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S U M M A R Y  
It is shown that magnetotelluric impedances from the B-polarization (magnetic field 
in the strike direction of a 2-D resistivity structure) share a number of properties 
with 1-D impedances: all B-polarization impedances satisfy the same phase 
constraints as 1-D data, i.e. the impedance phase always lies between 0" and 90". As 
a consequence the B-polarization impedances are minimum phase and thus allow 
conversions between apparent resistivity and phase. The constraints hold for an 
arbitrary 2-D topography of the air-earth interface. By examining the spectral 
function it is found that the B-polarization impedances for a number of models 
admit an exact 1-D interpretation. For two quarter-spaces this holds for all points 
and resistivity contrasts. The resulting 1-D model gives the correct resistivity down 
to a depth of half the distance to the interface. For the dyke model as the next 
complicated structure, 1-D interpretability requires that the host resistivity does not 
exceed the dyke resistivity by more than a factor of 60. B-polarization data of more 
complex structures investigated in this paper show either no, or only a marginal, 
violation of 1-D interpretability. A necessary condition constraining the frequency 
dependence of B-polarization and 1-D data in terms of their Mellin transform is 
derived in the final section. 
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1 INTRODUCTION A N D  BASIC 
EQUATIONS 

Whereas the analytical properties of the magnetotelluric 
transfer functions for 1-D structures are well explored (e.g. 
Weidelt 1972, 1986; Parker 1980; Yee & Paulson 1988a,b; 
Berdicevskij & Dmitriev 1992), very little reliable 
information is available for multidimensional structures. 
From an analytical point of view the B-polarization response 
(in the sequel abbreviated as 'B-response') is the simplest 
multidimensional response. In this polarization the magnetic 
field has only a component parallel to the strike direction 
and is constant at the air-earth interface. This simple 
boundary condition admits in some cases analytical solutions 
and is the reason that the surface impedance is simply the 
normalized tangential electric field rather than the ratio of 
two distorted local field components as in the E- 
polarization. 

The present investigation was motivated by the question, 
whether there exist characteristic differences between 1-D 
and multidimensional responses, such that only an 

approximate 1-D interpretation could be found for an exact 
multidimensional response. A partial answer to this question 
is given by showing explicitly that some B-responses admit 
an exact 1-D interpretation. This has the practical 
consequence that a perfect 1-D fit will not necessarily imply 
a 1-D structure. This consequence, however, is not serious, 
since in general data in B- and E-polarization are available, 
and therefore the ambiguity of dimensionality is easily 
resolved. 

There are two ways to test the one-dimensionality of a 
B-response at a given position: if the B-response is known in 
analytical form, a rigorous check is performed by testing the 
sign of the spectral function. If the B-response is given at a 
set of M discrete frequencies, 1-D consistency is checked by 
testing the signs of 2M determinants derived from the data 
(Weidelt 1986; Yee & Paulson 1988b). The latter grants a 
1-D model for the given frequencies only, it may no longer 
exist for a denser frequency set. 

The following model is considered: the half-space z 2 0 
with strike in x-direction has the resistivity distribution 
g ( y ,  z), where for simplicity p is bounded from below and 
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above, such that O<e < m .  Assuming a time factor 
exp(iwt), w > O  throughout, the three complex B- 
polarization field components B,, E,, E ,  are related by 

e V ,  = P,& -ed,B, = P&, 

d,E, - a,E, = - IwB, ,  

where 2 , : = 3 / d y ,  etc. and p,:=4n x lO-'Vs/(Am). The 
elimination of E ,  and E ,  yields, as the differential equation 
for B,, 

V .  (eVB,)  = i ~ o p , , B , ,  (1) 

which has to be solved subject to the inhomogeneous 
boundary condition 

B J Y ,  0) = B,,, (2) 

where B,, (being twice the inducing magnetic field) is the 
uniform field in the air half-space z < 0. 

The B-response is defined by Schmucker's transfer 
function (Schmucker 1970, p. 69) 

(3) 

which is related to  the surface impedance 2 = -p,,E,/B, by 

Z(Y ,  w )  = I'~POC(Y, 0,) 

In Appendix A it is shown by an eigenfunction expansion 
that c ( y ,  o) admits the spectral representation 

(4) 

The spectral function a ( y ,  A) is connected with the values of 
c on the positive imaginary frequency axis by Stieltjes' 
relation (cf. Titchmarch 1967, p. 318) 

1 
a ( y ,  A )  = -- lim J [ c ( y ,  i A  + E ) ] ,  ( 5 )  n c-0' 

where 4 denotes the imaginary part. On the other hand it is 
well known (Weidelt 1972; Parker 1980; Yee & Paulson 
1988a) that the I-D response can always be represented as 

with 

1 
a(L)  = -- lim 4[c(iA + E ) ]  

n E + o +  

and 

a,, 2 0, a(L)  2 0. (7) 

Parker (1980) and Yee & Paulson (1988a) have shown that 
the conditions (7) are also sufficient for the existence of a 
1-D model. 

Three simple examples for the representation (6) are: 

(1) uniform half-space with resistivity 4 

(2) thin sheet with conductance t at depth h 

(3) thin surface sheet with conductance t and perfect 
conductor at depth h 

h 
1 + iwp,,zh' 

1 1 
A,) = - 

PO" P0"h 

c ( w )  = a,, = 0, 

a ( A )  = - 6(A - A,,), 

This paper focuses on the determination of the spectral 
function a ( y ,  A) in the representation (4) for simple 
analytical models. If, for a particular resistivity model, the 
spectral function a ( y ,  A) a t  a particular site y is non-negative 
in the whole spectral range A,  then the B-response at site y 
admits a local I-D interpretation. The additive constant a,, 
in (6) is non-zero only for an insulating surface layer. In 
view of the assumption @ < a ,  it does not occur in the 
B-response presentation (4). 

2 B-RESPONSE PHASE CONSTRAINTS 

The B-response c shares with the 1-D response the property 
that it never leaves the fourth quadrant (or that the 
impedance Z always stays in the first quadrant). For a proof 
let 

B, /B , ,= :  6 exp (iv), (8) 

where the phase v is considered as a continuous function 
(not modulo 2n). Then the insertion of eq. (8) into the 
differential equation ( I )  yields, after separating the real and 
imaginary parts 

v .  ( e V b )  = Pb(Vv)2 ,  (9) 
V . ( p b 2 V v )  = wp,b2. (10) 

These equations show that neither b nor v can have a local 
maximum at an interior point of the half-space z 2 0 ,  
because the necessary conditions for a local maximum of the 
function f ( y ,  z )  ( = 6 or v ) ,  namely 

Vf =o ,  VZf <o,  

v .  ( a V f )  = v a .  Vf  + a V f ,  

cannot be satisfied, since by virtue of 

a>o 

the left-hand sides of eqs (9) and (10) would be negative 
there, whereas the right-hand sides are non-negative. 
Therefore b and v attain their maxima at  the boundary of 
the half-space z 2 0 .  Assume for simplicity that for y - ,  f m  
the resistivity e ( y ,  z) tends to  a layered structure p ( z )  (not 
necessarily the same at  both sides). Then also 6 = b ( z )  and 
v = ~ ( z )  for y + f m  and in view of 6 4 0  for z+ m we 
obtain from eqs (9) and (10): 

Therefore both b and v decrease at  the left and right 
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boundary of the half-space z 2 0 ,  and on the lower 
boundary ( z - m )  we have b-0 and I/- -m. Hence, the 
maxima of b and q are attained at z = 0, where b = 1 and * = 0. 

