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A review of electromagnetic induction’in a multi-layered earth is built around a development of the general
theory from first principles. Induction by transient and periodic fields and by dipole and electrojet sources are dis-
cussed and the method of complex images is briefly described. The review concludes with a discussion of induction
by elementary harmonic sources whose non-uniformity is characterised by Price’s v-parameter and which include
the uniform source field (¥=0) as a special case. The conditions under which the source may be assumed uniform for
computing the surface impedance and other ratios of field components are examined.

1. Introduction

The induction problem to be reviewed can be sum-
marised as follows, Let the earth be represented by
an N-layered conducting half space occupying the
region z > 0 in a right-handed Cartesian coordinate
system (x,,2), and let the n-th (n=1,2,...,N) layer
2,1 <z<z,(29=0,z)=) of thicknessd, =z, -
z,,_1 have a (non-vanishing) conductivity o,,. Given a
time-dependent magnetic source situated at a height 4
above the plane surface (z=0) of the conductor and
assuming that the intervening region -k <z <0 is
free space, determine the total electromagnetic field
comprising the field of the currents induced in the
conductor and the field of the source.

In practice, of course, the geophysicist is usually
concerned with the inverse problem of having to in-
fer the layer conductivities, and occasionally the
source field, from an analysis of magnetic field varia-
tions, supplemented in some cases by telluric mea-
surements, recorded at one or several localised stations
on the earth’s surface. The various procedures that
have been devised for doing this, such as the magneto-
telluric method, geomagnetic deep sounding and the
electromagnetic method using an artificial source, are
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really separate subjects in their own right but ali of
them depend ultimately on the basic problem of elec-
tromagnetic induction in the layered earth, outlined
above.

Much of the early work in induction theory was
developed with world-wide effects in mind so that the
earth was represented by a conducting sphere and the
field was expressed as a series of spherical harmonics.
This approach precluded,.however, an examination of
those strictly local effects for which the field could
only be described by many harmonics of high order,
and for which, therefore, the earth is best treated as a
conducting half space with a plane surface. It was not
until Price (1950) published what has become the
classic paper in the field that a general theory of
electromagnetic induction in a conductor of this type
became available. Although he considered only a non-
layered homogeneous conductor, his theory was
otherwise both comprehensive and general, and pro-
vided a complete explanation of all the physical pro-
cesses involved.

Price developed his general theory by considering
the elementary solutions obtained by separating the
variables in the differential equation satisfied by the
field vectors. Two distinct types of solutions emerged.
Those of the “first type” corresponded to current
systems flowing inside the conductor parallel to its
surface, and possessing a magnetic field outside the
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conductor. Such currents are either induced by an
external magnetic source or are freely decaying from
some initial distribution. The solutions of the “second
type” corresponded solely to freely decaying current
systems having no external magnetic field. In induc-
tion problems, the systems of free decay are unim-
portant (indeed non-existent if we assume the initial
distribution of currents in the conductor to be zero),
so that only solutions of the first type are required.
These and the other principal features of Price’s the-
ory have been summarised by Rikitake (1966), and
also by Price (1967) himself in a review of electro-
magnetic induction within the earth.

In a sequel to Price’s paper, Gordon (1951b) pre-
sented a rather different approach to the.general
theory. He considered induction by both magnetic .
and electric sources and obtained solutions by con-
structing an analogous problem in heat conduction.
More recently Weaver (1971a) noted that if the field
were represented by magnetic and electric Hertz vec-
tors directed normally to the surface of the conductor,
then the solutions associated with these vectors cor-
responded to Price’s solutions of the first and second
type, respectively. Thus, he was able to reformulate
the theory of induction (as distinct from the free de-
cay of currents) quite concisely in terms of just the
one scalar component of the magnetic Hertz vector,
and obtained general soltuions for the electromagnetic
field vectors by relating them through simple for-
mulas to the double Fourier transform in x and y of
the magnetic Hertz potential of the source evaluated
at the surface of the conductor.

The more general problem of electromagnetic in-
duction in a multi-layered earth has been considered
by several authors, at least for periodic sources. Price
(1962), in a discussion of the magnetotelluric method,
indicated the extension of his theory to a two-layer
earth, and this was further extended to the N-layer
case by Srivastava (1965). An elegant treatment of
induction in a multi-layered conductor has also been
given by Schmucker (1970), while Summers and
Weaver (1973) have generalised Weaver’s version of
the theory for a uniform earth.

In all the references cited so far, displacement
currents were neglected at the outset and the induc-
tion theory was derived from the quasi-static form of
Maxwell’s equations, the approximation being justi-
fied by the fact that in geophysical applications the

time of electromagnetic propagation across the region
of interest is negligible compared with the time scale of
the field variations. An alternative procedure is to de-
velop an exact theory and then to extract the proper-
ties of the induction field by making a near-field ap-
proximation in the electromagnetic wave solutions.
This approach, however, is usually more complicated
and suffers the disadvantage that it conceals the main
physical features of the induction field behind a more
elaborate mathematical structure than is really neces-
sary. Indeed, Price (1962) and Bullard and Parker
(1970) have cautioned against drawing misleading con-
clusions from the physical picture of real electromag-
netic wave propagation. Nevertheless, some authors
prefer the greater generality of the exact theory, nota-
bly Ward (1967) who has developed for geophysical
application, the fields of a variety of sources over a
multi-layered earth using a full-wave treatment. Al-
though written mainly from the radio scientists’ point
of view, the books by Brekhovskikh (1960) and Wait
(1970) also contain much pertinent information, and a
useful handbook summarising many of the important
formulas has been compiled by Kraichman (1970).
Fournier (1966) has published a comprehensive biblio-
graphy of papers in electromagnetic induction which
have contributed specifically to the development of
the magnetotelluric methods.

2. Basic equations

The mathematical analysis will be developed in S.I.-
units and we shall regard E, the electric field intensity,
and B, the magnetic induction, as the fundamental
field vectors, henceforth referring to them loosely as
the electric and magnetic fields, respectively. It will be
assumed that the permeability has the constant free-
space value u everywhere. Variations in the permeabil-
ity of the earth are just not important enough to war-
rant carrying the burden of this extra variable in the
analyssis.

