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The theoretical basis of electromagnetic induction methods in geophysics is considered with special reference to
the interplay of physical ideas and mathematical arguments. The design of mathematical problems to elucidate ob-
served physical phenomena, and methods of solving them, are discussed. Earth models suitable for various types of
investigation are considered. The importance of getting the correct physical interpretation of the solution of a mathe-

matical problem is stressed.

1. Physical ideas and mathematical arguments

In this “Workshop on electromagnetic induction”,
our aim is to improve our understanding of the induc-
tion of earth currents by geomagnetic variations, and
thereby improve our techniques for discovering the dis-
tribution of conducting material within the earth by
measuring and analysing electromagnetic variation .
fields at the earth’s surface. We hope that this will also

assist us in our studies of the conductivity of the moon.

This introductory lectyre will be concerned only
with the theoretical side of this work. In theoretical
investigations we have two kinds of tools to help us:
physical ideas and anathematical arguments. By the
latter I do not mean merely the mathematical solutions
of specific problems, but also the mathematical pro-
blems to elucidate physicat phenomena. There is na-
turally much interplay between physics and:mathe-
matics in our subject. The mathematics is sometimes
elaborate and occasionally quite difficult, but I have
often found that physical ideas are a great help in sug-
gesting methods of solving the mathematical problems
that arise,

An important mathematical part of our subject
is concerned with deciding precisely how much we
can infer about the conductivity within the earth
from a given set of observational data, and with what
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degree of certainty we can make such inferences.

I shall not, however, deal with this so-called “inverse
problem”, but it will be dealt with by R.C. Bailey in
a later review. ’

1 shall confine myself to dealing with the mathe-
matically easier problem of calculating directly the
magnetic fields of currents induced in various earth
models by varying:geomagnetic sources. But let us
first remind ourselves that though mathematics is a
marvelously powerful tool for supplying the answers
in many of our investigations, it can also be a danger-
ous tool if we do not use it properly. One of the
dangers we have to guard against arises from including,
for simplicity or convenience, some feature in our
mathematical model of the earth, and then drawing
inferences about properties of the real earth from our
mathematical solution, whereas these deduced proper-
ties really stem only from the particular model we
have chosen. This probably happens more often than
we realise.

2. Basic ideas, equations and units

We are concerned with the flow of electric currents
through conducting media. The current flow J will in-
volve some net transport of electric charge, this trans-
port being impelled by the ambient electric field £
but impeded by the intrinsic strusture of the medium
and by its boundaries.
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The effect of the intrinsic structure is usually re-
presented by the specific resistance R, where:

E=R7t 1)

In most cases of importance R is independent of J,
i.e. the relation (1) is linear. For isotropic media R
is a scalar, for non-isotropic media it is a tensor.

The electromotive force, which is part, but not
in general the whole of E, usually arises from a
varying magnetic field, Also the current J has itself a
magnetic field. The relations between the field vectors
are of course given by Maxwell’s equations:

cul E=—-B=—_uHll )
culH=kJ+D 3
where:

D=¢eE G

The constant k in eq. 3 has the value 47 in c.g.s. elec-
tromagnetic units and the value one in M.K.S. rational-
ised units. Probably most papers to date on geomag-
netic induction have been written in c.g.s. electromag-
netic units but many are now written in M.K.S. units,
so I have written the basic equations in a form where
either system may be used. The really important dif-
ference between the two systems is not so much the
different values of k, but the difference in the physi-
cal relationships between D and E and between B and
H, leading to completely different dimensions and
numerical values of € and y in the two systems. In
free space, the dimensions and magnitudes of € and
uin c.g.s. and M.K.S. units are as given in Table I.

In conducting media the values of € and yu will of
course be different but are unlikely to differ much

in order of magnitude. It is important to notice the
small numerical values of e because this has an impor-
tant bearing on the interpretation of solutions of cer-
tain mathematical problems, as I shall show later.

TABLE 1
Dimensions and magnitudes of o and uq
&.8.8. units M.K.S. units

timensi jtude _dimensi fud
eo L2T? 10-% M-1L-31%0% 10-°
9 367

po dimensionless 1 MLQ™? 4n10~7

3. Approximations, simplifications and interpretations

In the usual geomagnetic problem the rate of change
of the field is sufficiently slow to permit us to ignore
the displacement current ) compared with the conduc-
tion current J in eq. 3. Thus even for conductivities as
low as 10717 e.m.u. (1076 MX.S.) a periodic variation
would have to have a period less than 1074 sec to make
D comparable with J, whereas the periods of the geo-
magnetic variations that we have to consider are usually
greater-than 1 sec and frequently much greater.