In terms of b and the B-response ( 3 )  reads 

Since b and have their maxima at z = 0, the derivatives in 
eq. (11) are non-positive. It is easily shown that they are in 
fact strictly negative ( i x .  that the maxima at z = 0 are 
boundary maxima and not local maxima). The boundary 
condition (2) implies that dy* = 0 at z = 0. Assume that in 
addition a,* is vanishing a t  a point y of the interface z = 0. 
Then eq. (10) yields 

which would lead to an increase of when moving from the 
interface z = 0 into the conductor, contradicting the fact that 
I# has its maximum at z = O .  Hence dz* < 0  at z = O .  
Similarly, by virtue of d,b = 0 at z = 0 the assumption 
d,b = 0 at z = 0 would imply 

dS,bl,=,, = ( ~ z * l z = o ) 2  > 0, 

which again leads to a contradicting increase of b when 
moving into the conductor. Hence also d,b < 0 at  z = 0. In 
conjunction with eq. (1 1) the two previous results imply that 
c lies strictly inside the fourth quadrant (or Z inside the 
first). 

The phase constraints derived above for a plane air-earth 
interface dC hold in fact a t  each point P of an interface 3C 
with an arbitrary 2-D topography, assuming only that dC is 
horizontal for y - t  fm and that the interface is sufficiently 
smooth at P,  such that the curvature exists. Let fi be the 
unit normal vector at P pointing into !he conductor C, and 
define the tangential unit vector by t = i i X i .  Then again 
B,(P) = B,, and the maxima of 6 and I# are attained at dC, 
where b = 1, = 0, and 

where K ( P )  is the curvature of dC at P, being positive 
(negative) if the interface at  P a s  seen from the air is convex 
(concave). By way of contradiction it is then again shown by 
means of eqs (11) and (10) that both d n q  and d,b are 
strictly negative at P,  thus recovering the phase constraints. 

By a slight extension of the proof it can be shown that the 
B-response phase constraints even hold for arbitrary 
anisotropy (including dipping anisotropy). The proof relies 
on the fact that the resistivity tensor is positive definite (cf. 
also Protter & Weinberger 1969). 

The tangential electric field component E, (P)  is causally 
coupled to  the inducing magnetic field (1/2)B0. As a 
consequence the B-response (eq. 12) has no singularities in 

the half-plane .9w 5 0, and real and imaginary part of c are 
related by a Hilbert transform pair (e.g. Nussenzveig 1972). 
The analyticity of the B-response in 4 w  5 0  is also 
demonstrated by the free-decay mode expansion (eq. A4) in 
Appendix A. It is easily seen that the phase constraints of 
the B-response imply that in addition to its analyticity c has 
no zeroes in 4 w  5 0, such that also log c is analytical there. 
For a proof let w = Q‘ - ip.  Since c is analytical for p 2 0 ,  
%c (where t%l denotes the real part) satisfies the Laplace 
equation in the variables w ’  and p .  The boundary values of 
9 c  on the real axis satisfy the symmetry .%c( -w‘ )  = 
Y l c ( w ’ ) ,  a y i t i v e ,  and show the asymptotic behaviour 
%c = 0(1 /  Iw I) for Iw’I-30. Therefore, the 2-D potential 
continuation integral 

t%lc(x) dx 
P > 0  

exists and yields t%lc > 0 for p = - 4 w  > 0. The positivity 
also follows from the minimum principle applied in the 
domain .9cu 5 0 to the non-constant harmonic function t%lc 
and its non-negative boundary values (e.g. Protter & 
Weinberger 1967). 

The positivity of %c implies that c does not vanish for 
4 w  5 0. Consequently there exist dispersion relations 
connecting log IcI (or the logarithm of the apparent 
resistivity e;, = wp,,lclz) and the phase of c (or Z ) .  Without 
fully establishing the analyticity of log c these relations have 
already been given by Fischer & Schnegg (1980). Let 

where ~ ( w )  is the impedance phase. Then 

3 THE QUARTER-SPACE MODEL 

3.1 The spectral function a ( y , A )  

The simplest model in B-polarization are two quarter-spaces 
with p = Q ,  in y < 0  and e = e2 in y >0. In the vertical 
direction the quarter-spaces extend to infinity. The solution 
was first given by d’Erceville & Kunetz (1962): 

Y ’ 0  (14) 

with 

kL:= iwp , / e , ,  a k : = s 2  + k k ,  m = 1,2. 

The spectral function a ( y ,  A )  is most easily estimated after, 
according to  eq. (5), putting w = i A ,  rotating the contour in 
the s-plane counter-clockwise by an angle n/2, assuring that 
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Figure 1. The spectral function at y = D above the quarter-space e2. The ordinate is n p 2 a ( A ) ,  which tends to 1 for A+ 00. The oscillations of 
period 2 are well developed only over the conductive quarter-space (e,/ez = 10). 

no singularity is crossed, and introducing 

t := - i s ,  u r n : = V w - ,  prn:=-. (15) 

Then cum = iPm, and we obtain for y > O  (say) 

For y < 0 interchange the subscripts 1 and 2. Consequently, 
B-responses from quarter-spaces admit a 1-D interpretation 
for all resistivity contrasts and points of observation. Fig. 1 
represents the spectral function over a poor and a good 
conductor. Only the latter leads to significant departures 
from the local uniform half-space. 

3.2 1-D reconstruction from the spectral function 

There are different methods for the reconstruction of a 1-D 
resistivity distribution e(z) below point y from its spectral 

function a(y ,  A) .  Two of them, namely those of Gopinath & 
Sondhi and Gel'fand & Levitan are briefly summarized. For 
ease of notation the explicit dependence on y is not shown 
in the sequel. 

First, we deduce from the high frequency behaviour of 
c ( w )  or the large decay constant behaviour of a ( A )  the 
surface resistivity 

Then A and e(z) serve to  define a wavenumber p and a 
depth coordinate x through 

The reconstruction of e(z) is performed in two steps. 

Step 1: Fourier transform of 6 ( p )  := a(A)  to construct the 
kernel B ( x )  

( 0 ,  x < O  

Step 2: solution of a linear integral equation with the 
kernel B ( x ) .  