Electromagnetic induction is governed by the equa-
tions:

V X E = —3B/at (1
V X B = uyoE 2

where o is the conductivity of the medium, and the
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displacement current term has been neglected in eq. 2.
Many authors prefer to use electromagnetic units for
induction problems. Formally we can convert to this
system by simply replacing u, by 47 and understand-
ing B to represent both the magnetic induction and
the magnetic field intensity.

In the non-conducting region, eq. 2 reduces to
V X B = 0 which implies that the magnetic field can
be expressed as the gradient of a scalar potential. The
source of such a field is called a quasi-static magnetic
source. On the other hand a quasi-static electric source
for which V X E = 0 (e.g., a slowly periodic electric
dipole) does not properly belong to the first-order in-
duction theory defined by eq. 1 and 2, for they show
that the time-dependent magnetic field associated with
such a source is necessarily vanishing so that there is
no agent for inducing currents in the conducting me-
dium. Eq. 2 must be modified to include second-order
effects in the non-conducting region when electric
sources are present. Gordon (1951b) has shown how
this can be done in the general theory for a uniform
earth. However, apart from the horizontal electric
dipole, whose quasi-static field above a stratified con-
ductor has been derived elsewhere (Bannister, 1966;
Mundry, 1967; Vanyan, 1968), sources of electric
type have a limited application in electromagnetic
sounding and will not be considered further in this
paper.

By introducing electric and magnetic Hertz vectors,
T(r,z,H)z and ['(r,2,1)2 respectively, where r = x% +
yy and X, y, Z denote unit vectors along the coordinate
axes, we can express the field vectors in the form
(Weaver, 1971a):

E=V[I'(z0)] - % [ooTI(r,2, 05
YBX (1(,2,081] (3)

B=V[['¢.2,0)] — 0 [% (2,05
—VX {Ilrz, 06 (4)

(A prime on the function symbol denotes differen-
tiation with respect to z.) Eq. 1 and 2 are then auto-
matically satisfied provided that the Hertz potentials
IT and T" both satisfy the induction (diffusion) equa-
tion:

(V2—uy03/3H)®(r,z,H) = 0 - 5)

where @ is a scalar function which represents either
Hertz potential. In a non-conductor eq. 5 reduces to
Laplace’s equation.

It will be seen by eq. 3 that the I'-field has no
electric z-component and by eq. 4 that the II-field
has no magnetic z-component (in fact no magnetic
field at all in a non-conductor). For this reason their
separate solutions are sometimes called the transverse
magnetic and transverse electric modes, respectively;
they correspond to Price’s (1950) solutions of the
first and second kind. It is also clear from eq. 3 that
—II' is the scalar potential of the field and from eq. 4
that —I" is the magnetic scalar potential in a non-
conductor,

The induction problem is therefore a question of
solving eq. 5 subject to the boundary conditions:

¢ ®(r.2,—0,1) = ¢, 11 2(r,2,+0,1) 6)
®'(r,z,—0,0) = ®'(r,z,,+0,7) N

.at each interface z = z,, (n=0,1,...,N—1), with & re-

presenting I when ¢ = 0, ¢, = ¢, (n=1,2,...,N), and
' when ¢, = 1 (n=0,1,...,N). That these are indeed
the correct relations for the Hertz potentials is easily
verified by applying the usual boundary conditions
on E and B as defined in eq. 3 and 4.

3. Solution of the induction equation

With the understanding that oy = 0, it is conve-
nient to regard the region —4 <z < 0 above the con-
ductor as layer 0. Applying the Laplace transform:

B(r,2,5) = f &@r,z,H)e st dt ®
0

to eq. 5 for the potential in the n-th layer we obtain:
(Vz—uoons) &(@,z,s5)=0 )]

where we have assumed that ®(r,z,0) = 0 inside the
conductor. This assumption is permissible because a
non-vanishing initial value of ® leads only to an ad-
ditional term in the solution whose time-dependence

is an exponential decay factor. In other words, electric’
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currents which are already flowing in the conductor at
t = 0, decay in time along with their associated elec-
tromagnetic field quite independently of any ex-
ternal inducing field and are therefore unimportant
when considering induction by an overhead source.
These solutions have been discussed in more mathe-
matical detail for a uniform earth by Price (1950).
His “fre¢ modes of decay of the first type” corre-
spond to the decay part of the solution for I" while
those of the “second type” correspond to the field
associated with IT (Weaver, 1971a).

If a dpuble Fourier transform with respect to, de-
noted in formal notation by:

F(p,z,5)= 5117 f B(r,z,5) e7°P dr (10

with p = £% + np, is now applied to eq. 9 we obtain
the differential equation:

F'(p,z,5)= N2F(p,z,5) (11)
where:
A = (02 +1g0,5)s (12)

Subject to the boundary conditions, eq. 6 and 7, and
to the vanishing of the field as z = o in the N-th
layer, the solution of eq. 11 can be.expressed in
terms of the transformed field of the source denoted
by F. The analysis is formally the same as that given
for periodic sources by Summers and Weaver (1973)
with the angular frequency replaced by —is, and we
shall quote their results directly.

Writing:
U, =M\, cosech\,d,, V,=),cotgh),d,,
and noting that Ay = p by definition 12, we define:

"
o Uy
On-1(V)= Vs F Ay (19)
andforn=1,2,...,N-2:
A)= Un 5
Q,,( )— Vn + Vn+l - Un+lQn+l(l) (l )

where the vector argument A indicates a functional

dependence on the variables (Ag, Ay ,-..,Ay). Then the
solutions for the transforms of the separate electric
and magnetic Hertz potentials, denoted by P and G,
respectively, are (3) in the region —h <z <O0:

P(p,2,5) = P(p,z,5) + PS(p,~2,5) (16)
a(pr Z,S) = Es(p ,Z,S) - 6‘(p,—z,s) + 5()(prZ,s) (17)
and (b) in each layer z,_ <z <z, (n=1,2,...,N):

P(p,25)=0, G(p.z5)=G,(p,z5) (18)

where forn=0,1, ...,N:

G, (P.2,5) =2,(p,2,5)G%(p,0,5) (19)

with:

Bo(p.2,5) = Qp(2) eP? (20)
N-1

En(p.2,5) = exp [\y(zy_1—2)] Po 0r(3) (21

andforn=1,2,...,N-1:

nees= |1 Q,,o.)1
ko ]

Q,(3) sinh [\, (z—z,_p)] +sinh As(z,—2)]  (22)
sinh Rndn

Note that the function g,(p,z,5) depends, through
the variables A, only on the scalar p, and also that
since F5(p,z,5) represents a transformed potential of
a source located at z = —h, F5(p,—z,s) is the poten-
tial of an identical but fictitious source at z = +h, i.e.,
the image of the real source reflected in the surface of
the conductor.

