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The study of electromagnetic induction in laterally non-uniform conductors is briefly reviewed. The two-dimen-
sional perturbation problem is considered and the two polarization cases which arise from Maxwell’s equations are
discussed. Techniques for the solution of the equations for laterally non-uniform conductors are discussed with

emphasis on numerical methods.

1. Introduction

In a short paper entitled “A note on the interpreta-
tion of magnetic variations and magnetotelluric data”
which was included with other valuable papers on elec-
tromagnetic induction in the earth communicated to
the I.U.G.G. Symposium on the Upper Mantle Project
at Berkeley in 1963, and edited by Rikitake (1964a),
Price (1964) has outlined the nature of methods of in-
vestigation of the electrically conducting material
within the earth and the mathematical problems en-
countered. He points out that the mathematical prob-
lems to be considered fall into two groups, depending
on whether we are concerned with global properties,
that is, properties of the earth as a whole, which he
terms “global problems”, or with local properties
such as the electrical conductivity of localized regions
near the surface of the earth which he terms “local
problems”.

In the local problems we are concerned with quite
limited regions and are interested in variations of ¢
that occur over distances of the order of 100 km or
less. In these problems the earth is treated as a semi-
infinite or thick plate conductor with variable distri-
bution of conductivity, and we are interested in only
a limited region of this conductor. Price (1964) points
out that the kind of problem we need to consider in
this connection is not strictly a problem of evaluating
the currents induced by a given varying magnetic field
in a given heterogeneous conductor, but rather that

of determining the local perturbations of a given alter-
nating system of induced currents by given abrupt
changes of conductivity. Price describes the mathemat-
ical problem for such disturbed skin effect problems as:

“Using Cartesian co-ordinates (x,y,z) with the z-axis verti-
cally downwards, a non-uniform conductor occupies the half-
space z > 0. Near the origin the conductivity is a function (not
necessarily continuous) of (x, y, z), but at great distances from
the origin it is a function of z only. A given alternating e.m.f.
impels currents near the surface of the conductor. To determine
the distribution and surface field of these currents.”

The given e.m.f. represents the electric field arising
from a varying external magnetic field.

It should be emphasized that for the local perturba-
tion problem the plane-earth approximation is used. The
first study of induction in a plane earth was for a semi-
infinite plane earth with uniform conductivity and was
given in a classic paper by Price (1950). Following this,
uniformly layered earth models were considered by
Tikhonov (1950), Cagniard (1953) (from whose paper
the well known expression for the so-called Cagniard
apparent resistivity was derived) and Wait (1954, 1962),
as well as by Price (1962, 1965) and others. In the initial
work in his 1950 paper, Price presented a general theory
considering any inducing field which was assumed
known. Cagniard (1953), in his development of the
theory leading to the magneto-telluric method, assumed
a spatially uniform source of infinite extent and sis
nusoidally periodic in time, as well as a semi-infinite
uniformly stratified earth with a plane boundary. The
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paper cited above by Wait (1954), which is followed
in the journal by a record of the interesting correspon-
dence between Dr. Wait and Professor Cagniard, dis-
cusses these assumptions. The two papers by Price
(1962, 1965), mentioned above, also consider the
assumption concerning the dimension of the source
field and its effect on the calculation of the Cagniard
apparent resistivity. Many other papers have appeared
in which induction in a semi-infinite conducting half-
space with a plane boundary is considered, including
a recent paper by Weaver (1971), who has developed
the theory in terms of one scalar component of the
magnetic Hertz vector.

In 1962 two papers appeared in Geophysics, one
by d’Erceville and Kunetz (1962) and the other by -
Rankin (1962), in which vertical discontinuities in
conductivity were discussed. During the last decade
there has been increasing attention given to the prob-
lem of lateral non-uniform distributions of conduc-
tivity.