(i) Gopinath & Sondhi (Whittall & Oldenburg 1986) 

+ X  

F ( x ,  t)B(lu - t l )  dt, I u I  S X ,  (19) 

- 
0 05 01 0 2  0 5  

P ( 2 UP2 
2 

-D- 
v 

~ ( x )  = e d ~ ~ ( x ,  x ) .  (20) 

(ii) Gel’fand & Levitan (Weidelt 1972) 

A ( x ,  U )  = B(x + U )  + A ( x ,  t ) [ B ( u  + t )  - B(u  - t ) ]  dt, 

IUI s x ,  (21) 

G ( x )  = e , , / [ l +  / + x A ( ~ ,  - X  t )  d tI4,  

z ( x ) = [ x + / - ~ A ( x ,  t ) t d r ] / [ l + / - : A ( x ,  t ) d t ] .  ( 2 3 )  

The linear integral equations (19) or (21) are solved with x 
as a fixed positive parameter. With the solutions F or A the 
resistivity @ ( x ) [ = e ( z ) ]  with respect to  the distorted depth 
coordinate x is obtained using eqs (20) and (22) .  The true 
depth z then follows from 

or in case of the Gel’fand-Levitan method also directly 
from eq. (23). If the 1-D constraints are violated by negative 
values of a ( p ) ,  then 

F ( x ,  x) or 1 +I-, A(x,  t )  dt 

will also become negative somewhere. 
Now the reconstruction algorithms are applied to  the 

quarter-space data. Let y = D > 0. Then according to  eqs 
( 1 5 )  and (17) p =p,. For a determination of B ( x )  the 
spectral function (16) is inserted into eq. (18) .  In eq.  (16) 
the variable t is replaced by 5 on using 

pzy = p 2 D  = pg, i.e. t = p v p / D .  

After changing the order of integration the p-integration 
simplifies to 

+ X  

f 1; cos (pE) cos (p) d p  = S(X - E )  + S(X + e). 
Since the range of integration starts a t  
B ( x )  is given by 

= D ,  the kernel 

0, O s x s D  
( 1  - r ) D w  

nxqx’  + ( r  - 1)D2[rx + q x 2  + ( r  - 1)D2] ’ 
5 x ~ D  B(x)  = 

with r : = e 2 / e , .  The result B ( x )  = 0 for 0 5 x 5 D implies 
that for x s D / 2  the integral equations (19) or (21) are 
solved by F = 1 or A = 0. Therefore 

Q ( z )  = 8, for 0 5 z 5 0 1 2 ,  

i.e. down to a depth of half the distance to the interface the 
B-response gives the true resistivity. The numerical solution 
of eq. (19) or eq. (21) using B ( x )  given above then shows 
that below this depth the resistivity even increases on the 

q’P2 30 i o  3 1 01  

PIP, PIP,  

2 

Figure 2. The B-response of two quarter-spaces in a 1-D 
interpretation. Top: the normalized resistivity profiles below the 
point y = D > O  f o r  different resistivity ratios e l /&.  The true 
resistivity is obtained in the depth range 0 5 z 5 D / 2 .  Below that 
depth the resistivity increases (decreases) over the resistive 
(conductive) quarter-space. The dependence on the resistivity in the 
adjacent quarter-space is much more pronounced on the conductive 
side. Bottom: resistivity profiles at both sides of the discontinuity 
f o r  e , / p z  = 10 and different interface distances D, which determinc 
the vertical scale length. 

resistive side and decreases on the conductive side (cf. Fig. 
2) .  On putting s = k, tan E we derive from eq. (14) for y > 0 
the limit 

This limit holds for y << z .  For y + 0+,  i.e. to  the right of the 
vertical interface, this asymptotic value is already reached 
for z = 0. If the quarter-space y < 0 is highly resistive 
( r - t o ) ,  the asymptotic resistivity in y > O  tends to  zero. If, 
however, the quarter-space y < 0 approaches a perfect 
conductor ( r - + w ) ,  it does not affect the asymptotic 
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resistivity, @(a) = p 2  and therefore g ( z )  = g 2 .  The greatest 
effect is obtained for r = 9.05, where g ( m ) / p 2  = 1.5835. The 
apparent enhancement of the resistivity contrast (starting at 
increasing depth when leaving the discontinuity) results 
from E,,(O+, z)/E,(O-, z )  = r ,  implying in particular 
p,(O')/p,(O-) = rz. Therefore the ratio between the 
asymptotic resistivities in y > 0 and y < 0 is r2 rather than 
the true value r. 

In the quarter-space model the 1-D interpretation gives 
the true resistivity down to a depth of half the distance to 
the interface. In Appendix B this result is generalized by 
showing that in a segmented half-space the 1-D resistivity is 
correct down to half the distance to the closest interface. 

4 T H E  D Y K E  M O D E L  

The experience obtained from the simple quarter-space 
model cannot be generalized to more complicated 
structures. Already the dyke model (cf. Fig. 3) as the next 
complicated structure reveals that an unconditional 1-D 
interpretation of the B-response is possible only for resistive 
dykes. For conductive dykes the 1-D interpretation breaks 
down first for points of observation in the centre of the 
dyke, if this is more than 60 times better conducting than 
the host. 

Let us denote the resistivities of the host and dyke by pI  
and p2, respectively, and let again r = p2/p1, where r < 1 
for a conductive dyke. Moreover, let k,, a,,,, ,,,, and p,, 
rn = 1,2 have the same meaning as in Section 3.1. If the 

dyke extends from y = -D to y = +D, then B-response and 
spectral function in the centre of the dyke (y = 0) are given 
by 

1 2(1 - r )  

k2 n 
c(0, w )  = - - ___ 

s2 ds 
9 (24) 1; ala;[a, cosh (azD)  + azr  sinh ( a 2 D ) ]  

1 2(1-r)  
na(0, A) = - - ___ 

P2 n 

(25)  
t2 cos ( P 2 D )  dt 1; af[a: cos2(P2D) + @;r2 sin2 (pzD)] . 

The B-response can be obtained from the method described 
in Appendix B. Alternatively it can be deduced from the 
solutions given by Rankin (1962) or Wait & Spies (1974). As 
in Section 3.1 the spectral function is again easily calculated 
by rotating the line of integration in the s-plane by n/2. Fig. 
3 shows the normalized spectral function np2a(A) as a 
function of the non-dimensional quantity p2D/n - fi for 
various resistivity ratios p The spectral function 
remains positive for p1/g2 < 60, but for greater contrasts it 
attains negative values near p2D/n  = 1.5, which inhibits a 
1-D interpretation at the central point. Non-central points 
on the dyke show the same behaviour at greater contrasts. 

The dyke spectral function shows distinct peaks at 

p 2 D / n  = n  + 112, n = 0, 1, 2, . . . 