Eq. 16, 17 and 18 can be Fourier-Laplace in-
verted, immediately to give the solutions for IT and I
directly in terms of the Hertz potentials of the source
and its image and the function:

et
l"n(r,z,t)=?11? f f g,(p.2,7)
-

G%(p,0,t—1) e~ PT dr dp (23)
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which is the result of inverting eq. 19 and using the
convolution theorem for Laplace transforms. Since
the source field is assumed to be given, and since the
function g,, is determined through eq. 20, 21 and 22
by the known conductivity distribution of the conduc-
tor, this effectively completes the solution of the in-
duction problem posed in section 1. The main ob-
stacle to extracting actual solutions to a given prob-
lem lies in finding the correct expression for g, by
taking the inverse Laplace transform of Z,,, itself a
very complicated function. Fortunately, this difficulty
largely disappears in the case of periodic sources to

be discussed later.

4. The electromagnetic field

It is convenient to consider separately the com-
ponents of the field parallel to and normal to the
surface of the conductor by writing:

E=E,+E,2, B=B +B, 9

Let E'S, BS denote the field vectors of the source and
EO, BO those of the image. Bearing in mind that a dif-
ferentiation in z of the image potentials introduces a
change in sign we deduce from eq. 3 and 4 and the
inverted forms of eq. 16, 17 and 18 that (a) in the
region -k <z <0:

E,=E} —E{ — V X [£aT(r,z,1)/31]

=FS +EQ (25
E,=E; +E;
B, =B} +B) + V,[[4(r.z.0)] o6
B,=BS - BY+}(r,z,0)
and (b) in the layer z,,_; <z<z, (n=1,2,...,N):
E, = —VX [23T,,(r,z,1)/3t]

@

E,=0
B, =V, [[,(r.z0)] 8
B, = —V3[T,(r.z1)

The entire electromagnetic field has now been ex-
pressed in terms of the source and image fields and
the magnetic Hertz potential defined in eq. 23. No
reference to the electric Hertz potential is required.
This is because the vertical component of the electric

field, which is governed solely by the electric Hertz
potential, is unimportant in the theory of induction
for horizontally stratified conductors. It vanishes
completely inside the conductor showing that all
current flow is parallel to the surface. (Vertical cur-
rents can arise in the free modes of decay of the
second type (Price, 1950) but then, of course, II has

a non-vanishing solution since its initial value can no
longer be discarded.) If a vertical component of elec-
tric field is present in the region of free-space above
the conductor it arises merely from the type of source
present together with the surface charge it induces on
the surface of the conductor. Vertical currents must
flow inside the conductor in order to maintain this
varying charge distrib::;% but their magnitudes are
of the order of displacement currents and their ne-
glect is therefore quite consistent with the hypotheses
of induction theory (Price, 1950, 1962).

5. Two- and one-layer earth models

In practice the recursion relation 15 defining the
factors Q,, for a multi-layered earth must.be solved
numerically for each problem with its own set of
data. When there are only two layers, however, simple
algebraic expressions for the factors @y and @ (the
only ones which exist when N = 2), viz.:

200 {tXy t d
00 - p(A1+2; tghAydy) 29
A (p+A) + (A2 +p)y) tghNydy

N 2 e~Md1 30
) A+ A+ (A Ap) em2Md 30)
are obtained by puttingN =2 and z; =d{, in eq. 14
and substituting in eq. 13. These results are worth re-
cording because in many applications (seawater—
seabed, crust—mantle, etc.) a two-layered model of
the earth suffices.

The corresponding expressions for a homogeneous
(one-layer) earth can be found by putting Ay = Ay =\
in eq. 29 and 30. They are:

QoW =20/(p+N), Q;(0)=eM1 (31)

and their substitution in eq. 20, 21 and 22 (withn=1
and NV = 2) gives:
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go(przss) e—-(p"'A)Z = g](PJZ,S) = gZ(p)z's) (3 2)
where:
21(0.2,5)= 2072 [(p+N) (33)

Recalling the dependence of A on s in eq. 12, we can
invert the Laplace transform (eq. 33) by making a
simple change of variable in a tabulated result
(Erdélyi, 1954), to obtain:

w2l (4]
—p eP? erfc {%’ +_B§Z.}] (34)

where § = \/(uy0/?), and it follows immediately from
eq. 32 that:

g()(przrt) = gl(p’oi t) erz (35)

6. Transient and periodic inducing fields

The assumption that initially there are no current
systems inside the conductor implies that the source
too is nonexistent prior to ¢ = 0. Otherwise it would
have already induced a current flow thereby contra-
dicting the assumed initial conditions, Let us suppose,
therefore, that a periodic inducing source of angular
frequency w is suddenly created at the instant £ = 0,
ie.:

I8(r,z,0) = H(f) ei@? I'S(r,2,0) (36)

where H(¢) is the Heaviside function with the value 1
for ¢t > 0 and 0 for ¢ < 0. Substituting eq. 36 in eq.
23 and rearranging the time integral by applying the
definition of the Laplace transform in eq. 8, we ob-
tain:

eiwt - " .
Cu(r,z,t) = o f G%(p,0,0) e~ ip7 [gn(p,z,lw)

- f gn(p.2,1) dr] dp-(37)
t

Two important types of time-dependence can be
extracted from eq. 36. The first is obtained by taking
w = 0, whence:

I%(r,z,¢) = H@OTS(,z2,0). (38)

which represents an aperiodic source that instantan-
eously produces an external, static magnetic field.
This type of source is used in transient electromag-
netic sounding of the earth (Keller and Frischknecht,
1966; Vanyan, 1967; Keller, 1971). After the sub-
stitution w = 0 in eq. 37 it is a formidable problem
to proceed any further analytically unless the earth is
assumed to be homogeneous. In that case g, is given
by eq. 34 which, despite its complicated form, can be
integrated to give:

