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ABSTRACT

The Generalized Magnete-telluric Methed

by

Antenie de Seussa Neves

Submitted te the Department of Geelegy and Geophysics en August 19,
1957, in partial fulfillment of the requirements fer the degree of

Decter of Philesephy.

The magneto-telluric methoed fer the determinatien ef earth cen-
ductivity at depth has been extendéd frem layered media te arbitrary
media, in particular 2 dimensional geometries. By using geegraphical
coverage in the measurements and a semi-quantitative transform te plet
the data, the interpretation of sub-surface structure is made pessible.
A finite difference method has been develeped te treat electromagnetic
wave propagatien in any two dimensienal formatien. In the particular
case of an inclined layer or composite wedge a formal analytic selutien
was alsc obtained. Several inclined layer examples were solved by the
finite difference method and the geophysical significance of the
results considered. These results agreed generally with those of
laberatery scale model experiments.

The magnetc-telluric methed consists in finding the impedance

nermal te the earth's surface by measuring, at several frequencies,

the horizontal compenents of the electric and magnetic vecters of the

magneto-telluric field, a naturally occurring electromagnetic field that
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can be described in terms of plane waves incident on the earth. By
using geographical coverage in the measurements and a semi-quantitative
transform te plet the data the interpretatien of sub-surface conductivity
is made pessible, In the case of inclined layers the semi-quantitative
transform possesses characteristics that permiththe identificatien

of the geemetry invelved. Data obtained theoretically and from the
laboratery scale model experiments illustrate these features.

A finite difference method has been develeped to treat electre-
magnetic wave propagation in any two-dimensienal geological formatiens.
This method is made pessible by the unifermity of the earth's surface
of the electremagnetic vector eriented parallel te the strike of an
arbitrary 2 dimensional structure and by the relatively strong
attenuatien of electromagnetic waves within the earth. The selutien
was carried eut by relaxatien precedures.

In the particular case of an inclined layer or compesite finitely
conducting wedge a foermal analytic seclution was alse obtained. It
censisted in starting from a general integral soclutien appropriate
for a wedge space and transforming it inte a set of singular integral
equatiens by satisfying the boundary conditions en the compesite wedge.
This system of simultenecus singular integral equatiens was selved then
by inversion through the use of Kontorovich-Lebedev transforms. The
final solutien is presented in integral form.

A few examples of the respense of inclined layers, computed by the

finite difference method, are presented. The angle of dip, rather than
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the conductivity contrast, determines the distance frem the strike within
which the inclined layer affects the uniferm field. Measurements eof
magnitude and phase angle, taken separately, may lead to confusien
with layered media; simultaneous recordings of both quantities av.id
the possibility of mistaken interpretation. Sea effects on the magnete~
telluric field have also been shown te resemble the respense of conductive
substrata whenever magnitude alene is measured.

A repert en laboratory scale medel work has been included. A small
oene cubic foet tank was used. The model material consisted ef brass
and brass filings. The plane wave field was simulated by having
current fed through twe slightly buried herizental rods, lying at
epposite edges of the tank. Data fer a vertical layer medel and fer
a buried cylinder medel is presented. These results show the same
general behavier as those cbtained by the finite difference methed.
Alse, frequency respense, heating, electremagnetic ceupling and ether

preblems associated with the model material are discussed.
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CHAPTER 1

SUMMARY AND HISTORICAL REVIEW

1.1 Summary

The magneto-telluric method is a geophysical procedure for the
determination of the sub-surface conductivity, especially at great
depths. The name magneto-telluric field was ceined by Cagniard (1953)
te distinguish the short period variations (about 100 seconds amd less)
of the earth's electric and magnetic field, which exhibit electro-
magnetic characteristics, from the long term oscillations which are
in the nature of static fields. No restrictiens regarding the
oerigin of the radiation are implied; all phenomena having electromeg-
netic properties are included. The main centributiens te the magnete-
telluric field seem to arise from electromagnetic waves generated by
ionospheric current sheets and by lightning discharges. The first
produces & very lew frequency spectrum with the most intense components
in the 0.01 to 1 cycle range (Cagmiard, 1956) the second results in
oscillations im the audio range.