0 -  I I I I I I I I I 

1 2 3 4 5 - d r n D l X  
Figure 3. Normalized spectral function for a site at the cenfre of a conducting dyke of width 2 / D  for different ratios e,/pz. The spectral 
functions have a negative spike for el/ez > 60, which destroys the 1-D character of the corresponding data (but should be hardly visible in real 
data). Over a resistive dyke the spectral function is always positive. 
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The origin of these peaks is best explained by,appealing to 
the free-decay mode expansion of the B-response as 
outlined in Appendix A. Separating the z-dependence by 
assuming a variation -sin(vz) (cf. eq. A7), the relevant 
eigenvalue equation is 

QI’YY) + ( P t  - V2)QI(Y) = 0, 

with rn = 1 for ( y (  > D and rn = 2 for ( y (  < D, subject to the 
continuity of QI and pp’ at y = f D .  The eigenvalue I is 
buried in p,, where p1 = 6 p z .  Since the expansion 
coefficients (A5) are proportional to the horizontal average 
of the decay modes, only the symmetrical modes contribute. 
It is easily seen that the eigenvalue problem admits two 
types of free-decay modes: 

(1) v 5 p I  5 p,-oscillating fields both in the resistive 
host (long-wavelength 2 n / d m )  and in the conductive 
dyke (short-wavelength 2 n / d m ) ;  

(2) p 1  5 v 5 p,--exponentially deca ing fields in the 
resistive host (scale length 1/ + v 2  - 1:) and oscillations 
confined to the conductive dyke (wavelength as above). 

In the first case there exists for a given vertical wavenumber 
v a continuum of horizontal wavenumbers u 1  and u2, 
0 5 u 1  5 u2 < m, satisfying 

whereas in the second case a given v is associated with a 
finite number of discrete horizontal wavenumbers v m ,  
defined by the eigenvalue equation 

This equation associates a given v with a number of 
branches, identified by the quantum number n ,  n = 
0, 1, 2, . . . Branch n is excited if v exceeds the threshold v,, 
where 

u, = p I ,  

i.e. 

V R D  = nn, 

n n  
v,=:&q p z = D 1 / 1 - r .  

For e l /p2=20 Fig. 4 shows the normalized eigenvalue 
p,D/n as a function of Dv. For a given v, discrete spectral 
lines (branches) occur for v < p2 < v / 6 ,  whereas the 
spectrum is continuous beyond. The crosses mark the cut-off 
values v, and corresponding eigenvalues p2. As an example, 
the discrete lines n = 0 + 4  are excited for Dv = 3. The 
associated eigenfunctions are displayed in Fig. 5. In order 
that the B-response expansion coefficient as a function of y 
has the same sign as the corresponding eigenfunction, we 
have chosen in view of eq. (A5) that polarity, which yields a 
positive average. The quantum number n counts the 
negative half-waves. The eigenvalue I (or p2) is a measure 
of the total variability of the decay mode. For fixed vertical 
variability (fixed v) the horizontal variability increases with 
p,. This is exemplified in Fig. 5 with p 2 D / n  given to the 
left. If p2 exceeds v / 6  (corresponding to p 2 D / n  = 4.27), 
the eigenfunctions become oscillatory also in l y l >  D. 

71 = 6 

71 = 5 

2 _111---: = I  

= 0 

0 1 2 3 4 5 - Dll 

Figure 4. Structure of the conducting dyke free-decay spectrum for 
el/& = 20. The eigenvalue p; = uz + u2 as the sum of the squared 
wavenumbers u (in the vertical direction) and u2 (in the horizontal 
direction) is a measure of the variability of the corresponding 
eigenfunction in the dyke. For a given u no mode can be excited for 
p 2  < u,  since both in the conductor and resistor the field would vary 
exponentially in the horizontal direction and would not admit to 
satisfy the boundary conditions at the interface and at infinity. In 
the range u < pFlz < u r n ,  however, a finite number of discrete 
lines (labelled by the number n of negative half-waves in the dyke) 
can be excited. In the resistive host the field still deca s 
exponentially in the horizontal direction. If p z  exceeds u + el/Qz, 
the eigenfunction shows a horizontal oscillation also in the resistor, 
which then allows a continuous spectrum. 

The discrete symmetrical modes trapped in the conducting 
dyke are responsible for the peaks occurring in the spectral 
function (cf. Fig. 3). With the polarity explained above they 
have the asymptotic form (y = 0 in the centre of the dyke) 

(-ly C O S ( ~ J C ~ / D ) ,  V + P ;  

and 

(- 1)’’ cos [(n + -&ry/ D ] ,  v + p; 

With reference to eq. (A5), at y = O  the branches 
n = 1, 3, 5, . . . contribute to the downward peaks and 
n = 0, 2, 4, . . . to the upward peaks. It is seen in Fig. 4 that 
p2D/n  is close to n + 112 for a wide range of vertical 
wavenumbers. The branch n = l  leads to the most 
pronounced downward peak and is responsible for the 
negative values of a ( I )  for p I /p2  > 60. (It is seen from Figs 
3 and 4 that for pI /p2=20  the vertical wavenumber 
Dv = 1.5 yields the dominant contribution.) The following 
downward peaks (n = 3, 5, . . .) are weaker (cf. Fig. 3), 
because the mode average decreases with n (cf. eq. (A5) 
and Fig. 5). 

An idea of the qualitative behaviour of the spectral 
function may also be formed by considering the unphysical 
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1 . 7 6  n= 1 

I I 

-D +O 

Figure 5. HoAzontal variation of the discrete free-decay modes 
excited in the model of Fig. 4 for Du =3.  On the left the 
normalized eigenvalues p2D/n  are given. 

extreme contrast case p,-m. Then eq.  (24) reduces to 

ds 
c(0, 0 )  = - - - 

k2  n "I- ( )  a:cosh(a,D) '  

from which-using the recipe ( S t t h e  spectral function 
follows with the calculus of residues, 

2 "  (- 1)' 
na(0, A)=-C , 

n j = o  ( I  + 1/2)vpz  - ( j  + 1/2)2n2/D2' 

where [XI denotes the greatest integer S X .  The spectrum 
shows a Hequence of peaks with sign (-1)" whenever p 2 D / n  
just exceeds n + 112. 

From the simple models considered so far one may tend 
to anticipate that the failure of 1-D interpretability of the 
B-response is restricted to  high contrasts. However, 
remaining in the class of resistivity models g(y,  z)  = p(y) ,  
z 2 0 we were able to  construct a special low-contrast model 
with a contrast lower than 4, which was not 1-D at all 
points. 

5 QUARTER-SPACES WITH INSULATING 
OR CONDUCTIVE SUBSTRATUM 

The simplest modification of the quarter-space model 
considered in Section 3, where the quarter-spaces extend in 
the vertical direction to infinity, is the addition of a 
horizontal interface at  z = H ,  below which the resistivity is 
either zero or infinite. Also this model has been first treated 
by d'Erceville & Kunetz (1962). For y > O  (say) the 
B-responses are 

I 
c(y, w) = - tanh ( k 2 H )  

k2 

with s, = (n  + i ) n / H  for a perfectly conducting substratum 
and 

1 
~ ( y ,  w)=-coth ( k 2 H  

k2 

with s,, = n n / H  for a perfectly insulating basement. Used 
are the abbreviations 

&,:=sf, i- k k ,  k k : = i w p o / p , .  