[ &160.2.7) dr = x(o18,26) (39)
t

where:
x(1,v) = § e~ %V erfc (u—1v) + ¥V (JHuv+2u?)

erfc (u+iv) — (Qu/\/m) exp (~u2—v2) (40)
It also follows from eq. 32, 33 and 12 that:
Bo(p.2,0)=eP?, Ei(p,z,0)=eP? 41)

Now the transformed source potential G* satisfies
eq. 11 (with Ay = p) and vanishes as z > oo, 50 that its
inverse Laplace transform has the solution:

G(p,z,1) = G¥(p,0,t) e—PZ 42)

Hence eq. 37 with w = 0 and #n = 1 becomes:
1 oo
=TS -
Ly(rz0 =020 — 5 [ xolbiz)

G*(p,0,00e™* " gp (43)
This gives the transient field inside the conductor for
t > 0. Likewise, by substituting the formulas 35 and
41 in eq. 37 with w = 0 and n = 0, and using eq. 42
again with z replaced by —z we find that:

Fo.2.0) = 1%,-2,0) ~ o= | x/8.0)

G5(P0,0) exp (pz—ip-r) dp (44)

When this result is substituted in eq. 25 and 26 to get
the transient electromagnetic field in the region

~h <z <0, the image potential in eq. 44 leads to
terms which exactly cancel the other image terms in
the field expressions. The results in eq. 43 and 44 are
special forms, corresponding to unit-relative per-
meability, of general solutions derived by Weaver
(1971a) for induction in a uniformly magnetic and
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conducting half-space by the aperiodic source defined
by eq. 38.

The other important example included in eq. 36
is its asymptotic form as t - o= which gives the simple
harmonic source:

I5(r,z,t) ~ ei! TS(r,2,0)

In the corresponding asymptotic representation of
eq. 37 the transient part of the solution dies out
leaving the steady-state periodic field:

(45)

eiwt - i .
T z0~5 [ 6%0,00) 2,(p.2iw) e=PT dp
L (46)

Here g,(p,2,iw) is defined by eq. 20, 21 and 22 in
which, according to eq. 12, the variables A, are re-
placed by:

¥p = (p2+a?)1/? @7
where:
&, = (iwpgo,) 2 = (1418, (48)

&,, denoting the skin depth of the n-th layer.

7. The complex image

Even though the general solution for a periodic
field has been expressed by eq. 46 in a relatively
simple form, it still involves a closed Fourier integral
which has to be evaluated numerically for each
specific problem. However, when only the field in
the region —h <z <0is required, and this is invariably
the case in geophysical applications, it is often possible to
make a simple approximation which effectively
eliminates the integrals. The idea seems to have ori-
ginated with the intuitive observation of Ball et al.
(1966) that if the image of a quasi-static source at
height & above a homogeneous earth is imagined to
be located at the complex depth h + §, where:

£=8(1-1) (49)

and & is the skin depth defined in eq. 48, then the
combined field of source and image gives a good ap-
proximation to the total field on and above the earth’s
surface. Bannister (1968a, 1969, 1970) demonstrated
the general validity of this concept by comparing cal-

culations based on the image formulas with those ob-
tained from the exact solutions for a variety of
sources.

A formal analytical justification of applying the
technique to vertical magnetic-dipole and horizontal-
line current sources was provided by Wait (1969) and
Wait and Spies (1969), respectively. Their analyses in-
dicated that the approximation was valid to the extent
that third-order spatial derivatives of the image field
were negligible, i.e., at distances somewhat greéter
than 8 from the ordinary (real) image of the squrce.
Weaver (1971b) extended the theory to apply to an
arbitrary magnetic source and showed that the ap-
proximate forms of eq. 25 and 26 for the field vec-
tors in —h <z <0 were:

z

E, ~E} — E} +VI—I&& (Eg—E;)dz]

B,~B}+B; and B,~B}-B;

(50)

¢

where E* and B* are the image fields obtained by re-
placing z by ¢ — z in the corresponding expressions
for the source. The exact formula for E, in eq. 25 re-
mains, of course, unchanged. Eq. 50 and 51 represent
a considerable simplification of the exact solutions,
containing closed integrals. Only eq. 50 offers any
complication, but if Eg = 0, even it reduces to a very
simple form.

The technique applies also to an N-layer earth. It
can be shown that the appropriate expression for { in
this case is:

§=1m9“=“ Yosintrerrd
p»0 P  coshajd; —Q4(a)

(52)

where the vector arguments y and @ now comprise
the (N +1) variables v,, and &, (n=0,1,...,N), respec-
tively, defined in eq. 47 and 48, and that a sufficient
condition for the approximate formulas 50 and 51 to
hold for a source atr =0,z = —h, is:

[P2+h+2)2]: > . kP (53)

A formal proof of these results will be published else-
where.

When N = 2, @, is given by eq. 30 so that'eq. 52
reduces to:
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1 +k e~2udy

¢=(1-i), . (54

— K e—2a1d1

where k = [l—(02/01)§] /[1+(02/01)§], a result ob-
tained by Thomson and Weaver (1970) and applied
by them to the field of a vertical magnetic dipole
over a two-layer earth. The simple formula 49 which
was the one originally proposed for a homogeneous
earth can be recovered from eq. 54 by putting

06 =0,=0.

8. Dipole sources

Current loops are widely used as artificial sources
for electromagnetic sounding of the earth. If the loop
is small it may, of course, be regarded as a magnetic
dipole whose moment M(¢) is directed normally to
the plane of the loop, and for this reason induction
by a magnetic dipole has been the subject of numer-
ous investigations in the geophysical literature. The
book by Bafios (1966) presents an exhaustive anal-
ysis of dipole radiation fields in the presence of a
uniform conducting half-space, and the article by
Ward (1967) contains a general treatment for geo-
physicists of dipole fields over a layered earth.