Neglecting D, we can often solve the induction pro-
blem by taking the curl of eq. 3 and substituting in it
the values of J and F given by eq. 1 and 2. Thus, taking
for simplicity u and'R to be constants and isotropic,
we obtain:

curl H=kR-1curl E =kuR-'H o)

and a similar equation for E, These equations can then
be subject to the relevant boundary conditions. Also
neglecting D in eq. 3 implies that we can take J as non-
divergent to the same order of approximation, and this
is frequently useful in obtaining the solution.

Note that in doing this we by-pass eq. 4 complete-
ly in calculating the values of H, F and J. But it is im-
portant to remark that, when we come to interpre-
ting and explaining the mathematical solution in
physical terms, eq. 4 is important, as I shall show la-
ter.

4. Global studies

We now consider some of the earth models that
have been used for studying the induction of currents
in the deeper layers of the earth, where it is assumed
that the conductivity k varies only with the depth.
The first simple model was suggested by Schuster in
1889 to explain the part of internal origin of the mag-
netic daily variations (S). It consisted of a uniformly
conducting inner sphere of radius g Rg withg <1,
Rp; the radius of the earth. In 1919, Chapman showed
that ¢ = 0.96, k = 3.6:10~13 e.m.u. gave results that
roughly fitted the relations between the fields of ex-
ternal and internal origin, found by spherical harmo-
nic analysis from the observed S-field.
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It was shown, however, in 1930 by Chapman and
Price that this model was not satisfactory for ex-
plaining the part of internal origin of the aperiodic. D¢
field, which required a higher conductivity at greater
depths. Hence Lahiri and Price in 1939 introduced a
more flexible model in which:

k=k (’a'—) m,a =¢RE, g < 1;m any real number
)
They found that, if they further elaborated their mod-
el by adding an outer shell near the earth’s surface
of integrated conductivity K, they could account
for all the observations available at that date, by either
of the distributions d or e shown in Fig. 1, or by any
intermediate distribution. Curve d corresponds to
K=210-6 em.u. - cm,g=1,k= 4-10-14 em.u.
m =37, and curve e to K = 5:10~6,¢4 = 0.9 and k and
m any values which make x> 10~11 The other curves
in Fig. 1 indicate other estimates of the conductivity
profile derived from studies of other geémagnetic
variations, but practically all these studies deal with
the first zonal harmonic P; only. It will be noted

-8
10 T T — T T

0%

6I
-]
T

o
L
Te

Conductivity in emu.

AAAAAAAA

Bl

VVWVYWWV

Montle
Core:

1 1 1 i

1000 2000
Depth (kqn)

Fig. 1. Conductivity profiles for the earth’s mantle suggested
by various authors,

that there are considerable differences in these sug-
gested profiles. I have given reasons elsewhere (Price,
1970) for thinking that some of these profiles are
unsatisfactory. It seems necessary to emphasize,
though it ought not to be, that every suggested pro-
file should be tested to see if it will fit every reliable
analysis of all type of variations.

There is, however, one feature common to all but
one of the suggested profiles in Fig. 1 which is worth
noting. This is the steep rise in conductivity with in-
creasing depth, somewhere between 400 and 800 km.
There are good reasons derived from studies of semi-
conductors at high temperatures and pressures for
expecting such a rise, and even possibly a sudden rise
due to a phase change at some particular depth. But
can we say with certainty that the geomagnetic evi-
dence alone can distinguish between these possibili-
ties? Let me remind you:that the first earth models,
Schuster’s and Chapman’s, necessarily incorporated
a sudden rise in conductivity for purely mathemati-
cal simplicity and convenience. How far have these
early models influenced our subsequent thinking and
our choice of new models? Some investigations ap-
parently claim that the conductivity profiles that
they have deduced from geomagnetic induction stu-
dies establish the existence of a phase change ata
certain depth, but, personally, while I think it prob-
able that a phase change occurs somewhere, I do not
believe that the geomagnetic evidence at present avail-
able can alone establish this fact incontestably.