For y < 0 the subscripts 1 and 2 are interchanged and y is 
replaced by Jyl. For H - + m  eqs (26) and (27) merge into eq. 
(14) by the substitutions s, -+s, n / H  -+ ds. 

A modification of the B-response (eq. 26) for the 
perfectly conducting substratum as proposed by Groom & 
Bailey (1989) is not justified. The solution of d'Erceville & 
Kunetz satisfies the differential equation (1) (including the 
continuity of tangential electric and magnetic fields at the 
vertical interface), B, = B,, at  z = 0, and E,, = 0 at  z = H ,  
and therefore constitutes-by an easily established unique- 
ness theorem-the only solution of the problem. (It appears 
that the Groom-Bailey solution violates the boundary 
condition E ,  = 0 at z = H.)  

According to  the recipe (5) the spectral functions of eqs 
(26) and (27) are constructed by considering the B-response 
at positive imaginary frequencies. Here both the normal 
part and the anomalous part (the sum) have simple poles a t  
a$,=O, i.e. at w = i n ,  =is:p2/puo. In view of the 
Mittag-Leffler expansions (using the pertaining definition of 
sn 1 
1 2 "  1 
- tanh ( k 2 H )  = - C 7, 
k2 H n = o  ( ~ 2 ~  

1 
-COth(k2H)=-+- c 2, 
k ,  k$H H aZn 

1 2 "  1 

the pole contributions cancel (except a t  the origin) and d o  
not require further consideration. In addition to  a pole, each 
term in the sums has a branch point at r Z = s ~ p m / p o ,  
m = 1,2. Let again 

p k  : = Apo/gm and 52" : = -a:,, = pm 
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amplitudes decay as 

exp ( - m Z n ~ )  = exp (--S,,D-. 
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whereas for e2 > el 

In both cases the spectral function a(A)  is structured by a 
periodic sequence of positive peaks at  pz = s,, where a ( A )  
varies for pz+s: as 1/E2, = l / v m .  In addition, there 
occurs a periodic sequence of peaks at pl  = s,. In the 
conductive case (pz < el)  these eaks are  negative, 
whenever the angle S2,,D = s , D V h  (modulo 2n) is 
outside the fourth quadrant. Therefore, both for an 
insulating and a conducting substratum the B-response on 
the conductive side violates the 1-D constraints for all 
resistivity ratios and all interface depths H < 00. In the 
resistive case (e2 > e l )  the peaks are positive and their 

Although not obvious, also in this case the substratum spoils 
the 1-D character of the B-response, because for A-+m the 
spectral function drops down to (small) negative values 
between adjacent positive peaks at pz = s,. However, the 
spectral function averaged in p2 over the period n / H  
becomes a smooth positive function and approaches for 
H / D  >> 1 the limits shown in Fig. 1. 

For a conductive substratum and H I D  = 10 Figs 6 and 7 
show the normalized spectral function npza(A) at  y = D for 
the conductive case ( e 2 / Q ,  = 1 : 10) and the resistive case 
(e2/eI = 10: 1) as function of p z D / n .  Both figures are 
dominated by the periodic positive peaks at  p2 = s,. In the 
conductive case the peaks at pl  =s, impose an additional 
structure with partly negative peaks, which invalidate a 1-D 
interpretation. In the resistive case the peaks at p ,  =s, are  
positive and rapidly fade away with pz. For p 2 D / n > 6 . 5  
(not shown) the spectral function attains negative values 
between successive positive peaks. 

The infinite resistivity contrast associated with a perfectly 
conducting or insulating substratum destroys the 1-D 
character of the B-response. In general, however, this 
violation is not serious, as may be anticipated from the small 
width of the negative peaks or the oscillatory behaviour of 
the spectral function. As an illustration Fig. 5 of Groom & 
Bailey (1989) may also serve showing a successful 1-D 

Figure 6. The normalized spectral function at .site y = D on a conducting quarter-space (el/& = 10). The quarter-spaces lie over a perfectly 
conducting basement at depth H = 1OD. The s ctral function gets its structure by the superposition of two periodic sequences showing in the 
variable p,D/n the periods D / H  and D/H&. The peaks of the latter are mostly negative. For p,D/n > 1.5 the positive amplitudes have 
been truncated. 
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1 - -  

-1. t 
H 
D I  H 

P, = 0 1 P, 

Z =  H z 10D 

;I 
Figure 7. The same as Fig. 6 ,  but on a resistive quarter-space ( e , / p 2  = 0. I). Although this is also a superposition of two periodic sequences, 
the short-period component (period D / H m )  is rapidly fading with increasing p 2 .  Truncatcd amplitudes for p 2 D / n  > 1.5. 

interpretation over a conductive segment of a segmented 
overburden lying over a resistive basement, albeit the data 
are not strictly 1-D. 

6 RESULTS FROM NUMERICAL 
MODELLING 

The analytical models considered so far have permitted, via 
the spectral function, a strict test, of whether the 
B-responses, arbitrarily densely sampled over any frequency 
interval, admit a 1-D interpretation. In practice, the 
response is given for a finite set of frequencies. In this case 
the 1-D test can be performed by means of the necessary 
and sufficient compatibility conditions as given by Weidelt 
(1986) or Yee & Paulson (1988b). Even if 1-D 
interpretability is possible for the given data set, it may be 
destroyed by increasing the sampling density or shifting the 
frequency interval. 

For an outcropping conducting square-cylinder the 
B-respon'se in terms of apparent resistivity e;, and phase cp 
has been computed at the centre of the structure for five 
frequencies. Along with the response in E-polarization the 
results are displayed at the top of Fig. 8. The five 
B-responses successfully pass the 1-D test, whereas the 
E-responses fail. The B-responses can be represented in 
terms of D+-models (Parker 1980). For exact data 
Df-models in general are non-unique. The bottom of Fig. 8 
shows the two extremal models (Weidelt 1985; Yee & 

Paulson 1988b): 'on the left the model 
5 

am 
A, + iw,' c(w,)= c ~ 

j = l ,  . . . ,  5, 

which has the shallowest perfect conductor and the greatest 
surface conductance, and on the right the model 

4 6, G5 
A, + iw, iw, c(w, )=6 , ,+  2 - +-, j = 1 ,  . . .  ) 5, 

showing the least total conductance and the deepest first 
conductor. By increasing the number of frequencies the 
extremal models get more and more similar. 

This example underlines the well-known fact that the 1-D 
B-response interpretation may grossly deviate from the true 
structure, since poor conductors are replaced by fictitious 
good conductors. 