The quasi-static electromagnetic field of a mag-
netic dipole located at r = 0, z = —h is well known to
be:

Es =R X M'(t)/4nR3 (55)
BS = —V[R-M(1)/4nR3] (56)

where R =r + (h+z)z is the position vector from the
dipole. Following the remarks made in section 2 we
can identify the function —T'*' at once as the mag-
netic scalar potential in eq. 56. Hence by integration
and Fourier transformation (Weaver, 1971a):

G%(p,0,7) = (ip+pZ) - M(1)/4mp? 57

Eq. 55 and 56, and eq. 58 substituted in eq. 23, to-
gether define the total electromagnetic field in all
regions according to the general solutions 25, 26, 27
and 28;

The moment of a vertical dipole aligned in the z-
direction satisfies p- M(r) = 0. This makes G* in eq.
57 dependent only on the scalar p so that the double
Fourier integral 23 expressed in polar coordinates can

be immediately integrated with respect to its angular
variable by Bessel’s integral of order zero. Hence IT',,
becomes a function of r rather than r, a simplifica-
tion resulting from the cylindrical symmetry of the
configuration. The periodic and transient fields of a
vertical dipole over a homogeneous earth have been
analysed by Gordon (1951a) and Bhattacharyya
(1959a,b; 1963), respectively, and a unified treat-
ment of both types of field has been developed in
great detail by Meyer (1962). Numerous investiga-
tions of the periodic field of a vertical dipole over a
two-layer earth have been made (Wait, 1951, 1955,
1958a; Bhattacharyya, 1955; Schlichter and Knopoff,
1959; Quon, 1963; Frischknecht, 1967; Patra, 1970;
Weaver and Thomson, 1970), but the more difficult
analysis of the transient fields has received less at-
tention. Lowndes (1957) has obtained approximate
solutions for a vertical dipole with both step-like and
impulsive time variations resting on the surface of an
earth in which the conductivities of the two layers
are nearly equal; the solutions for an elevated vertical
dipole with an impulsive time variation have been
estimated asymptotically for small ¢z by Wait (1972);
and Morrison et al. (1969) have computed the re-
sponse of two- and three-layer earth models to a
horizontal loop (vertical dipole) excited by half-sine
wave pulses of current. The vertical dipole over a
stratified earth of more than two layers has been ex-
amined by Kozulin (1960), Bannister (1966) and Ryu
et al. (1970); and Wait (1962a) has analysed the re-
sponse of a continuously stratified earth, which is
equivalent to letting N > o and all d,, > 0 in the
layered model.

If the dipole is oriented horizontally with its mo-
ment parallel to the earth’s surface we can put
2+ M(t) = 0 in eq. 57 and simplify eq. 23 again by
using Bessel’s integral of order one. In this case, how-
ever, there is no cylindrical symmetry. The fields of a
horizontal dipole have been calculated by Wait
(1953a, 1956) for the dipole on a uniform earth, and
by Wait (1958a), Quon (1963) and Frischknecht
(1967) for the dipole above a two-layer earth.

9. Electrojet sources

Non-uniform sources can also arise naturally in the
form of the auroral and equatorial electrojets which
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are represented simply by a line current I(£)y flow-
ing along the line x = 0, z = —A. In this case we have
E,=0and:

#oll(t)f’l x2 + (h+z)?

Es—E0= og——— (58)
A xZ+(h-z)?
rol(?) x
s 3 e —
B yv Varctg Py (59)

Integration and Fourier transformation of the mag-
netic scalar potential in eq. 59 (Weaver, 1971a)
shows that:

G¥(p,0,) = —ingl(r) =% 8(n)/El¥| (60)

Eq. 58, 59 and 60 determine the total field every-
where with the Dirac generalised function 8(n) in eq.
60 effectively reducing the double Fourier integral
(eq. 23) to asingle integral in £.

Price (1950) considered this source as an illustra-
tion of the application of his general theory for a
uniform earth to a specific example. Law and Fannin
(1961) approached the same problem using radiation
fields although their final computations were for low-
frequency fields of geophysical interest. Dosso (1966)
presented further calculations based on their analysis.
The line current above a stratified earth has been
treated by several authors (Wait, 1953b, 1958b, 1970;
Ward, 1967; Bannister, 1968b; Guldberg and Brock-
Nannestad, 1970).

The analysis of this problem has also arisen in the
application of the magnetotelluric method in equa-
torial and auroral zones (Hermance and Garland,
1968; Hermance and Peltier, 1970). For a more re-
alistic representation of an electrojet, Peltier and
Hermance (1971) considered a Gaussian distribution
of line currents, and computed the corresponding
magnetotelluric curves for a three-layer earth.

10. Elementary harmonic sources

Consider the non-uniform periodic source whose
magnetic field is of the form:

B = —V [y 1A ) exp (i wt—z)] 61)
where v > 0. Its electric field is given by £, = 0 and:

ES=— (iwv?) exp (iwt — vz) V X ZAG, )] (62)

Since V- B% = 0, A must satisfy:
(V3+r2)A(r)= 0 (63)
We can find I'S in the usual manner by integrating the

magnetic scalar potential of eq. 61 with respect to z.
Then, by Fourier transformation, we obtain:

G5(p,0,0) = L(p,v)/v? (64)

where L is the Fourier transform of A, which accord-
ing to eq. 63 satisfies:

(p2-»3)L(pp) =0 65)

Interpreted as a generalised function (Jones, 1966),
the solution of eq. 65 is:

L(p,V) =A(5,V)5(TI"’VV —E )

+C(ENS(—VVE—E2) (66)

for |&| <, and L(p,v) = 0 for |£] > ». When this solu-
tion is Fourier-inverted it reduces to a single integral
because of the delta functions. Substituting &£ = —p
cos ¢ and writing » = p cos ¥x + ¥ sin Y we can ex-
press the final solution as:

m

Aew= [ cwyeivray ©7)

-n

where C(v) = M{A (~vcosyp) O<y<nw

2r \C(—vcos Y») —n<Y <0

By inserting eq. 64 and 66 into eq. 46 and simpli-
fying the integral to the form of eq. 67 we obtain:

T, (r.2,0) = v=28,(n,2,i WA(r,v) eiw? (68)

Hence, by eq. 25 and 26 the total field in the region
-h<z<O0is:

E =iwv=2 el! [2 sinhvz-gy(v,2,iw)]
VX BAGY)] (69)
B = —v~1 eiw! [2 coshvz—F(v,2,i0]
v, [AG)] (70)
B, = —¢/¥* [2 sinh vz—go(v,z,iw)] Alr,v) 71

The relation g;, = vg,, an immediate consequence of
€q. 20, has been used in eq. 70 and 71. Likewise, by
eq. 27 and 28 the field in the n-th layerz,, ; <z<z,
is:
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E = —iwp~2 elwt g (12,iw)VX [ZA(r,)] (72
B, =12 & 7. (p,2,iw) V [A(V)] (73)
B, =&/t B (v,z,iw)A(r,v) (74)

the last result following from eq. 63. Expressions for
Z,(v.2,iw) are given by eq. 20, 21 and 22 with the
variables A, (n=0,1,...,N), now replaced by:

0y, = (V2 +ad)i (75)

where a,, is defined in eq. 48. It is clear that £, = 0
and K- B = 0 everywhere. The orthogonality of the
electric and magnetic fields is a property of the par-
ticular inducing source in eq. 61. It does not hold in
general (e.g., for the dipole field of section 8) but
may be true for certain other sources such as the
line current considered in section 9. Wait (1954) and
Price (1962) have emphasized this fact, pointing out
that a non.orthogonality of horizontal electric and
magnetic fields does not necessarily imply an ani-
sotropic conductivity of the earth,

Price (1950, 1962) developed his general theory in
terms of the elementary solutions derived above, with
A(r,v) denoted by vA(v)A(x,y,v) in his (1962) nota-
tion. Schmucker (1970) on the other hand, based his
discussion on the solutions corresponding to:

Arv) = vdo() ¥ (76)

which is a special case of eq. 67 obtained by writing
».=v cos YoX + v sin Ydp and choosing C(v) =
vAo(¥)3(¥ — Vo). The parameter v is seen by eq. 67
or eq. 76 to be a measure of the reciprocal of the
horizontal “‘wavelength” of the source field. It
characterises, therefore, the non-uniformity of the
source. Price (1962) estimated that for geophysical
applications involving sources of natural origin its
values would lie in the range 1.57 - 10~7 m~1 to
1.57 - 105 m~1, As v~ 0 the wavelength becomes
infinite, the dependence of A on r disappears, and
the magnetic field of the source becomes uniform.
Uniform sources are discussed in section 11,

Elementary solutions are particularly useful for
discussing the ratios of field components. The im-
pedance at the depth z in the n-th layer is defined as
fwpgZ,(z) where:

PO S T 77
n iny - l(l)Bx T g"'(plz,iw) ( )

by eq. 72 and 73. From eq. 21 and 22 it follows that:

OnZy(2)=1 (78)
and forn=1,2,...,N-1:
0,Z,(2) =

sinh [6,,(z,~2)] + 0,(8) sinh [0,,(z=2pp.1)]
cosh [6,,(z,~2)] — @,,(8) cosh [0,,(z—z,_;)] (79)
At the surface the impedance is given by:
_ sinh-Greh
5105 Toosht;4,-0,(0)]

If the earth is uniform, Q; is given by eq. 31, and
eq. 80 reduces to:

Z(0)=1/9 (81

Surface impedance is the fundamental measurement
in the magnetotelluric method. For a given earth
model, the surface impedance can be calculated from
eq. 80 by the recursion relations 14 and 15. How-
ever, if they are substituted in eq. 80 directly, some.
algebraic rearrangement yields a recursion relation
(which starts with eq. 78) for the impedance itself:

L il bt
nZn(Zn_1) 146, tgh(0,d,)Z,.1(z,)

a result which has been obtained by Wait (1953c,
1962b), Tikhonov and Shakhsuvarov (1956), and
Schmucker (1970). An alternative way of writing eq.
79 is:

(80)

(82)

e—OnZ +D eBnZ

enZn(z) = e‘_enz _Dneonz (83)

where Dy =0, and forn=1, 2,..., N-1:
0,,(8) e 9nZn-1 _ o ~OnZn

eOnn _ 0,(8) eonZn-1

(84)

Srivastava (1965) expressed eq. 83 in the form:
0,Z,(z) = —ctgh(8,z—3 logD,)) (85)

and using the continuity of impedance at each inter-
face z = z, he obtained the recursion relation:

anzn(zn—l) =
—cotgh [arcotgh {—0,Z,,,(z,)}-0,2,] (86)



276 J.T. Weaver, Induction in a layered earth

which can be used instead of eq. 82 to generate the
surface impedance from eq. 78, It is similar in form
to the recursion relation derived earlier by the Rus-
sian workers and quoted by Berdichevsky (1960),
and Miecznik (1966). By eq. 83 the surface impe-
dance can also be written as:

Z,(0) 1+D,

1 6;(1-Dy)

with D; obtained from Dy = 0 by the recursion re-
lation forn=1,2, ..., N-1:

(87

8,D,,, ¢€"°- —@_e o+

(88)

" e, e7n®- _ ®_Dn+1_ e+

where ©, =(0,,,1%0,), which is readily verified from
eq. 15 and 84. This formula was derived by Hutton
(1972) although she actually expressed it in terms of
the parameter 1/D,,.

The recursion relations 82, 86 and 88 and all
others (e.g., Nabetani and Rankin, 1969) giving the
surface impedance on a layered earth are essentially
equivalent. They have been used by many of the
cited authors to compute magnetotelluric curves for
non-uniform sources. The ratios B,/B, and Bz/By
used in geomagnetic deep sounding can also be ob-
tained from Z,(z) by multiplying it by the factors
iwE, /B, and —iwE,,[B,, respectively. It is clear from
€q. 72 and 74 that these latter ratios depend only on
the source field. They are independent of g,, and
hence of the conductivity distribution.