Lateral inhomogeneities in conductivity are of con-
siderable interest, and reports of geomagnetic anom-
alies associated with such inhomogeneities have ap-
peared frequently in the literature. In a report to the
Upper Mantle Project Symposium at Berkeley in 1963,
and later in a very comprehensive report, Schmucker
(1964, 1970) has classified the lateral inhomogeneities
into three types of anomalies: (1) surface anomalies,
which are due to superficial conductivity variations
above the crystalline basement; (2) intermediate anom-
alies which are connected with insulated conductors
in the high-resistivity zone of the earth’s crust and
uppermost mantle; and (3) deep anomalies, which
reflect conductivity imbalances in the upper mantle.

Recently, in a talk at the Ninth International Sym-
posium on Geophysical Theory and Computers, Gough
(1972) considered five more specific types of anom-
alies associated with geomagnetic deep-sounding stu-
dies. Furthermore, he has indicated that there exist,
under certain conditions, variable transmission or
“vartran” anomalies which are due to refraction/ab-
sorption effects in which conductive bodies are seen
in transmission fields.

Included in Schmucker’s surface anomaly type is
the lateral discontinuity caused by the oceanic—con-
tinental interface. The abrupt discontinuity in con-
ductivity between land and sea results in a perturba-
tion of the induced currents due to externally varying

magnetic fields. These perturbations are apparent in the
data from magnetic measuring stations, and appear prin-
cipally as a dependence of the amplitude of the vertical
magnetic variations on the distance from the continental
shelf. This coastal effect has been examined in detail by
Schmucker (1964) for variations near the coast of
California. Anomalous variations in the vertical magnetic
component in coastal regions have been observed in many
countries. Also, Parkinson (1959, 1962, 1964) has shown
that at many stations there is a preferred plane for the
vector changes of the geomagnetic field. That is, there is
a strong tendency for the vertical component to increase

~ or decrease when the change in the horizontal compo-

nent is along a particular direction.

These coastal effects are usually attributed to the
effect of currents induced in the sea, but some results
of theoretical studies tend to suggest that currents in-
duced in the oceans themselves are not the full cause of
the effects (Parkinson, 1964; Cox et al., 1970; Bullard
and Parker, 1970). It appears that in the coastal effect
it is difficult to separate the effects due to induced cur-
rents in the ocean from the effects due to the differ-
ences in the mantle under the oceans and the conti-
nents.

A second effect associated with electric currents in
the ocean is the “‘island effect”. Magnetic variations
have been made on floating ice islands (Zhigalov, 1960;
as well as others).and when such measurements are com-
pared with observations on oceanic islands (Mason, 1963;
Klein, 1971) distinct differences are observed. The differ-
ences are attributed to the fact that islands rising from
the ocean beds interrupt the current flow, while ice is-
lands do not. The effect is described by Price (1967).

Other geomagnetic anomalies not necessarily asso-
ciated with the oceans have been observed by workers
in various locations. Since the early 1950’s the electri-
cal conductivity structure of the earth has been studied
by using networks of magnetometers and reported on
by many workers. Porath and Dziewonski (1971a)
have given a useful review of crustal resistivity anom-
alies from magnetic deep-sounding studies. Particularly
productive operations of large two-dimensional arrays
have been made by two groups in North America, one
at the University of Texas at Dallas, and the other at
the University of Alberta in Edmonton (Gough and
Reitzel, 1969; Reitzel et al., 1970; Porath et al., 1970;
Porath and Dziewonski, 1971b; Porath and Gough,
1971; Porath et al., 1971; Camfield et al., 1971;
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and Gough and Camfield, 1972). Through the oper-
ation of these arrays, mantle conductive structures

as well as surface conductivity anomalies have been
mapped. Also, Lilley et al. (1971) and Lilley and
Bennett (1972) have recently operated arrays in Aus-
tralia and D.I. Gough (personal communication, 1972)
used arrays in South Africa from which mucli:infor-
mation should be forthcoming. Edwards et al. (1971)
have reported on the results of geomagnetic variation
measurements from arrays of magnetometer stations
throughout the British Isles.

Various techniques have been used to model con-
ductivity anomalies and so lead to a reasonable inver-
sion of the data. Analogue models have been used by
Rankin et al. (1965), Roden (1964), Dosso (1966a,b,¢;
1969), Dosso and Jacobs (1968), Thomson and Dosso
(1971), and Ogunade and Dosso (1971), to investigate
laterally non-uniform structures. Porath et al. (1970)
have separated the fields into normal and anomalous
parts and used numerical calculations of model studies
for inversion. Schmucker (1964) also considers the
normal and anomalous parts of the observed variations
and assumes that the anomalous variations are of in-
ternal origin.