Extensive measurements peint te the large scale uniformity ef the
megneto-telluric field (Schlumberger & Kunetz, 1948; Kumetz, 1953,
1954) and calculations by Wait (1954) lead us te expect such behavier.

The unifermity of the magneto-telluric field over large areas
permits one to analyse the field by considering plane electromagnetic

waves incident on a plane earth. The geometry of the ionospheric layers
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and the frequencies of interest allow us to neglect the earth's
curvature. In other words, we are concerned with rather lecal effects.
In investigating the behavior of plane wave fields in the earth,
the enormous contrast between the magnitudes eof the constant of
propagation of electromagnetic waves in the air and in the earth
materisls, plays an important role. Because of this contrast, no
metter what the angle at which the wave may incide on the earth, the
refracted wave will propagate essentially vertically down. Such
property makes feasible the study of the magneto-telluric field
without having to track down the radiation sourees, which would be
an imposeibility. As far as the earth is concerned, all the wave
may have come at a normal incidence. Further, still by virtue of the
contrast in the propagation constants, the current flew across the
earth's surface is negligible., Therefore, if we have current flow
perpendicular to the strike ef a two dimensional geolegical structure
(that is, the magnetic vector polarized parallel to the strike), then
the surfece magnetic field is constant, even over regions of changing
conductivity. If instead the current flow runs parallel te the strike
of the two dimensional structure, then it is the electric field that
remains constant at the surface. These results may be summarized by
steting that when a plane wave incides on a two dimensienal geolegic
structure, the vector compenent parallel to the strike of the structure
is constant at the earth's surface. The importance of these results
in mathematical analysis is evident and indeed it contributed to
restrict the scope of this work to two dimensional structures: Im
practical geophysics these properties sound a warning against trying

te detect buiied structures by measuring the field polarized parallel
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te it, either electrical or magnetic.

This group of results simplify further the problem of analysis
of the magneto-telluric field over one or two dimensional geolegic
formations. We had seen previously thet we could study it by learning
about the behavior of plane waves incident on & plane earth. New we
see that we don't even have to consider the field in air. No matter
what the geometry eof the changes in conductivity, the surface
polarized field will be constant and therefore we have to deal only
with the propagatioen of electromagnetic waves within the earth.

At this peint, we may introduce the basic ideas of the magneto-
telluric method as developped by Cagniard (1953). The magneto-telluriec
method could be called the impedance method because in fact it consists
in ebtaining the impedance normal to the earth's surface by measuring
the horizontal electric and magnetic fields. This concebt of impedance
of a region of space, although analegous to that of impedance of an
electrical circuit is not as familiar. Usually we define impédance
normal te & surface separating two media as the ratio of the tangential
electric intensity to the tangential magnetic intensity (Schelkunoff,

483, 1943). For a plane wave on a uniform earth, it is given by

£ R/
_'_:‘_z_ = [N . ‘e (1-1)
% Y=o o

where y increaseg with depth and the earth surface is defined by the
plane x-z at yz O, As we see in (1-1), the ratio of E;/Hx gives us
the conductivity @ of the medium because the ;o of geolegic materials
can be considered constant and the radian frequency w) is known.

Plane waves are attenuated exponentially within an uniferm earth

and in some complicated memmer in a non-uniform earth. Since this
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attenuation becomes stronger for higher frequencies, by measuring E/H
at several frequencies we sample the conductivity at different depths.

An estimate of the depth measured is afforded by the skin depth p,

= 2 -
P J;—;r (1-2)

The main contribution to the apparent conductivity measured at the
surface comes generally from depths y such that y << P/z

The generalized magneto-telluric methed is the extension to an
arbitrary earth of the concept of impedance normal to the earth's
surface, employed by Cagniard (1953) in the analysis of a horizontally
stratified earth. However, as mentioned earlier, this investigatiem
will be restricted to two dimensional geometries.

While the one dimensional problem treated by Cagniard needed
only a spectrum of frequencies at one location, in two dimensional
structures we will need coverage along a line perpendicular to the
strike of the structure. At each successive points of this line,
measurements at a spectrum of frequencies are made, so that the vertical
and horizontal changes in conductivity may be detected.

Until some progress is made in the quantitative approach to the
interpretation or inverse boundary value problem, we will have to use
a mapping device to get a picture of the sub surface. A way in which we
may accemplish this is by plotting the apparent resistivities at
several frequencies, under the measuring point at a depth equal to
the skin depth for the frequency in question. An example of this type
of interpretation map is given in fig. 2-6.