Another feature of the above models that needs con-
sideration is the assumption that x depends on 7 only.
This is obviously not true near the earth’s surface, but
in the above problems we are interested really in only
average values of k over large regions of dimensions
comparable with those of the whole earth. We can
therefore treat k as some smoothed function of spheri-
cal polar coordinates (7,9 ) except possibly for finite
discontinuities at large-scale boundaries like those be-
tween continents and oceans, This average x' will
smooth out the immediately local variations of k.
Near the earth’s surface this average k will not be hori-
zontally uniform, i.e. it will depend on 8 and ¢ as
well as 7, and some investigators consider that this
may also be true in the upper part of the mantle. But
at depths greater than 100 km or so it is likely that
x will depend much more on r than on 8 or ¢ because
of the temperature and pressure effects. This is the
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justification for usingithe above models for slow varia-
tions and correspondingly deep probing.

There are of course the other global problems that
relate to the crust, in which the horizontal variation
of k is of first importance, much as in the different
conductivities of seawater and continental rocks. In
some of these problems it is useful to consider the
theory of currents induced in non-uniform thin shells.
The basic theory and some methods of solving cer-
tain problems were given by Price in 1949. These
methods included two iteration methods that afford
a good illustration of what I said earlier about using
physical ideas to suggest procedures for solving the
relevant mathematical problems. The current t in-
duced in a thin non-uniform shell by periodic varia-
tions of period 27/w> can be derived from a stream
function y, because J is (practically) non-divergent.
Price showed that { satisfies the equation:

R divgrad ¢ +grad R 'grad;b=iw(Ne+Ni) @)

where R is the variable sheet resistance and N¢, Nt

are the normal components of the induced and in-
ducing fields, respectively. Since the equation is

linear, ¥ can be regarded as made up of: (1) © due
directly to N¢, and (2) y! due to Ni, The latter repre-
sents the self-induction effect and when this is small
we can get a first approximation y¥; to ¥ by solving
eq. 7 with N1 = 0, The magnetic field of these currents
Y1, can then be calculated to get a first approximation
Ny to N1, anle can then be used in eq. 7 to get a
second approximation ¥, to ¥. This procedure can
obviously be repeated to get successive approxima-
tions. The iteration method thus suggested by physical
considerations is found to be convergent for sufficient-
ly small values of (oL /R, where L is a length determined
by the dimensions of the conductor and the spatial
scale of the inducing field.

On the other hand when wL/R is large everywhere,
the normal component of the induced field will near-
ly cancel with that of the inducing field, so that we
can start with V' i = — N°® as a first approximation.

We then calculate the current function y/; that will
give rise to. V], 1 and substitute this in eq. 7 to get a sec-
ond approx1mat10n N, i and so on, thus giving a second
iteration method. '

Important applications and extensions of these meth-
ods have been made by Ashour, Hobbs. Rikitake,

Hutson and others. Two iterations methods have

been recently described by Hutson et al. (1972) in
which successive approximations to the actual cur-
rent density J are obtained in terms of the vector po-
tential of the magnetic field and the scalar potential
of the associated electric field. Except for problems
having axial symmetry their methods become rather
complicated, but they can be transformed to give
iterative calculations for . When this is done, their
first method is seen to be identical with Price’s first
method, and with regard to their second method,
they have recently described it as one in which “es-
sentially the range of Price’s first method is extended”
This extension is particularly valuable when the distri-
bution of R is discontinuous.

5. Local problems and flat earth models

Apart from the above global problems, there are
other induction problems relating to strictly limited
areas of the earth’s surface. In these we can ignore
the sphericity of the earth and consider various flat-
earth models with horizontal strata having either uni-
form or non-uniform conductivities. The simplest
such model was that used by Cagniard in 1953 to
develop his “magnetotelluric method™ of conductivity
sounding. This model consisted of horizontal strata
extending to infinity in the x- and y-directions, the
conductivity being a function of the depth z only, He
defined the “apparent resistivity” for such a model
as:.

E
FJ; ,Where T'= 2{,— ®)
Actually this formula is derived from the skin effect
formula for alternating currents in a uniform half- -
space conductor, and is not directly concerned with
the source field of the magnetic variations.