2. The two-dimensional model

2.1. The differential equations

The model is that of a semi-infinite conductor with
a plane boundary occupying the region z > 0 and
which may have regions of different conductivity.

The problem is basically that of solving Maxwell’s
equations in the various regions with suitable boundary
conditions. The field is taken to be an oscillating one
with period 2a1/w which is sufficiently long so that
displacement currents may be ignored (Price 1950,
1967). Also, the magnetic permeability is taken as
unity. The equations, in electromagnetic units are
then:

VX H=4ncE )
and: V X E = —iwH )]

where the time factor exp (iwf) is understood in all
field quantities, and o is the conductivity appropriate
to each region.

In the two-dimensional problem it is assumed that

all quantities are independent of one direction (in this
case the x-direction) and only variations in the plane
perpendicular to this direction are considered. Since all
quantities are independent of x, eq.1 and 2 reduce to:

égly—z - E;—il =4nok, (33)
a—Hi =d4gnoE (3b)
oz y
OH,
- —5y— = 4mok, (3¢c)
% - -af—zy = —iwH, (4a)
OE,
=, = —iwH, (4b)
3E,
- 5 = —jwH z (40)

In these six equations, E_, H and H, are involved
only in eq.3a, 4b, 4c, while only H,, E,, and E,, are in-
volved in eq.3b, 3c, 4a. As a result, we can solve these
two separate sets of equations independently. The first
set corresponds to what may be called E-polarization.
In this set, by eliminating Hy and Hz, we get:

3E. ’E

>~ —Z=inlE, ®)
y? o2
as the equation to be solved. The second set corresponds
to H-polarization, and by eliminating Ey and Ez we ob-
tain:

%H_ 3%H
“+—Z=in?H )
ay?r o2 *

as the equation to be solved in the various regions. In
these equations:

n? = 4now @)

These equations may be solved for either £, or H,
depending upon which case is being considered, and
then the other components for that case may be ob-
tained from eq.3b and 3c or eq.4b and 4c.
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2.2. The boundary conditions

The boundary conditions for the two-dimensional
problem are considered in detail by Jones and Price
(1970). At the interface between conductive media
and also at the surface z = 0, we have the boundary
conditions that: (1) all components of H are contin-
uous, and (2) the tangential components of F are
continudus. Also, the normal component of current
density must be continuous across conductivity discon-
tinuities and zero across z = 0, which implies that
E, =0 inside the conductor at z = 0.

There are also conditions to be satisfied at z = o0
and y = oo, The basic condition in this respect is that
the boundaries must be placed far enough from any
lateral discontinuity so that the fields may be con-
sidered uniform there. Also, there is a difference be-
tween the H and E-polarization cases.

In the region outside the conductor, where ¢ =0,
H, is independent of y and z for the H-polarization
case. This implies that His uniform throughout this
region and the magnetic field immediately above the
surface of the conductor is not affected at all by the
abrupt changes of conductivity within the conductor.
Along the surface of the conducting region H, remains
constant, and so this provides a boundary condition
for this case.

In the E-polarization case, the E-field in the region
z <0 must be considered. The half-space conductor
may be considered as the limit of a spherical conductor
as the radius tends to infinity. Price (1950) has shown
that the ratio of the tangential components of the
induced and inducing fields is independent of the con-
ductivity when the radius tends to infinity, and assum-
ing that the inducing field is of the same intensity and
form over the entire composite conductor, then the
correct boundary condition is that the total surface
H_, is the same at y - + oo and y - — o0 as well as at
some height z = —| h| which is at sufficient height so
that the local perturbation in H is negligible there.

Within the conductor it is assumed that the bound-
aries are far enough from any lateral discontinuities
so that at y — * oo the fields behave like those fora
uniform or horizontally layered conductor. Also, the
fields tend to zero as z > + oo,

Schmucker (1971b) has taken a different approach
to the boundary conditions for the E-polarization case.
He assumes that the anomalous field is of totally in-
ternal origin and expresses the boundary condition at

the surface of the conducting region and the lower
horizontal boundary in terms of integral relations in-
volving the horizontal and vertical magnetic compo-
nents.