The legical starting point for an investigation of two dimensional

geological structures is the problem of inclined layers. A diagram
of this type of geometry is shown in fig. 3-3. Although the simplest
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case of two dimensional change in electrical parameters, this problem
belongs to a famous class of problems of mathematical physics, knewn
ag the finitely conducting wedge problems. These problems have remained
not only unsolved, but actually impossible of setting up explicitly.
The reason for this situation resides in the nature of the solutiom
of the Helmoltz equatien

Viw+ku =0 (1-3)
in cylindrical coerdinates r, ® and z. The face of the wedge are
planes z - ¢ , so that in an inclined layer problem ('which is a
composite wedge) the earth's surface is given by ¢=0and ¢=T
and the dipping bed is at ¢ = & . New the general solution of

equations (1-3) is in terms of Hanekl and trigonometric functions, namely
(A, ¢) — H“)(Kn)[A(m)sin mo + B(m) cos m¢J (1-4)

The problem is to match uy (corresponding to (1-4) in medium ef
propagation censtant kl) to u, eleng a boundary ¢= o, in order te
determine the functionals A(m) and B(m). It turns out that the
solutions cannot be matched at a constant ¢ boundary, becsuse the Hankel
functions have different arguments from one wedge to the other. Or
rather, in erder to match solutions, A(m) and B(m) would have also te be
functions of r which of course cannot be.

These obstacles were managed Sy starting out with an integral
solution for the seolution of the Helmoltz equation based on Dougall's
(1899), Green's function for a wedge space. This solution consists
of an integral over the order of the Bessel functions to account for

the fact that the dipping layer may assume any angle,
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(-]

u(, =#J Kis (xf)[A(s) cosh s¢ + B(S) sinh 5#] ds (1-5)
o
where X"i“ and Kiy 1is the modified Bessel functions of first kind.

We will have of course one solution w, for one side and a solutien u,
for the other side of the dipping layer geometry. Since we cannot
match integrands for the reasons discussed in the previous paragraph, we
match integrals and satisfy the conditions,

u=constant at the earth's surface, i.e., $=Oand d>=1T

a‘_"":
26 P
Introduction of the two integrals like (1-5) (one for u, another fer u, )

ozu'l-
DUL } at ¢=q (1-6)

inte the above equations, yield a system of 4 singular integral
equations in 4 unknowns A(s), B(s), C(s) and D(s).

This system is then solved by the repeated use of Kontorevich
Lebedev transforms (N. N. Lebedev, 1946) to invert the system of integral
equations into integrals which give explicitly the functionals A(s),
B(s), C(s) and D(s). The final solution for the field over an inclined
bed is given in equations (3-82) and (3-83) in terms of integrals.

The cumbersomeness of the analytical approach and its downright
impossibility when we need to analyse more complieated geometries
led te the development in chapter IV, of a finite difference treatment
which can be used on any 2 dimensional geological structure. The
difficulties arising from the fact that the solution to the Helmoltz
equation (1-3) for wave propagation in the earth is a complex number,
are taken care of by splitting the Helmoltz equation into a system of

twe differential equations in two unknowns,
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- K! =0
VA- B (1-6)
ve +k'A =0
where u=A +1B and k'? is reel and equal to w0 . The system

(1-6) is then converted te finite differences as

4

> Ai-4A,- KRB, =0

]

i B - 4B, +K'hA, =0

i=
and several boundary value problems of interest in connection with
plane waves incident on the earth are solved by relaxation techniques
(the reader is referred to figs. 4~4 and 4~5 for the mechanism of the
relaxation operators).

The use of finite difference methods is fessible on account of
the uniformity at the earth's surface of the pelarized field as well as
on account of the streng attenuation of electromagnetic waves within
the earth. In this way we know that the field is constant at the
earth's surface, that it behaves in a known manner at a sufficiently
far horizontal distance from the region of changing conductivity and
alse that it becomes "zero" at depth (to the accuracy carried in the
finite difference calculatien). This gives us a set of homogeneous and
inhomogeneous Dirichlet conditions around a clesed boundary which
make the problem determined.
The finite difference technique was applied to the solution of a

set of inclined layer problems. These covered the three dipping angles

of 45%, 90°, and 135°, and for each inclinatien the electrically and
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magnetically pelarized solutions were obtained. The conductivity contrast
was 4. Two other examples dealing with vertical beds, one in contact
with an infinitely eonducting medium, the other in contact with & non-
conducting medium, were also solved to give us an idea of the behavier

of the field for very high conductivity contrasts.