When the resistance of the half-space conductor
is uniform the expression on the right of eq. 8 isa
constant for all 7. When the conductivity is a func-
tion of z, the expression is used to define the appar-
ent resistivity for the particular values of 7. Since
the currents penetrate deeper for greater T, the way
in which R, varies with increasing T gives an indica-
tion of the conductivity profile. The accuracy of
this indication will depend on how the Cagniard mod-
el fits the circumstances of the particular geophysi-

R, =2T
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cal investigation being undertaken. When we have a
sufficiently uniform terrain, the method is a con-
venient and valuable one for estimating the conduc-
tivity profile down to moderate depths. For great
depths, however, even when the horizontally homo-
geneous strata are extensive, it may be necessary to
consider the nature and dimensions of the source
field, discussed by Wait in 1954 and in more detail
by Price in 1962. In this case the theory does not real-
ly differ basically from that of geomagnetic deep
sounding in which the vertical component of H is
used, and E is not used. ‘

Other problems arise when the strata are not hori-
zontally uniform over extensive regions, but gradual
or sudden changes of conductivity occur. We now con-
sider these briefly.

6. Local anemalies of magnetic variations

There are two important types of induction effects
arising in geomagnetic variations that are due to the
non-uniformity of the earth’s crust. One is concerned
with coastal and island effects arising from currents
induced in the sea, and we have briefly reférred to this
in § 4. The other is congerned with land areas (not nec-
essarily near the sea) where the normal geomagnetic
variations.such as the daily variations and various dis-
turbance variations like bays and pulsations are over-
lain with distinctiveilocal features. In such areas the
vertical magnetic variation, in particular, is often de-
cidedly anomalous. Rikitake first called attention in
1952 to such an area in Japan, and in the last twenty
years many others have been found in all parts of the
world.

The study of these anomalous areas has become a
very important part of our subject since it may reveal
considerable information about subterranean geologi-
cal features, but it was some time before really satis-
factory interpeetations of the anomalous observations
could be obtained because of the difficulty of solving
the mathematical problems involved. I attempted to
describe the general nature of these problems in 1962,
and I then said of them “These may prove laborious
to solve, but it is to be hoped that eventually a library
of solutions of relevant problems will be available.
This would help the task of interpreting many geomag:
netic variation phenomena.”

During the last decade, the advent of large modern
computers has made the solution of many of these
problems possible, and excellent progress has been
made in.esigning and solving mathematical problems
to elucidate the phenomena. Several mathematical
and computer techniques have been developed for
this purpose. I need not describe any of these here,
but I should like to refer to the solution of one parti-
cular problem obtained by Jones and Price (1970),
because it raises the question of the physical inter-
pretation of the mathematical solution, which has
led to some controversy, and will illustrate some of
the points I have made earlier.

7. Induced currents that go astray

The problem concerns the perturbation of alter-
nating currents flowing in a half-space conductor oc-
cupying z 2 0, by a vertical discontinuity of canduc-
tivity at the plane y = 0. The current flow at an infinite
distance from the origin will be horizontal and distrib-
uted according to the usual skin effect. This current
flow at infinity can be separated into two components,
one flowing in the x-direction and one in the y-direc-
tion and the total perturbation effect can be calculat-
ed by superposing the effects on each of these com-
ponents, We consider the case when the current flow
at infinity is in the y-direction, so that the currents
will impinge on the plane of discontinuity y = 0. This
will correspond to H-polarisation, i.e. the magnetic
field lines will all be parallel to the x-axis. In the
neighbourhood of the discontinuity the currents will
be disturbed but will always flow in planes parallel
to x = 0. The differential equations and boundary
conditions of the problem were solved numerically.
The solution shows some remarkable effects of the
discontinuity on the surface values of £, but H
outside the conductor is uneffected by the disconti-
nuity. These surface field results agree in character
with those found by d’Erceville.and Kunetz (1962)
from an analytic solution. However, one method of
solution also enabled us to find the field and current
flow inside the conductor, and Fig. 2 shows the lines
of current flow for one particular epoch during the
period of oscillation. For the epoch shown the flow is
from left to right, from the conductor k ; to the conduc-
tor k, where k.= 10 k. It will be noted that our solu-
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tion shows a significant downward turn of the current
lines as they approach the boundary and a sharp refrac-
tion at the boundary. What causes the currents to stray
from their straight and horizontal paths that they
follow at distances well away from the discontinuity
in k? We say that the cause of this — the villain of the
piece! — is an alternating surface charge being contin-
ually placed on the boundary by the impinging cur-
rent as shown in Fig. 1. It is this suggestion that has
aroused some controversy. We argue that the electric
field of this surface charge, which is quite minute
if'measured in coulombs, has nevertheless an elec-
tric field comparable with the other electromotive
forces in the problem. The normal component of this
electric field opposes the extraneous field £ in the
better conductor k; and adds to it in the other cons
ductor k,, thus effectively (but theoretically not
quite absolutely) equalising the normal components
-of current flow across the interface. Also the surface
charge is greater at the upper end of the interface
because the impinging current is most intense
there due to the skin effect of the horizontal up-
per surface. This produces a net-electric force £,
downwards, which bends the currents down as in
the figure. Also, if we take for simplicity . the
dielectric constants € to be the same in the:two con-
ductors, we have £, , = —E,, = E,, say, so that the
resultant horizontal fields in the two conductors are
Ey —E, and Ey + E, , while the vertical fields are the
same. Hence the lines of electric force, and therefore
also the current lines, are refracted at the interface