3. Analytical solutions for laterally non-uniform con-
ductors

In their study of electromagnetic induction in a
semi-infinite conductor with a plane boundary, d’Erce-
ville and Kunetz (1962) considered a model with two
media of different resistivities in contact along a ver-
tical plane overlying a horizontal basement that was
taken as being either infinitely resistive or infinitely
conductive or at infinite depth. In their analysis,
d’Erceville and Kunetz obtained an exact mathematical
solution for the H-polarization case in which the mag-
netic field is parallel to the strike, but only briefly, at
the end of their paper, mentioned the E-polarization
case.

Rankin (1962) applied the method of d’Erceville
and Kunetz to the case of a dike of infinite length but
finite depth and in which the magnetic field is parallel
to the dike. He did not consider the E-polarization case.

In the year following the work by d’Erceville and
Kunetz and by Rankin, a very interesting paper which
has stimulated much work in the field, by Weaver
(1963) appeared. Weaver’s model was that of a semi-
infinite conductor with a plane boundary consisting of
two quarter-spaces of different finite conductivity. He
considered both the H-polarization and E-polarization
cases. In the E-polarization case it was necessary for
him to use an approximate boundary condition requir-
ing the horizontal magnetic field at the surface of the
conductor to be constant. From his E-polarization solu-
tion, Weaver was able to show the increase in amplitude
of the magnetic component normal to the surface of
the conductor as the region of the discontinuity is ap-
proached, and related this to the enhancement of the
vertical magnetic component of magnetic variations
observed at coastal stations.

Weaver and Thomson (1972) have recently elabo-
rated on Weaver’s 1963 work by using a perturbation
technique proposed by Mann (1970) and they have
avoided in the E-polarization case the use of the earlier
approximate boundary condition. Weaver and Thomson
(1972) have obtained approximate solutions for a



286 F.W. Jones, Laterally non-uniform conductors

periodic line current above a non-uniform earth and
have found expressions for the field for the case when
the height and magnitude of the line current approach
infinity in such a way that the inducing field near the
earth becomes uniform and finite.

Geyer (1970) has used a similar perturbation tech-
nique to investigate the electromagnetic anomalies over
several types of subsurface structures, and more re-
cently (Geyer, 1972) has extended this to a dipping
contact. Previous to this, Yukutake (1967) considered
induction in a‘conductor bounded by an inclined inter-
face with a small angle of tilt by a successive approxi-
-mation method which used repeated reflections of

_ électromagnetic energy between the ground surface
and the tilted boundary.

Recently, Treumann (1970a,b,c) has considered in-
duction in non-uniform plates of finite thickness, and
has been able to obtain approximate solutions for the
field at the surface of the plates when the external
inducing field is uniform. Also, Weidelt (1971) has
studied induction in two adjacent half sheets with
different uniform conductivities. Furthermore,
Schmucker (1971a) has used convolution integrals to
investigate the induction in a model with a non-uni-
form surface layer above a layered substratum.

4. Numerical methods

There are several methods of solution of the pertur-
bation problem which may be termed pure numerical
methods, that is, methods in which the equations are
evaluated from the beginning by numerical means.

The analytical methods generally give solutions for
only specialized cases. Anomalous conductivity struc-
tures of any shape may occur naturally, and so it is
necessary to consider methods to deal with inhomo-
geneities of arbitrary shape. As a result, numerical
methods have been developed to deal with general
two-dimensional problems and in this section three
such methods will be discussed. One of the methods,
that used by Jones and Price (1970), Jones and Pascoe
(1971) and Pascoe and Jones (1972), has now been
extended by Jones and Pascoe (1972) and Lines and
Jones (1973a, 1973b) to consider three-dimensional
models.