The inelined layer problems were chosen because their finite difference
solution is mere general than that of preblems involving finite boundaries.
Known their reponse at one frequency, we can deduce from it the response
at all frequencies (conductivity contrast and angle of dip being conatant).
In effect, if we plet the apparent resistivities at successive frequencies,
at a depth equal to the depth of penetration, all the lines of equal
apparent cenductivity will go through the strike of the inclined bed.

This afferds an interpretational procedure for such structures.

Using the solution for the vertical layer im contact with an
infinitely conducting medium as the medel, a study was made of the
effect of the sea coast on the apparent resistivity inland. It was
found that increases of the order of 2% on the apparent resistivities
occur between kr=2.5 and kr=1.5, k being the propagatien constant and
r the distance from the measuring station to the sea. When kr becomes
smaller than 1.5 the apparent resistivities fall very repidly. This
response may simulate very clesely that of a two layered sarth with a
very conductive substratum.

The results for the inclined layer cases showed that the magneto-
telluric field remains unaffected at a kr of 3.5 from the inclined
layer contact, either for magnetic or electric polarization. Each

pelarization showed distinetive features.
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As we go across the inclined layer from the resistive to the
conductive side, electric polarized waves usually proeduce just a gradual
change from the apparent resistivity of one medium to that of the other
medium. However, small effeets, towards higher resistivities on the
resigtive side and lower resistivities on the conductive side preceed
and follew, respectively, the gradual transition of apparent resistivity.

For magnetic peolarization, as we approach the strike from the
resistive side, the first effect felt is usually a lewsring ef apparent
resistivities around k= 3. This develeps in a minimum of apparent
resistivity which‘appears to become stronger for shallower angles (by
this we mean that the acute engle is on the resistive side). As we
proceed toward the boundary of the media, we run next into a zone of very
large apparent conductivities. For 45 and 135% inclined layers the
apparent resistivities in this region were about twice that of the
resistive medium; for vertical beds the effect is smaller. Finally, as
we cross inte the conductive medium, the apparent resistivities take values
slightly smaller than the resistivity of the conductive medium. These
effects disappear at a kr of 3 away from the strike, on the conductive side.

The results from the problems with infinite contrast show that the
conductivity contrast does not affect very much the lecation of these
regions of changing conductivity; rather, it is the inclination of the beds
that contrels them.

In the appendix some modelling results are reported. A scale model
of a vertical layer and another of a buried cylinder were run with considerable

success. The data obtained confirms, where it is pertinent, the finite

difference results .
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1.2 Historical notes

This investigation concerns primarily a geophysical method but
the main problems pertain to mathematical physics. Consequently,
its historical background lies both in geephysics and in mathematical
physiecs.

The besic ideas of the magneto-telluric method are a recent
development. They seem to have been motivated (Cagniard, 1956) by
the lack of correlation between the predictions of the spherical
harmonical analysis of the earth's magnetic field due to Schuster
(1889) and Chapman (1919), and the actual measurements at a number
of observatories. This fact and the increasing better knowledge of
the properties of geologic moterials led to the realization of the
important role played by local geologic structures. Almostsimultaneously
while Tikhonov (1950) called attention for the possibilities of the
method as a tool for exploration of great depths, Kato and Kikuchi
(1950) mede some measurements of the phase angle between the electric
and the magnetic field and showed that they could arise from
electromagnetic propagation on a two layer earth. A year later, in
one -of his series of papers on the electrical state of the crust,
Rikitake (1951) showed that the electrical properties of the earth's
crust could be determined by analysing the changes in telluric
currents and in the geomagnetic field. The following year saw the
publication of another article by Tikhonov and Lipskaia (1952)
giving results for a two layer earth with an infinitely conductive

bettom layer. Lipskaia (1953) in a later paper elaborated the previous
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results and showed that they agreed with the data of the observatories
at Tucson (Arizona), Toyokhara (Japan), and Zuy (Eastern Siberia).
Finally Cagniard (1953) published a very comprehensive paper on the
magneto-telluric field over a horizontally layered earth, including
methods to deal with the interpretation problem. He alse pointed out
the possible usefulness of the method as an sxpleration teol.,