7 A NECESSARY CONDITION FOR B- 
RESPONSE D A T A  

According to the eigenfunction expansion given in 
Appendix A (cf. eq. A4) the singularities of the B-response 
lie on the positive imaginary frequency axis. The angular 
separation of these singularities from the real frequency axis 
introduces a particularly smooth frequency dependence. By 
the transformation 5 =In w the w-plane cut along the 
positive imaginary axis is mapped on to the fundamental 
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Figure 8. Numerical B- and E-polarization results for a conducting square-cylinder in a resistive host (resistivity contrast 100). Contrary to the 
E-polarization, the five B-responses satisfy the 1-D constraints. Two of the possible D+-models explaining the B-response are displayed at the 
bottom and show false highly conducting layers. 
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strip -3n/2 < 95 < n / 2 ,  which is periodically repeated 
above and below. The singularities lie along the lines 
$5 = (2n + 1/2)n, n = 0, f l ,  f 2 ,  . . . As an example 
consider the Mittag-Leffler expansion 

1 1 
- 

1 + iw 1 + i exp ( 5 )  
1 +N 1 

2 
--- - lim 2 

N - x  ,,=-N 5 - (2n + 1/2)ni ' 

The data constraints are formulated in terms of the Mellin 
transform of c ( w ) ,  which corresponds to the Fourier 
transform in the <-domain. If 

and a < b, thcn the Mellin transform 

M ( S )  = l : C ( W ) W - '  dclJ 

+r =I_, E ( < )  exp ( ~ 7 )  d<, s = u + i t  

with C(5)  = c ( w )  exists for a < u < b (Titchmarsh 1967). For 
t > O  the line of integration in the <-plane can be shifted 
from the real axis to 95 = n / 2  - 0, and for t < 0 from the 
real axis to .a< = -3n/2  + 0 without changing the value of 
the integral. The evaluation of the resulting integrals then 
shows that (Titchmarsh 1967) 

A decay -exp (-n Itl/2) of the Mellin spectrum could 
easily be inferred from the fact that the closest sources have 
a distance h = n / 2  from the real axis as line of observation, 
which in accordance with an elementary theorem in 
potential theory leads to  an exp(-h lzl) decay of the 
Fourier transform of F(< ) .  This decay is in fact observed, if 
the Fourier transforms of W(5) and 9 C ( c )  are considered 
separately. However, it is the balance between the real and 
imaginary parts of an analytical function, which by partial 
cancellation leads to  the sharper decay for t - + - m .  
Consider for illustration 

n 
1 + iw 2 sin (nsn2)' 

n 
1 + i w  2 cos (nsI2) ' 

n exp (-ins 12) 
sin ns 

0" - ' dw = 

with O < u <  1. 
It is no easy task to  check the asymptotic behaviour (eq. 

28) of the Mellin spectrum for real data. The computation 
requires a broad frequency range and it is not granted.that 
the unbiased extrapolation of the data to  w + 0 and w - m 

will lead to a B-response c ( w ) ,  for which a Mellin transform 

PCSE04 

m f '  

I , /  , I i 
- 3 - 2 - 1  0 1 2  3 4 5 

- r  

Figure 9. Testing the frequency dependence of B-responses. The 
top shows real (*) and imaginary parts (+) at the site PCSE04 of 
the COPROD2 data set. The corresponding logarithmic modified 
Mellin spectrum is shown at the bottom along with two dashed lines 
having the postulated asymptotic slope. The Mellin spectrum 
truncated at T = - 1  and T =  3 is inverted to yield a smoothed 
version of the B-response, which is displayed at the top in full lines. 
It  interpolates the real data where they are scattered. 

M ( s )  exists. The COPROD2 data set made available by Dr 
A. G. Jones provides at 35 sites excellent broad-band 
B-polarization data over about five to six decades. As an 
example the top of Fig. 9 shows the B-response at  site 
PCSE04. An extrapolation of the data by assuming 
c ( w ) = A ( i w ) - "  for w+0 and ~ ( w ) - - B ( i w ) - ~  for w-m, 
where a, A ,  b, and B are real, gives a = 0.77 and b = 0.42. 
(The expected value would be b = 0.5.) Since a > b, no  
Mellin transform exists for the original data set. As a 
remedy we replace c ( w )  by 

where wO>O is a reference frequency, for which we have 
chosen the geometric mean of the lowest and highest 
frequency in the data set. The asymptotic behaviour of C ( w )  
is characterized by ri = a ,  6 = b + 1, such that E ( w )  has a 
Mellin transform &f(s) for 0.77 < u< 1.42. In theory the 
modified response C(w)  should also be analytical in 
-3n/2 < arg w < +n/2  and should satisfy the asymptotic 
behaviour (eq. 28). Taking u = 1, the bottom of Fig. 9 
shows the logarithmic Mellin spectrum (2 ln)  In ]k(1 + i t ) (  
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of the data displayed in the upper part the figure. In this 
representation we expect the slope +3 for t - - t - - c o  and -1 
for t-+ +m, which is indicated by the dashed lines and well 
followed by the experimental data in the range -1 < t < 3. 
If the Mellin spectrum is truncated at these bounds and 
inverted, then 

is a smoothed version of the data c ( w )  and results from 
singularities on the positive imaginary w-axis only. This 
smoothed version is displayed at the top of Fig. 9 in full 
lines. The smoothed version differs only slightly from the 
data and interpolates between them, where they are 
scattered. 

The constraints (eq. 28) of course also hold for true 1-D 
data, which form a subset of B-polarization data. 

8 CONCLUSIONS 

The analysis of the magnetotelluric B-polarization response 
for simple structures has revealed that these data are not 
fundamentally different from the response of layered 
conductors. For instance, data from quarter-spaces and dyke 
models of moderate contrast allow an exact I-D 
interpretation. As a practical consequence an excellent 1-D 
fit to one polarization does not necessarily imply a 1-D 
structure. However, since in general the data for both 
polarizations are available, the true dimensionality of the 
conductor will mostly be uncovered. 

On the other hand, the analytical models producing 
negative peaks in the spectral function (e.g. the highly 
conducting dyke or the quarter-spaces overlying a perfectly 
insulating or conducting basement) clearly indicate that in 
some cases exact B-responses admit only an approximate 
1-D interpretation. Because of the deficiencies of real data, 
it will in practice mostly be impossible to  attribute a 1-D 
misfit-without considering the second polarization-either 
to  data errors or to  a 1-D inconsistency (cf. Fig. 5 of Groom 
& Bailey (1989)). 