In the pure numerical methods, the approach taken
is to consider any arbitrary conductivity distribution

within a particular region that can be represented by a
two-dimensional model, and then impose a mesh of
grid points over this region with the boundaries of the
mesh taken at far enough distances from any lateral dis-
continuities so that the boundary conditions are satis-
fied. In the simplest application, the mesh lines joining
the grid points are takeii as boundaries of conductive
units or cells, which when placed together may repre-
sent a conductive structure with various regions of dif-
ferent conductivity.

4.1. The transmission line analogy

The transmission line analogy arises from the simi-
larity in form between Maxwell’s equations governing
the orthogonal components of E and H and the trans-
mission line equations governing current and voltage
on a transmission line, or, since we are considering a
two-dimensional problem, over a transmission surface
with current flowing in two directions. This analogy,
first applied by Dulaney and Madden (1962) to such
problems as we are considering, has been used by many
authors (including Madden and Thompson, 1965;
Madden and Swift, 1969; Swift, 1967, 1971; Wright,
1969, 1970; and others).

In the transmission line analogy method for the
H-polarization case the electric fields in Maxwell’s
equations are represented by currents in the branches
of the mesh, while the magnetic field is represented by
the voltage at the node being considered. Also, the
quantity 4za in the equations of section 2 is repre-
sented by the impedance Z, while the quantity iw is
represented by the admittance Y. That is:

I, &) E, @)
L& -E, ©)
V& H, (10)
Z = dno | 1)
Y (=) ico (12)

so that in terms of this correspondence the equations
for the H-polarization case as given in section 2 may
be written:

$=—Zly (13)
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v _

5 =21, (14)
aI, ol

s e S

t =YV (15)

Eq.13 and 14 may be written:

VWW=-Z1I (16)
and eq.15 as
divi=-YV a7n

Eq.16 and 17 are the two-dimensional transmission
equations.

If the mesh is assumed to be composed of unit cells
that are electrically homogeneous, Kirchoff’s law of
current continuity may be written for each node and
a set of equations is obtained, the solution of which
gives the value of the voltage (corresponding to H,,
in this case) at each node.

For the E-polarization case a similar approach is
taken and the transmission surface equations (16 and
17) are again obtained. These are solved for the volt-
age at each node which corresponds this time to the
value of E, at that node. .

It is clear that the proper boundary conditions must
be applied to the impedance network and these are ob-
tained by considering the layered conductor at the
boundary to be a one-dimensional transmission line.
Solutions to the equations are obtained by inversion
of the matrices and the methods are discussed by
Wright (1969) and others.

4.2. The finite-element method

The use of the finite-element method when applied
to engineering problems is described by Zienkiewicz
(1971) and this method has been used in electromag-
netic modelling problems related to geophysical con-
ducting structures by Coggan (1971), Ryu (1972) and
Reddy and Rankin (1972).

In this method, as in the other pure numerical
methods, the region of interest is sub-divided into a
mesh of elements. In this case, the principle used is
that electromagnetic fields behave so as to minimijze
the total energy. Thus, the energy in the electromag-
netic field within each element is considered and
the total energy is numerically minimized. Coggan
(1971) outlines the method in detail. The total energy

is expressed as an integral over space of several energy
densities. Again, a set of equations with field values at
the nodal points of a mesh as unknowns is obtained,
and this set is solved by matrix inversion.

4.3. The finite-difference method

The finite-difference technique was first used by
Neves (1957) to study electromagnetic induction in
two-dimensional structures. Also, Latka (1966) and
Patrick and Bostick (1969) have used this method.
Jones and Price (1969, 1970, 1971a,b) have employed
this method for studies of various two-dimensional con-
ductivity distributions and Jones and Pascoe (1971)
and Pascoe and Jones (1972) have given a general com-
puter program for the solution of the local perturba-
tion problem. Jones (1972) has recently extended this
to calculate only the perturbation field associated with
the discontinuities.