Since then there has been censiderable activity in the study
of the magneto-telluric field. Papers by Bondarenko (1953, 1953)
dealt with the electromagnetic nature of the phenomena. 1In the U. S,
work i1s or has been in pregress at the Institute of Geophysics of the
University of California, at the California Institute of Technelogy
and at M. I. T. The studies at M. I. T. have already produced

preliminary instrumentation fer field measurements (Cunningham, 1957)

In this thesis an analytie formal solution was found te the
problem of dipping beds and a way of handling arbitrary two dimensional
geometries was developped through the use of finite differences. The
first problem is related to & whole series of famous problems in the
theory of the diffraction, which are sometimes known as wedge preblems.
A particuler case, the diffraction of electromagnetic wave by an
infinitely conducting half plate was solved originally in a most
ingéneous manner by Sommerfeld (1896). Since then a few different
ways of approaching the problem have been developped (Konterovich and
Lebedev, 1939; Clemmow, 1950; Stakgold, 1954; etc.) The more general
problem of a diffraction by a perfectly conductive wedge has been

solved rather recently by Grinberg (1948), Nomura (1951), Oberhettinger
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(1954). At the same time the radie engineers have been trying te
analyse the behavior of radio waves as they go over regions of dif-
ferent conductivities. Besides a number of empirical efferts successful
approximate and exact solutions have been obtained by Gunberg (1943),
Alpert. and all (1953), Bremmer (1953), and Clemmow (1953). Hewever,
in general their work cannot be adapted to eur purposes because the
high frequency of the radio waves allews them to relax boundary
conditions at the contact of two media, a procedure that we cannot
follew in our case. The type of solution obtained in this text is
different from all menticned above except for the fact that we start
from Dougall's (1899) Green's function which has also been used in an
orthodox fashion by Oberhettinger (1954) in his problem.

As to the finite difference approach to electremagnetic propagation
in arbitrary two dimensional structures, to the best knowledge of the
author it has not been considered in the literature. However, the
solution of systems of difference equations by relaxatien methods

is mentioned by Shaw (1953) and Allen (1954).



CHAPTER II

GENERAL PROPFRTIES OF PLANE WAVE FIELDS IN THE EARTH AND THE

MAGNETO-TELLURIC METHOD

2.1 The electromagnetic nature of the magneto-telluric field.

It is important to emphasize from the start that the magneto-
telluric field is an electromagnetic field. This is just a statement
of the scale involved, but it helps in putting the problem in its
proper perspective.

Early workers were not aware of this fact and their ideas have
not died down completely. Some thought that the variations in the
magnetic field were the Biot-~Savart field of the telluric (electric)
currents in the ground. As such, both the electric and the magnetic
fields should be in phase. Another group attributed the telluric
currents te a rather simple case of induction by the existing magnetic
field. Accordingly, the fields might be expected to be 90° out ef
phase. As we shall see, theory and experiment do not bear out these
ideas.

The old hypothese can only be explained in terms of lack of data
regarding the electrical properties of earth materials as well as
to the scarcity of simultaneous measurements of the electric and
magnetic fields of the earth. The oscillations to which the magneto-
telluric method applies have periods of the order of minutes and shorter,

up to a few hundred cycles. We know that the conductivities of rocks
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vary anywhere between 101 to 10'5 mhos/meter. The propegation of an
electromagnetic wave of frequency w in a medium of magnetic permeability

/M- and conductivity ¢ can be described by a Helmoltz equation.