B-response and I-D response are closely related, because 
both admit the representation (4) or ( 6 ) ,  i.e. the 
singularities are located on the positive imaginary frequency 
axis, which considerably constrains the frequency depend- 
ence as illustrated in Section 7. Such a presentation is not 
granted for the E-polarization response, which is the ratio of 
two disturbed field components. Moreover-and this is not a 
consequence of eq. (4)-the phases of B-response and 1-D 
response are restricted to the same quadrant. The  difference 
between the responses results from the incidental negative 
values of the spectral function a ( y ,  A). In the examples 
studied, the negative peaks were either narrow or the 
spectral function was highly oscillatory between (great) 
positive and (small) negative values, so that in a real data 
set this 1-D inconsistency may be hidden. 
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APPENDIX A: EIGENFUNCTION 
REPRESENTATION OF THE B-RESPONSE 

The electromagnetic field in the half-space z 2 0  can be 
represented by a superposition of the magnetic field 
free-decay modes 

B A Y ,  2 ,  t )  =f,(y, 2) exp ( - A n t ) ,  

where A, r O  is the decay constant. Even though the decay 
spectrum becomes continuous for unbounded conductors, 
for ease of notation all possible quantum numbers are 
symbolically represented by the discrete quantum number n. 

The modes f,(y, 2) are defined as eigenfunctions of the 
problem 
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with A,, 2 0  as eigenvalue. They are orthogonal, normalized 
by 

where S,,,,. is the Kronecker symbol, and form a complete 
set of functions. Therefore p : =  B,/B,, admits the 
representation 

The expansion coefficient a,, is obtained by multiplying the 
complex conjugate of eq.  (Al)  by /3, eq. (1) (formulated in 
terms of 0) by f,‘ and integrating the difference over the 
half-space z 2 0. Integration by parts on using the boundary 
values f , , ( y ,  0) = 0, p ( y ,  0, w )  = 1 yields 

with 

The boundary values of f,, and p imply that eq. (A3) is 
non-uniformly convergent at z = 0. Therefore eq. (A3) 
cannot be differentiated with respect to z t o  obtain 
according to (eq. 3) the B-response c(y,  w ) .  As a remedy it 
is noted that no induction occurs a t  w = 0, and therefore 

P ( Y ?  2, 0) = 1 + C Ia,,(w) - %(O)lfn(Y, 2). 
r 

The latter version converges uniformly at  z = 0 and forms 
the basis for the construction of c (y ,  w )  from eq. (3), 

The spectral function a ( y ,  A) is obtained by summing all 
a , ( y )  with A, =A. Since in general eigenfunctions are 
oscillating, individual an(y)  will have both signs. However, 
the summation of expansion coefficients belonging to  the 
same eigenvalue may give a positive yield, which is 
necessary for a 1-D interpretation. This is illustrated by the 
quarter-space model considered below. Moreover, expan- 
sion coefficients a n ( y )  sufficiently averaged over y will tend 
to positive values, since according to  eq. (A5) an then will 
approach the product of two complex conjugate numbers. 

The B-response eigenfunction expansion (A4) is illustr- 
ated by two simple examples. 

1 Uniform half-space of resistivity e in z 2 0 

The discrete quantum number n is replaced by the two 
continuous quantum numbers u and u. The eigenfunctions 

1 
f;,,(y, z )  = - exp (iuy) sin ( u z ) ,  --m < u < +w, 0 5 u < m 

n 

with the eigenvalues 

With 

2e u2 2e 
p 0 n  u2 + u- P o n  

a,,,, = ~ - , exp (iuy)S(u) = ~ S ( u )  

the ‘B-response’ is given by 

A,,,, + iw 
= ? /  du 

Jt 0 u2 + i W p o / e  

Because of the lateral uniformity there is a contribution only 
from the horizontal wavenumber u = 0. 

2. Two quarter-spaces with resistivity el in y < 0 and e2 
i n y > o  

This model is considered in Section 3. Let again r :=  e2/e,. 
Without restricting generality we assume p2 < p, such that 
r < 1. Since in the vertical direction the quarter-spaces 
extend to  infinity, the ansatz 

f(Y3 2 )  = QJ(Y)  sin ( u z )  (‘47) 

is appropriate. From eq. (Al) follows 

w i t h r n = l  f o r y < O a n d r n = 2 f o r y > O ,  a n d p , < p 2 .  Eq. 
(A8) is supplemented by requiring the continuity of P) and 
pp’ at y = O .  The resulting eigenfunctions are always 
oscillatory in the well-conducting quarter-space y > 0. In 
y < O ,  however, they are oscillating only for u < p c ,  and 
exponentially damped for u > p ,  . 

(a) O < V < P , < P 2  

The eigenfunctions oscillate with the vertical wavenumber u 
and the horizontal wavenumbers u, = q p 5 ,  which 
according to the definition of p, are  interrelated by 

u: = ru$ - (1 - r)u2.  (‘49) 

Therefore the two quantum numbers u2 and u are sufficient 
to characterize the eigenfunctions and corresponding 
eigenvalues. The latter are 

= e l ( 4  + u z ) / ~ o  = e 2 ( 4  + u 2 ) / p 0 .  (A101 

There are two sets of eigenfunctions, which in the limit 
r +  1 are anti-symmetrical or symmetrical to  the origin. 
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the pair (u2 ,  v) is replaced by (A, u), eq. (A10) gives 
dA = y du,, and therefore the expansion coefficients au2 , , ( y )  
are related to the spectral function a ( y ,  A) by 

Normalized as eq. (A6) (with u replaced by u2)  they read 

2sin(uz) {ru,s in(u,y) ,  y < 0  
n m  u,sin(u,y) ,  y > 0  

fY,!(Y? 2) = 

with 0 5 u 2 < m ,  0 ~ 0 ~ ~ ~ ~ ~ .  The latter limit 
follows from eq. (A9) for u,+0. A closer examination 
shows that only the first set contributes to the spectral 
function. The expansion coefficient corresponding to eq. 
(AS) is 

with y :=2p,uz/pLo. The reason for introducing this factor 
will become apparent below. 

(b) P I < U < P ,  

Now the wavenumber u ,  is purely imaginary and the 
eigenfunctions in y < 0 are exponentially damped. Let 
ii , : = v w  > 0 where ii, is related to u2 and v by 

('412) f i 2  I - - (1 - r)v2 - ru:. 