The other ratios of interest, which describe the
attenuation of the field components within the n-th
layer, are: '

_ & _ & B
SO EL LB, B,

_ 2,(vz,iw)

B En(2z, y.iw) (89)
I,)= B, By _ E,(vz,iw) (90)

Biloy Byl Zyw2, 1.iw)

By eq. 21 and 22 they can be expressed as:

Sy (2) = Ty (2) = exp [0y (zy_1—2)] 91
and forn=1,2,..,.N-1:

S,(2) =
Q,,(®) sinh [6,,(z—2,,_;)] + sinh [0,(z,,—2)]
— (92)
Ty(2)=
0,(8) cosh [8,,(z—z,,_;)] — cosh [8,,(z,—2)]
0,(0) —cosh 4, ©3)

These results were obtained by Schmucker (1970) in a
slightly different form. Note that S,,(z,,) = Q,,(8).
This gives the physical interpretation of Q,,
(n=1,2,...,N—1) as the ratio of the electric or vertical
magnetic components at the bottom of the n-th layer
to those at the top of the layer. Because of the con-
tinuity of the field components at each interface, the
field at any depth can be related to its surface value
through such identities as:

 B;/[B;]; = 0= Sn(z)sn—l(zn—l)_----sl(zl) (%94

In the unbounded N-th layer all the field components
undergo the same exponential attenuation in eq. 91,
commonly called the skin effect. In the layers of
finite thickness, however, the skin effect does not
apply and while E,, Ey and B, still attenuate to-
gether, the behavior of B, and By is markedly dif-
ferent.

Finally it should be pointed out that all the pre-
ceding formulas involving the ratios of field com-
ponents are strictly true only for the special type of
inducing field assumed in eq. 61. When the general
periodic solutions defined by eq. 46 are considered,
the common factors which previously cancelled from
numerator and denominator in the field ratios must
now be retained since they appear as part of the inte-
grands in a ratio of Fourier integrals. Clearly the con-
dition for the simple ratio formulas to be approxi-
mately true in the general case is that the source func-
tion G must limit the values of p which contribute
significantly to the integrals to a small bandwidth
about some value v . The relevant ratio may then be
regarded as having the constant value corresponding
to p = v over the whole range of integration. The ex-
tent to which the approximation is valid will depend
on the particular source under consideration.
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11. Induction by a uniform field

The problem of electromagnetic induction in a
plane earth by a uniform source is actually indeter-
minate. That is, for a given inducing magnetic field
which is periodic in time but uniform in space, it is
not possible to determine the induced field. Of course,
the electromagnetic field within the earth can be ex-
pressed in terms of the fotal external magnetic field,
but there is no way of uniquely separating this uni-
form field into its inducing and induced parts. Price
(1950) clarified this point by considering the limit-
ing case of a well-defined problem in spherical geo-
metry in which the radius of the earth is 2 and the
inducing field is defined by a spherical harmonic of -
degree m. He showed that when the earth’s surface
becomes plane by letting a — oo, the ratio of the tan-
gential components of the induced and inducing fields
tends to the value m/(m+1). Now the field described
by a surface harmonic of any finite degree can be re-
garded as essentially uniform over a sufficiently small
portion of the spherical surface, so that in the limit-
ing case as ¢ = oo a uniform inducing field is obtained,
whatever the finite value of m. Thus the ratio of the
induced to the inducing tangential parts of a uniform
field over a plane earth can assume an infinite number
of values between % and 1 for this particular limiting
procedure. A non-uniform source over a plane earth is
obtained by making m - °'in such a way that m/a—>v,
a finite limit, as @ > oo,

Despite the indeterminacy of the problem, expres-
sions for the ratios of the total field components can
be found as in section 10. One way of doing this is to
neglect displacement currents inside the earth only,
and to consider plane electromagnetic waves nor-
mally incident on its surface. This was the procedure
adopted by Cagniard (1953) and followed by many
other authors. However, we have already remarked
that the limiting case as » = O of the results in section
10 correspond to a uniform inducing field, and this
is clearly the simplest approach.

Now A>K, and »"1V A > —K, when we let
v—>0ineq. 67, (or in eq. 76), where K, and K, are
suitably defined constants, K| being a vector parallel
to the plane z = 0. Thus the limiting forms of eq. 61
and 62 are:

B =Kewt | ES_ [E]g=q=iwz? XK (95)
with K=K, +K z? representing the uniform magnetic
field of the source. Since the formulas defining g,, all
contain a factor Q, it follows that we can write:

lin}) [ 1Z,(.200)] = £(2) (96)

where { is the complex length defined in eq. 52, and
where f,, is a function which now satisfies:

2)=a2f,(2) o7

because é,,, and hence g,,, satisfy eq. 11. It is ob-
vious from eq. 20 that f(z) = 1. The solutions for
the total field (eq. 69--74) become therefore:

 B=12K, elwt | E=iw(2z-t)z X K elwt (98)

above the earth’s surface, and:

B= _ffrlg(z)K“ efwt
(99
E=—iwtf,(2)z X K eiw!

in the n-th conducting layer. Note that even though a
uniform source may contain a vertical magnetic com-
ponent, the total magnetic field is necessarily hori-
zontal everywhere. In this example the total external
magnetic field is double the horizontal magnetic
component of the source which indicates that the
ratio of the tangential components of the induced and
inducing fields has its maximum value 1., This is not
surprising since the fact that we started with a finite v
implies that we are dealing with the special case of a
surface harmonic whose degree m has become infinite.
Of course eq. 95 defines just one particular uniform
source which gives rise to the solutions 98 and 99. The
proportion of the total horizontal magnetic field which
belongs to the source could, in fact, be any fraction
between 0 and 1 without violating the boundary
conditions at z = 0, and in addition the constant K, is
quite arbitrary since it is always nullified by an equal and
opposite vertical component of the induced magnetic
field.