as shown in the figure.

Fig. 2. Current lines and surface charge distribution:near a vez-
tical plane of discontinuity of conductivity.

Now the above conclusions all rest on the argument
that a surface distribution of charge is brought into
existence at the interface. This, however, has been
queried and indeed denied by some investigators (see
for example Jones and Price, 1972). This is not really
surprising because the equations used to solve the
problems, i.e. eq. 1, 2 and 3 together with the boun-
dary conditions, contain no explicit reference to any
charge distribution, and when the displacement current
is ignored, eq. 2 shows that the qurrent becomes non-
divergent. Evidently, if the villain is a surface charge,
he is well hidden! We can now discover how he is

. hidden. Firstly, the electri¢ field of a charge distribu-

tion is a gradient vector and the curl of &gradient vec-
tor is zero. Hence by taking the curl of E in eq. 2 we
have already hidden any part of E due to a charge
distribution. But we still have the difficulty that there
can be no charge accumulating anywhere because J

is non-divergent. This, however, arises from our as-
sumption that the displacement current can be ignored,
compared with the conduction current, which is
certainly true for the time-rates of change involved.
But our assumption that we can ignore D must of
course imply that we can ignore any current of the
same ordér as D. Now if a surface charge of density p
is built up on the intertace, we have:

Dln +D2n=p (9)

and therefore the current extracted from 7,, to build
up p is:

N —J2n=i=D1n +D2n ‘ (10)

n
which is of the same order of magnitude as the dis-
placement current and can therefore be ignored. Never-
theless, the electric field of the surface charge is not
negligible, because, for example, E¢,, = e;l Dy,
and the very small values of € mentioned in § 2 en-
sure that the electris field of the charge itself is com-
parable with that due to the applied e.m.f. driving
the currents, in spite of the fact that the magnetic
field of the extracted current to build it up is nepli-
gible.

One further point that I would like to emphasize
is that the current produced by the electric field of
the charge distribution is a true conduction current,
proportional to the conductivity of the particular con-
ductor. It is not a displacement current as some in-
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vestigators have suggested. This misconception has
probably arisen from eq. 10 which shows that the
current required to setuyp the charge distribution can
be expressed in terms of displacement currents, but
the current arising from:the electric field of this distri-
bution is of a quite different character.

The reader may perhaps feel that I have rather la-
boured the above discussion of interpretations unnec-
essarily, but I have found so many misconceptions
about these physical ideas that it seems to me de-
sirable to clarify the physical picture as much as pos-
sible.

8. The moon and beyond

The induction methods developed for probing the
earth’s conductivity are now, of course, being applied
to the moon, and will probably soon be applied to
the planets. It is interesting to note that already a
number of quite different conducting profiles have
been suggested for explaining various features of the
Apollo magnetometer results. The history of the in-
vestigations of the earth’s conductivity would lead us
to expect this, and we can probably learn much by
studying that history. Undoubtedly our aim must be
to ultimately find a model that will fit al the avail-

able experimental data, and then to decide how accu-
rately and with what degree of certainty, we can de-
fine that model. I will not discuss this further, but I
would like to end with a “‘Cautionary Tale”. In the
preface (I think it was, but it’s a long time ago since

I read it) to one of Heaviside’s volumes on Electro-
magnetic Theory, there is a tale about a mathematician
who went slightly mad, and was greatly affected by
the moon. He was so madly obsessed with the moon,
that he made a beautiful model of it, and then he be-
came convinced that hig model was the real moon,
and the thing in the sky merely a figment of the
imagination! Need I say more than‘“Mathematicians
beware of being seduced by your beautiful models!”
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