (iii) the computing time required to solve it
without the use of linearization is prohibitive. None
of these conditions apply for the refinement model-
ling of GEMI data.

On the other hand, a case can be argued for the use
of linearization methods to explore the qualitative
dependence of conductivity as a function of depth
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on the observed external and internal fields at the sur-
face of the Earth. However, because of the pitfalls
associated with the use of linearization, the viability
of linearization in a particular application should

first be tested with synthetic data, and only used to
derive results from real data when such viability has
been established.

The question of whether (1) without linearization,
is preferable to (2), when used tfor model refinement,
appears to be open. It is clear that (1) has the poten-
tial to yield a profile of k(x) to a greater depth than
is obtainable from (2), whereas (2) has the potential,
given appropriate quality D data, to resolve more
detail of k(x) in the upper mantle than (1).

4. The degree of constraint of available GEMI data

Although all recent inversion studies have concluded
that available data is unable to constrain a unique or
even globally similar structure for global conductivity
models, this does not rule out the possibility that avail-
able data can support certain qualitative conclusions.
In fact, all studies have tended to confirm that, global-
ly, k(x) has the following qualitative structure: (i) a
region of low conductivity in the surface layers of the
Earth; (ii) a region below the surface layers where con-
ductivity increases rapidly with depth, that is, a con-
ductivity “discontinuity” below the surface layers;
and (iii) a region of increasing conductivity below the
“discontinuity”. That the available data may be able
to constrain sharper qualitative conclusions than this
seems to have been overlooked by all authors, except
for the possibility of Banks (1972) and Jady (1974a).

For example, it would be of great advantage for
future conductivity modelling, if the periods of the
disturbances which carry most information about the
position, size and shape of the conductivity “disconti-
nuity” could be delineated. That this may be a viable
possibility has been illustrated by Banks (1972) in
his discussion of the interpretation of responses with
very small phase. It would be useful for the conduc-
tivity modeller, if sharper rules of thumb than just
“the longer the period, the deeper the conductivity
structure can be resolved” were available.

From the point of view of testing for and confirm-
ing that given data supports certain qualitative struc-

ture, Monte Carlo inversion is the most natural of the
above methods to use.

Further testing of the constraint, imposed on con-
ductivity by different classes of data, could be based
on the use of synthetic data. This would lead to an
extension of our understanding of the tollowing types
of questions:

(i) Can GEMI data ever be expected to support
finer structure tor conductivity models than purely
qualitative results? On the basis of present results, the
answer would appear to be “no” rather than “yes”.

(ii) What types of GEMI data impose the greatest
constraint on the type of conductivity structure
thought to exist within the Earth? An analysis of syn-
thetic data can yield answers to this question. Even
though given data may support globally distinct
models, given globally distinct models will not neces-
sarily support globally similar data.

5. Recent progress and the future

In the two years since the First Workshop, little
progress has been made with the inversion of GEMI
data, except for the publication of papers from Banks
(1972), Kuckes (1973) and Jady (1974a, 1974b).

Because Rikitake (1973) reviewed Banks’ (1972)
paper at length at the First Workshop, we shall not
discuss it in detail but only pause to note that, until
data of the type foreshadowed by Banks (1972) is forth-
coming, the future progress must be based on the anal-
ysis of synthetic data along the lines cited above.

This at least may resolve some of the questions con-
cerning the interpretation of low phase response data.

Kuckes (1973) showed that, when geomagnetic dis-
turbances have a lateral scale distance which is some-
what larger than the depth to which it is necessary to
probe, a systematic technique for locally analysing
data and subsequently making conductivity maps of
the Earth can be developed. This is an aspect of electro-
magnetic induction data inversion which has not been
examined in this review, but is one which has consider-
able importance from the point of view of the study
of lateral inhomogenities within the Earth.

In his paper, Jady (1974a) shows how single period-
ic variations alone can be used to construct vniform-
ly conducting thick shell models which surround a
perfectly conducting sphere. This modelling proce-
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dure is then used to obtain models from Sq variations,
the 27-day variation and its harmonics, and the annual
variation as well as the maximum screening effect of
the oceans. Jady (1974b) uses the same modelling
procedure to reanalyse the magnetic response data of
Banks (1969, 1972), and thereby confirms the conclu-
ston of Parker (1972) that this data is inconsistent.

It may be that GEMI data can only constrain
qualitative type conclusions about conductivity struc-
ture in the upper mantle, at least until greatly im-
proved data becomes available. Some attempt should
be made to clarify this, as well as other questions
raised in this review, through the use of synthetic
data. Until this is done, the directions of future pro-
gress are left in doubt.
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