Viu+k? u=0

where k2:=1/ugc(disp1acement currents neglected). The early ideas of

static fields involve the assumption that k, the propasgation constant,

can be neglected and the fisld deseribed by laplace's equation. With

the frequencies and conductivities in question, it is clear that we

cannot do this without mutilating the problem. This a priori conclusion

regarding the electromagnetic character of short period variations

of the electric and magnetic field in the earth has been confirmed

by an ever increasing amount of data (Schlumberger & Kunetz 1948;

Kunetz 1953, 1954). Among the most salient and diagnostic features

are (Cagniard, 1956):

a. similarity of simultaneous recordings at places separated by
thousands of miles (Madagascar, France, and Venezuela).

b. at the same time and place frequency spectrum ef electric and
magnetic cemponents is identical

c. uniformity of telluric currents over large areas.

d. the phase angle between the electric field vector and the magnetie
field vector, in a given place, are function of period.

e. Ceorrelation of magneto-telluric activity with Sun and auroral activity

On the basis of these characteristics, the origin of the magneto-
telluric field is thought to be the motion of large current sheets in

the ionosphere. The electromagnetic waves of very large wavelength (as
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compared with the Earth's size) generated by these planetary currents,
upon inciding on the earth are reflected, refracted and diffracted

by geoleogic structures. It is the aim of magneto-telluric method

to deduce from the patterns of the surface electromagnetic field

the nature of the sub-surface material.

2.2 Uniformity of telluric current sheets.

The question of the uniformity of the magneto-telluric field
has been examined criticelly by Wait (1954). By setting up the field
in the form of a spectrum of plane waves due to an aperture |
distribution, he has shown that if the magneto-telluric field were
due to a dipole at about 100 km. high, uniformity might be expected in
a range of 35 km., at a frequency of 1 cycle. This is of course, the
most unfavorable situation possible. As Cagniard (1953, 1956)
has pointed out repeatedly, everything leads us to believe that
the magneto-telluric field is not set up by isolated dipoles ever
our heads, but rather by large current sheets of global scale. And
the fields set up by such large ionospheric motions are bound to be

uniform and resemble plane wave fields.
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2.3 General properties of plene wave fields in the earth

From the previous sections, we have seen that the magneto-telluric
field is a plane electromagnetic field. Here we will consider certain
general features of such fields in two dimensional geolegical structures.
The results are of great importance not only in simplifying the
mathematical analysis, but also in bringing to light some unfavorable
conditions for field measurements.

The two dimensional geometries in question are those of interest
in geophysics and therefore are always bounded by the earth's surface
represented by & plane x-z at y=so. All crossections x-y of the structures
are identical (see fig 2-1). The impinging plane waves will be arbitrarily
oriented.' However, for purposes of analysis, we will consider such an
arbitrary wave to be the sum of two polarized waves: one, which we
will call magnetically pelarized, will have the magnetic vecter
oriented en the z directiom, that is along the strike of the structure;
the other, which will be called electrically pelarized will have the
electric vector aligned on the z direction also. By superposition,
we may combine these two waves to reconstruct any arbitrarily inciding
plane wave. However, for the purposes of this work we will consider
separately solutions for magnetic and for electrle polarizatien.

The results to be shown refer to the arbitrariness ef the angle
of incidence and to the uniformity of the surface polarized electro-
megnetic field., The first emphasiszes the rather well known fact that
for the earth and at the lew frequencies of interest in geophysies,
no matter what the incidence of the plane electromagnetic wave, it
will propagate essentially vertically down. The second property is

rather surprising, and it consists in the fact that the polarized field
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(electrical or magnetic) will be constant at the earth's surface, even
across regions of changing conductivity.

The importance of these properties is evident. Mathematically
it enables one to set up the problems dealing with propagation of plane
waves in the earth without reference to air, because instead of
continuity conditions at the earth's interface, we have inhomogeneous
Dirichlet econditions. The saving in algebra and mathematical dif-
ficulties is sizable. Further it makes possible the use of the
rather straightforward finite difference method developped in chapter
IV. From the practical viewpeint it sounds a warning against electrical
measurements over two dimepsional structures when dealing with
electrical pelarization, or magnetic measurements if by any chance
magnetic polarization exists; in both cases any sub-surface structure

would go undetected.