Au2,, = @ l ( U 2  - G ) / P o  = Q 2 ( 4  + U 2 ) / P 0  

The eigenvalues and normalized eigenfunctions are 

('413) 

with 0 5 u2 < 00, u > v m u , .  The latter limit refers to 
ii,-+0 (cf. eq. A12). Eq. (A5) provides as B-response 
expansion coefficient 

Now we are in the position to synthesize c ( y ,  w ) .  From eqs 
(A4) and (4) follows 

In the first version the integration over the first quadrant of 
the (u,, u)-plane is performed along axis-parallel stri s in 
the second version along circular arcs of radius v& = 
p2,  where A,,,, is constant, A,,, = A  (cf. eqs A10 and A8). If 
the pair (u,, u )  is replaced by (A, u ) ,  eq. (A10) gives 
dA = ydu,, and therefore the expansion coefficients a,, ,(y) 
are related to the spectral function a ( y ,  A) by 

rv2 

a ( y 9  A) = J,, U ~ , J Y V Y  dv9 

where u l ,  ii,, and u2 have to be expressed via eqs (AlO) 
and (A13) by A and u. From eqs ( A l l )  and (A15) follows 
for instance for y > 0 

v 2  sin ( u z y )  du 
n u ( y ,  A)= -____ 

n ul.:(ul+ ruz) 

(A171 

A corresponding expression is obtained for y < 0. These 
expressions are formally more complicated than eq. (16), 
and their positivity is not easily established, but they agree 
exactly with the results obtained by applying the recipe ( 5 )  
to eqs (13) and (14). The correspondences are s+v, 
k k - + - p z l ,  a,+iu, or ii,, a,+iu2. The terms a; in the 
denominators of eqs (13) and (14) lead to poles at s = p,,,, 
which cancel the contributions from the first term l/k,,,. For 
r-+ 1 the second integral of eq. (A17) yields a non-vanishing 
contribution, since in this case ii, = u2 = 0, p l  - p2 - v and 
(for all r < 1) 

- 2 I'? v dv - n l ,  &G=l .  

The B-response is obtained from the first version of eq. 
(A16) after changing the order of integration, since the 
v-integration in eq. (A16) corresponds to the s-integration 
in eqs (13) and (14). 

APPENDIX B: THE B-RESPONSE OF A 
SEGMENTED HALF-SPACE 

In this appendix we describe a new method for calculating 
the B-response of a segmented half-space and show that its 
1-D interpretation gives the correct resistivity down to the 
depth of half the distance to the closest interface. 

Considered is the simple resistivity model Q ( y ,  z )  = 
p ( y ) / O ( z ) ,  where O ( z )  is the Heaviside function. Let the 
Green function G,r(y  I 11) with G , ( * a  I 11) = 0 be the 
solution of 

a,[e(Y)a,GJY I 7111 
= d y ) a 2 ( y ) G . A y  I 11) - S ( Y  - V ) ?  031) 

where cu'(y) :=s2 + i w p o / @ ( y ) .  Then it is easily verified that 

satisfies eq. (1) with the boundary condition eq. (2). 
Therefore, according to eq. (3) 
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For an N-segmented half-space 

@ = O n  in Y n - l < y < Y n ,  

where 

n E [ I ,  N ] ,  y, ,  = -m, y, = +m 

the q-integration in eq. (B2) can be replaced by a sum over 
the N - 1 resistivity discontinuities. For this purpose we 
interchange in eq. (Bl) the variables y and q and solve for 
G,(q I y ) ,  which is inserted in eq. (B2) on noting the 
reciprocity C, (y  I v )  = G,(q I y ) .  Then integration by parts 
yields 

following from eq. (B4), we finally arrive at 

with k 2 ( y ) : = i w p o / p ( y )  and a 2 : = i o p o / O n .  Since c ( y )  is 
discontinuous at y = yn , we assume in the sequel that y does 
not coincide with an interface. For ease of presentation we 
introduce instead an artificial interface with no resistivity 
contrast at q = y  (and increase N by 1). Let y = y , .  Then 

g n  := [e(rl)a,G,(q I Y m ) l , = ,  

is continuous at interfaces and is easily obtained by 
recursion. Let d n : = y n - y , - , ,  n = 2  , . . . ,  N - 1  be the 
thicknesses of the interior segments and let t n : =  
tanh (andn), y, := anen. Then the transfer functions 
b; := + g , /G , (y ,  I y,)  of the field diffusing from the source 
point y ,  into y + --oo are obtained from 

where b y  = y, .  The corresponding transfer functions for a 
diffusion into y +  +a, b,+ := -g , , /G , ( y ,  1 ym), are 

where b; - l  = yN. The presence of the source point at y ,  
introduces a discontinuity in the slope of G,(q Iy,),  such 
that according to eq. (Bl) g: -g ;=  -1. Together with 
b;  = g; /G , (y ,  I y,)  and b: = -g; /G,(y ,  I y,)  this yields 

For the field diffusing into y 4 --oo one easily obtains 

g , ~ , = g , [ c o s h ( a , d , ) - ( y , / b ~ ) s i n h ( a n d , ) J ,  n = m , .  . . , 2 .  

Expressing the hyperbolic functions by exponentials and 
replacing positive exponents by negative exponents on using 
the symmetrical relation 

starting with g ,  =g , .  A similar treatment for n > m  yields 
the recursion 

n = m  + 1,. . . , N -  1, (B6) 

starting with g ,  = g:. Because of the vanishing resistivity 
contrast (em = pmtl), the discontinuous term g t  does not 
contribute to the sum in eq. (B3). 

The similar problem of a segmented overburden overlying 
a perfectly conducting or insulating basement is treated by 
restricting the vertical wavenumber s to discrete values. The 
comparison of eq. (14) with eqs (26)  or (27)  shows the 
appropriate substitutions. A different method to handle the 
segmented overburden model was proposed by Wait & 
Spies (1974). 

Now we turn to the 1-D interpretation of the B-response. 
Let k : = v m .  Because of the presentation eq. (4) 
c ( y ,  o) is analytical in the w-plane cut along the positive 
imaginary axis. This implies that c ( k )  := c ( y ,  w) is analytical 
in the half- lane %k > 0. With the definition of Section 3.2, 
p .- .-+ A p o / Q ( y )  and i i (p ) :=u(A)  the presentation eq. (4) 
vields 

Therefore 

b ( k )  exp (kx) dk  

= [l - npii(p)] cos ( p x )  dp = B ( x ) ,  E > 0. (B7) 
n o  

We have arrived at the last result after changing the order of 
integrations, performing the k-integration by the calculus of 
residues, and resuming the definition eq. (18) of B ( x ) .  
Hence, b ( k )  is the Laplace transform of B ( x ) .  

Now the behaviour of b ( k )  for Ikl+m in the right 
half-plane has to be investigated. In view of the exponential 
decay displayed in eqs (B5) and (B6), the dominant 
contribution in the sum eq. (B3) comes from the term 
n = m - 1 or n = m + 1, according to whether the interface 
y m - ,  or ymtl  is closer to y .  Let y m - l  be the closer interface 
and let D : = y  - y m - , .  Then 

Since for Ik I + 

b(k )  decays at least as fast as exp ( - k D ) .  Hence for x < D 
the contour in eq. (B7) can be closed by a large semi-circle 
in the half-plane 9 k  > 0 without changing the value of the 
integral. Since b ( k )  is analytical in its interior, B ( x )  = 0 for 
x < D .  The 1-D construction method from Section 3.2 then 
shows that the correct resistivity g ( y )  is recovered down to 
the depth of D / 2 .  In the segmented overburden model the 
resistivity is correct down to the depth min (H, D / 2 ) .  