As developed by Jones and Price (1969, 1970), and
programmed by Jones and Pascoe (1971), the method
of solution involves the solution of the appropriate
finite-difference equations over a mesh of grid points
by the Gauss-Seidel iterative method (Smith, 1969).
The equations (5 and 6) to be solved in all regions for
both the E-polarization and H-polarization cases are
of the form:

V2F=in*F (18)

where 12 = 4now and F is either E  or H,, depending
upon the case we are considering. If we let F =+ ig
then:

Vi +ivi%=in*f—n’g 19
and equating real and imaginary parts we obtain:

Vif=—n% (20
Vig=n*f 1)

A mesh of grid points is superimposed over the
region of interest and this pair of equations is written
in finite-difference form and solved simultaneously
at each point by the iteration scheme.

It should be emphasized that in all these numerical
methods continuous functions are represented by values
at discrete points over a mesh of finite dimensions.
Much care must be taken in the choice of mesh size,
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and in the placing of the boundaries of the grid with
respect to conductivity discontinuities.

Also, it should be pointed out that in all the numer-
ical methods some functional form (usually linear) is
assumed for the fields between grid points. This im-
plies that the calculations of the initial component as
well as the other components are approximate and the
accuracy depends on the grid size.

5. Some results from numerical models

S.1. Characteristics of the perturbation fields

Many of the results obtained from numerical
methods have been with direct reference to the mag-
netotelluric method and have mainly considered sur-
face values of the field components. However, Jones
and Price (1970) plotted contours of field values over
the whole region of interest as a function of time and
examples are given in their paper. For the H-polariza-
tion case they plotted contour lines of constant H,
(= lines of force of the E-field) and observed strong
refraction of the lines of current flow at discontinuities
as well as current vortices which migrate downward in
the conductor and decay with time. They attributed
the refraction of the current lines to the existence of
a minute varying electric charge distribution on the
interfaces, whose magnetic effects are of the same
order as the displacement currents and so are neglected,
but whose electric field is of the same order of magni-
tude as that of the other electromotive forces involved.
This interpretation has been discussed further by
Hermance (1972) and Price and Jones (1972).

In the H-polarization case, although the distribution
of the currents and the fields within the conductor is

greatly perturbed by the existence of the discontinuity,

the magnetic field outside the conductor remains uni-
form. The total current system may then be thought of
as consisting of two parts: (1) sheets of currents flow-
ing paralle] to the surface and contributing to the uni-
form field outside; and (2) a toroidal current system
whose magnetic field is contained entirely within the
conductor.

For the E-polarization, Jones and Price (1970)
plotted contours of equal £, (= lines of force of the
H-field) and observed wedges of high current density
which are formed during each cycle. Such current con-
centrations are continually formed and move down-

ward in the conductor and decay with time. They em-
phasized that in this case the abrupt change in conti-
nuity at y = 0 has two distinct effects. One is the local
perturbation in the electromagnetic field near y = 0,
which will decrease with increasing negative z because
it is due to the local concentrations of current, and the
other is the effect of the current distribution and field
because of the different conductivities at infinity in the
positive and negative y-directions.

5.2. Apparent-resistivity calculations and lateral con-
ductivity anomalies

Although Cagniard (1953) derived the expression
for apparent resistivity:

pa= 2T(§—;—)2 ' @

assuming both a uniform source of infinite extent, and
a horizontally stratified earth, the calculation bf appar-
ent resistivity is still made by those investigating non-uni-
form sources as well as for situations in which the con-
dition of horizontal stratification is not satisfied. In
fact, although the conditions assumed for the original
definition set down by Cagniard may not necessarily

be valid in a certain circumstance, it is still possible to
calculate the apparent resistivity and use it as a compar-
ative parameter. However, from the results obtained in
the calculations (see for example, Hibbs and Jones,.
1972a), it is clear that apparent-resistivity calculations
must be treated with care in cases with lateral discon-
tinuities.