2.3.1 Arbitrariness of angle of incidence.
If we compare the propagation constants for air and for the earth

materials we have respectively

kgyp¥10-9

Kearth™ 1074
Consequently, the phase velocity of an electromagnetic wave in air
is much greater than in the earth. If we have an incoming wave at any
incidence, in order te have continuity of electromagnetic components
across the earth's surface, the refraction at the interface forces the
wave in the earth to propagate essentially vertically down. The use,

fer exsmple, of Snell's law gives a quantitative idea of how close to
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the normal the angle of refraction is. If 4; is the angle of refraction
in the earth, q> the angle of incidence, and k and X! the propsgation
constants for air and earth, respectively (angles measured from the

normal to the surface),

sinc#:% sin ¢ (2-1)

From equation (2-1) we see that even if d: is a grazing incidence (making
sind~1), k/k} is of the order of 10-5 . The angle vhose sine is
10~° is around a hundreth of one degree, and this is how far from the
vertical the wave propagated in the earth will ever get. ’

The advantages of this situation are evident. Even if we have
weves inciding simultaneously at several incidences, the field inside
the earth will never know it. As far as the earth is concerned, all
the waves may have incided normally and since previous sections have
brought out the uniformity of the magneto-telluric field over large
regions, we are free to study the phenomena by considering models with

normally incident waves.

2.3.2 The uniformity of the surface magnetic field
Iet us assume a magnetically polarized plane wave inciding upen
a two dimensional structure (see fig. 2-1). The magnetic vector can be
described by one compoment aleng the z axis, H, ; both Hy and Hy are
zero. The electrical vector however, will have components E, and Ey .
As shown in 2.3.1, k (earth) »> k (air). So we may consider the
propagation constant k for air equal to zero in comparison with the

propagation constant for the earth. Then, there will be no vertical
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current flew at the surface of separation of air and earth and the
normal component of the electric field, Ey , will be zero there.

In order to make the discussion shorter, let us assume we are
dealing with a fault, with the understanding that the results are
applicable to any two dimensional structure. The fault will separate
two regions of different conductivities and propagation constants kj
and k, . New, wery far away from the fault boundery the field will
behave like over an homogeneous uniform earth. Accordingly, it can

be described by

T
d Ha + k“Hz =0

Qy‘
or explicitly by
tk
f*z,’= Ce 2 as X —> ~ po
tk
HZZ"'CL ly as 7‘"‘ d +OO

where the subscripts refer to the medium in which the field is being
considered. The corresponding total current at these points will be

given by
I-_-J H. ds
c
If we take a unit width of our structure and integrate the far away

magnetic fields through a path C as shown in fig. 2-3, we will have

at the surface
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[ )

Iz_"—J szaz =C2.

Now, since there is no current flow across the air-earth interfeace,
there will be conservation of total current. Therefore the current

flow across any crossection y-z is constant and we have

11‘3 I
Cl= Cz

We may conclude then that the surface magnetic field, in the case

of magnetic polarization, is constant, even across regions of changing
conductivity. This property is restricted to two dimensional geologic
structures. It may be added that the condition of no normal current
flew corresponds to the vanishing of the tangential derivative of the

magnetic field at the earth's surface. i.e. in cartesian coordinates

E norna1=:°
E:‘;A;'?z‘_i-’ctn'li

QO

E _ipw JHaz.0
kl

nermal -~ %

vhich together with the electromagnetic boundary condition of continuity
of tangential H at the boundaries of different media, furnish an
alternative proof. If the surface magnetic field is uniform in both
sides of the faﬁlt and is required to be continuous s&cross it, then

the field has to be uniform and equal over all the surface.
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2.3.3 The uniformity of the surface electric field

From the invariance of Maxwell's equations to the exchange of
E and H vectors in a constant physical setting, we might expect to find
for the case of electric polarization a property identical to the one
found for magnetic polarization in the previous section.

Considering again for simplicity the same fault geometry of fig.
2-3, we assume an electrically polarized incident wave; that is, the
field will be described by Ez , Hy , He , all other electromagnetic
components being zero. The earth's surface is the plane z-x and the
fault plane is hinged on the z axis.

Referring to fig 2-4, consider the E field slong the line A A!
(on the x direction). Since we are dealing with a.c. phenomena we may
consider this line the base line for any measurements of E5 . If we
drew another line B, defined by an equal-a.c. potentisl drop from 4,
this equipotential line could either follow BB' or BB''; in both
cases boundary conditions would be matched. However, the hypothesis
that we are dealing with =n electrically polarized wave, which has no
y or x components, would be contradicted if the curved line BB' were
the equipotential line because then E would have to have at least y
components. Therefore, we conclude that for electrically polarized plane
waves, in two dimensional structures, the surface electrical field

is constant. Further, since from Maxwell's equations

.+ 2Ee
i = {uw Jy

-t
HY- &)u.u.)

m1&/
* M
N



we see that the vertical component ef the magnetic field is alse zere
at the earth's surface.