It is clear from the definition (eq. 96) that a ratio
of the functions f,, can be evaluated by taking the
limit as » = 0 of the corresponding ratio of functions
&y, Thus the impedance of a uniform field, given by
eq. 99 in the form:
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Z,(@) = ~£,@If3(2) (100)
can be deduced immediately by letting » - O in eq.
77, which is tantamount to replacing each 0, by a,,

in the formulas 78 and 79. This also applies to the
other ratio formulas discussed in section 10. In partic-
ular, by virtue of eq. 52, eq. 80 becomes:

for a uniform source, and eq. 81 reduces to:
Z(0)=3(1-1)8 (102)

which is the well-known result of Cagniard (1953) for
a homogeneous earth, and which led to his defining
the “apparent conductivity” o, of a layered earth in
terms of impedance measured at its surface by the
formula:

o7t = wuglZ1(0)12 (103)

Differentiating eq. 100 and using eq. 97 we deduce
that:

Zp(2) = [0, Z,(2)]12 — 1 (104)

which is the Riccati equation. Eckhardt (1968) de-
vised a simple graphical technique for computing the
surface impedance of a layered earth by transforming
eq. 104 into a differential equation satisfied by

log [, Z,,(2)], (which vanishes at z =z,,_; by eq. 78),
and plotting the characteristic solution paths. Thus
by starting at z = z,_; and.using the continuity of im-
pedance at each interface one can use Eckhardt’s
chart to integrate upwards through the layers untit
the surface impedance is found. A different method
has been given by Weidelt (1972). Itis based on a
formula he proved, that:

2,(0)= lim w{z)/We) (105)
where w and W are solutions of the differential eq. 97
(regarded as applying to the whole earth with o a
function of z, rather than to a single layer) and sub-
ject to the boundary conditions:

w0)=W'(0)=0, w(0)=m0)=1 (106)

This time one starts at the surface with the conditions
106 and integrates downwards until the ratio of the
two solutions reaches a limiting value. Both Eckhardt’s
and Weidelt’s methods may be used with a uniform

source as ‘alternative procedures to computing the
surface impedance through the recursion relations
discussed in section 10,

It remains to be decided under what circumstances
the simplifying assumption of a uniform source is
valid. Wait (1954) first considered this problem by
comparing the surface impedance formulas for a uni-
form earth. Eq. 81 can be written as:

Z(0) = }(1-i)8(1—4iv252)~} (107)

so that eq. 102 is acceptable as an approximation
provided that (v8)2 < 1, i.e., that the horizontal
scale of the inducing field is much less than a skin-
depth. Later, Price (1962) pointed out that when the
conductivity varies with depth, Wait’s condition,
while still necessary, may not be sufficient. The gen-
eral impedance formula 80 depends on v through
every 0,,,n=1, 2, ..., N, so that by eq. 75 Wait’s con-
dition must hold in every conducting layer if the
neglect of v is to be completely justified, i.e.:

v2 max {52} <1 (108)

In fact a less stringent condition will apply because
no account has been taken of the varying degree to
which conducting layers affect the field according to
their depth beneath the surface. These questions have
been considered more fully by Wait (1962b) and
Niblett (1967).

12. Fields in a two-layer earth

We conclude this review by applying the field ratio
formulas of section 10 to a two-layer earth, for which
Q; is given by eq. 30, and for which therefore eq. 79,
92 and 93 give:

(109)

(110)

(1—¢) e01d
1—ee 2014
where € = (01—02)/(01""02).

Consider first the case of a poorly conducting
layer (¥262> 1) over a good conductor (¥*83<1) 50

Ty(d,) = (111)
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Fig. 1.A. Amplitudes (moduli) of the field ratios Z,(0)/61 (solid line and left-side scale), S;(d) (broken line and right-side scale),
and T'y(d;) (dotted line and right-side scale), plotted against the depth d,/8, (in skin depths) of the upper layer of a two-layer
earth, for the parameters v6; = 0, 0.1 and i. B. Phases (arguments) of the field ratios whose amplitudes are plotted in A.

that 8, = v and 6, ~ (1+i)/8 5. We assume also that
the depth of the upper layer is small compared with
the dimensions of the source, i.e. (vdl)2 € 1. Then
the first order approximation of eq. 109 is:

Z,(0)=d,; +1(1-i)8, (112)

Schmucker (1970) has used this formula to interpret
the surface impedance in a way which provides more
information than the apparent conductivity of Cag-
niard. It can be proved quite generally (Weidelt, 1972)
that the real part of Z(0) is the mean depth of the
in-phase current system flowing in a horizontally
stratified conductor, arid Schmucker has argued that
according to eq. 112 the depth d; + 38, at which
the current flow is concentrated is in a region whose
conductivity can be obtained (through §,) from the
imaginary part of Z,(0). Thus by measuring the sur-
face impedance for a number of frequencies and
using:

B*=ReZ1(0), o;'=2wug[ImZ,(0))2 (113)

to determine depth of current flow A* and conduc-
tivity o, respectively, Schmucker has found a re-
markably simple method of estimating the earth’s
conductivity at various depths.

Finally we consider a model in which the upper
layer has the greater conductivity. With the chosen
conductivity ratio ¢, /05 = 4000, the model repre-
sents, in particular, a sea of depth d,. Fig. 1A and
B depict how the amplitudes and phases of the ratios

Z,(0), S1(d,) and T((d,) depend on the depth d; of
the upper layer for different values of ». The curves
are plotted in dimensionless form with all lengths ex-
pressed in units of & ;. Thus they apply for all fre-
quencies and for all conductivities in the given ratio.
The impedance curves are similar to those plotted by
Price (1962), and reveal quite clearly how the as-
sumption that the source is uniform (¥=0) can fail if
the upper layer is shallow enough. This applies not
only to the highly non-uniform source for which
vd = 1 but also, albeit less markedly and for shal-
lower layers, to a source (v8,=0.1) which is uniform
over a much greater horizontal range than the skin
depth of the upper layer. However, if the model re-
presents the sea and the sources are of natural origin,
the parameters are such that the assumption v = 0 is
practically always valid (McCann and Price, 1965).
The value T (d;) describes the attenuation of the
horizontal magnetic field within the layer by ex-
pressing the field at the bottom as a fraction of its
surface value, and S;(d,) does likewise for the elec-
tric and vertical magnetic components. It is very ap-
parent that, whereas the horizontal magnetic field is
sharply attenuated even in layers of only a fraction of
a skin depth in thickness, the other components are
barely changed in shallow layers. When the layer
thickness exceeds 8, however, the skin effect begins
to take over and the attenuation of all components
becomes large. The greater the non-uniformity of the
source the less pronounced are these features, for the
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curves for §1(dy) and T(d) tend towards each
other as v increases. Price (1965) has discussed the
behavior of electromagnetic fields within seawater by
computing values of 4(2) and T (2) for a two-layer
earth in which he took o, = 0. His calculations for
different values of z and a particular value of v illu-
strate precisely how the field penetrates downwards
through the seawater.
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