6. Source considerations in the induction problem

Thus far all comments concerning the theory of
numerical methods and their results have pertained to
situations in which the inducing field is uniform and
of infinite extent. In his original discussion of the mag-
netotelluric method, Cagniard (1953) assumed such a
source above a layered conductor. As mentioned be-
fore, Wait (1954) has criticized this assumption. Also,
Price (1962) criticized this assumption and has shown
that the simple Cagniard formulas on which the mag-
netotelluric methods are based require modification
to take into account the distribution of the ionospheric
field. This point is important since in various regions,
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PHRSE OF HX AMPLITUDE OF HX

PHASE OF HY AMPLITUDE OF HY

PHASE OF HZ AMPLITUDE OF HZ

Fig.1. Magnetic field component amplitudes and phases. Values are calculated over the surface plane of the conductor. The model
is of a buried anomaly at the center of the mesh. The anomaly is of conductivity ten times the surrounding medium. The inducing
field is such that the electric field is in the x-direction. (After Jones and Pascoe, 1972.)
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Fig.2. Electric field component amplitudes and phases. Model as in Fig.1. (after Jones and Pascoe, 1972.)
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such as the equatorial and auroral areas, we know

that the inducing fields are not uniform and are caused
by currents of limited spatial extent (Kisabeth and
Rostoker, 1971).

Analogue model studies have been made using line
current sources (Dosso and Jacobs, 1968) as well as
other sources (Thomson, 1972). Hutton (1969) has
discussed the case of induction in the earth by the
equatorial electrojet and has recently considerably ex-
tended this approach including extension to an n-lay-
ered earth (Hutton, 1972).

Following the method originally considered by
Price (1950, 1962), Hermance and Peltier (1970) have
calculated apparent-resistivity curves for induction in
a layered earth by a line current, and Peltier and
Hermance (1971) have derived expressions to describe
the magnetotelluric fields of a Gaussian electroject
above a stratified conductor. Schmucker (1971b) has
considered models with a non-uniform source over a
laterally inhomogeneous earth in which the lateral
changes in conductivity are confined to a limited depth
range. Hibbs and Jones (1973b) have used the method
of Peltier and Hermance (1971) to obtain boundary
values. for the method of Jones and Price (1970) and
Jones and Pascoe (1971) so that perturbations of such
fields by embedded inhomogeneities in the E-polariza-
tion case may be computed.

Hibbs and Jones (1973c) have recently extended
this method to consider a non-symmetric, non-uniform
source, as well as aperiodic spatially time-varying
sources (Hibbs, 1972; Hibbs and Jones, 1973d).

7. The perturbation of the fields by three-dimensional
conductivity inhomogeneities

In the foregoing considerations, only two-dimen-
sional problems have been considered. Many conduc-
tivity structures encountered in geophysical studies are
essentially two-dimensional in nature and so pursuit
of these two-dimensional studies have proven to be,
and still are, of great value.

Since 1967, large arrays of magnetic measuring in-
struments have been used for magnetic deep-sounding
studies (Porath et al., 1970; Reitzel et al., 1970;
Camfield et al., 1971; Porath and Gough, 1971), and
so the magnetic field components at points distributed

over considerable areas of the earth’s surface may be
measured simultaneously. This has led to considera-
tions of the solution of the perturbation problem in
three dimensions. Treumann (1970d) has indicated
how a solution to the three-dimensional induction
problem for a plane earth may be obtained by employ-
ing the Green’s tensor. Also, Jones and Pascoe (1972),
in an extension of their method in two dimensions
(Jones and Pascoe, 1971) have presented preliminary
results for the three-dimensional problem for buried
anomalies where a cubic mesh is used.

In the numerical solution of the three-dimensional
problem the amount of information obtained becomes
a problem. There are twelve quantities (the six field
components and their phases) determined for each grid
point, and the number of grid points may be quite large
(typically 25 X 25 X 25 = 15,625). One method used
to display the results is by three-dimensional amplitude
and phase diagrams as illustrated in Fig.1 and 2. These
diagrams give the magnetic and electric field component
amplitudes and phases for a buried anomaly surrounded
by a region of uniform conductivity.

Lines and Jones (1973a) have extended the work of
Jones and Pascoe (1972) to a grid of variable dimen-
sions and have considered conductive regions of higher
contrasts, in particular, island structures. Also, Lines
and Jones (1973b) have extended this method so that
not only buried and island-type structures may be con-
sidered but more general structures that do not neces-
sarily have the same stratification at all boundaries may
effectively be dealt with.

In the work by Lines and Jones (1973a,b) three-di-
mensional amplitude and phase plots as illustrated above
are used along with contour plots and profiles of the
components to investigate the field behaviour.
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