We note then that the properties of both pelarizations are
symuetrical as far as the interchange of E and H are concerned. We may

summarize 2.3.2 and 2.3.3 in the following table:
magnetic pelarizatien electric polarization

H,=0, Hy=0, Hy=const. H, = g(x), H,=0, H;=0
By :._f (x), Ey=0’ Eg=0 Ex=0, E.y--o, E;=const.

field cemponents
at the earth's

surface

2.4 The basic theory of the magneto-telluric method.

The basic concepts of the magneto-telluric method are due te
Tikhonov (1952) and Cagniard (1953). Cagniard's paper is a very
comprehensive discussion of the magneto-telluric field over a stratified
earth.

In order to introduce the main ideas, let us assume that we have a
plane wave inciding on a uniform earth. Define a cartesian coordinate
system as before, i.e. 2 into the paper, x horizontal and parallel te the
paper, and y vertical and parallel to the papsr. From previous con-

siderations, it is clear that if, say, the E field has only a component
aleng z, the electric field is deseribed by

Q€2 \ kE, =0

3y (2-2)
where k2 = ¢4 w @ or explicitly by
EL(y) = Ae' (2-3)

Through Maxwell's equations, we get the corresponding magnetic field
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Now, if we consider the ratio

X/
..E‘_'f'. = Ml e‘ %4 (2-4)
Hy J o

we notice that the measurement of Ez /ﬂt at surface determines the
conductivity of the medium, since we know the frequency and fer geolegic
materials 4 can be considered constant. We note further that the
electric field increases proportionally te «J and that the magnetic field
lags behind the electric field 45% For a horizontally layered earth

the phase lag becomes dependent on frequency (see for example Cagniard,
1953).

The measurement of magnitudes E/H and the associated phase
difference at different frequencies are the characteristic feature of
the magneto~telluric method.

One of the great advantages of the method is in avoiding the
necessity of base points because we are only concerned with a relative
neasurement. E and H can vary hourly, daily, or in any manner; magnetic
storms are welcomed because they enhance the magnitudes of the field;
no matter what the conditions, E/H and the phase difference will be

constant for a given place at a given frequency.

The added information due to measurements at a spectrum of frequencies

is related to the skin depth. As a wave penetrates into a uniform half
space, its magnitude is attenuated exponentially as shown in equation
(2-3). The skin depth is the depth at which this magnitude becomes

1/e of the surface value and is therefore given by
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p= [

Consequently the E/H measurement, at a frequency w gives us mostly the
sampling of the conductivity above the corresponding skin depth. As
we lower the frequency we reach deeper strata. From the work for a
layered earth by Cagniard it can be generally stated that in a two
layered earth, the conductivity of the bottom layer at a depth h
becomes measurably only when p/h>4 , the diagnostic values coming in
at P/‘, ~2 T3 . The phase difference of E and H is more sensitive
and for P/l'\ Y 0.8 the measurements are already diagnestic of the
conductivity of the lower layer.

Te get an idea of the depths that can be investigated with the
magneto~telluric method, the reader is referred te fig. 2-5. It can
be seen that, at least in principle, for conductivities like those
of igneous and metamorphic rocks, depths of the order of 400 knm.
can be reached at frequencies between 0.1 and 0.01 cycles / second.
However, in dealing with such huge vertical scale, we have to pay
attention to horizontal changes in conductivity which are bound to
occur in comparable horizontal distances. This makes imperative a study
of the effect of 2 dimensional changes in conductivity on the magneto-
telluric field.

2.5 The generalized magneto-telluric method.
The magneto-telluric method, as developped by Cagniard (Cagniard,
1953), was specifically designed for conditions of horizontal stratifi-

cation. However, non-horizontal structures are as common, or more common
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than horizontal ones. In attempting to carry the basic concepts of the
magneto-telluric method into the more general geological setting involving
horizontal as well as vertical changes of electrical properties, a

simple change in the field procedures will be necessary. While over &
stratified earth a measurement at one geographical location was suf-
ficient to determine the structure, for complex structures continuous

or nearly continuous coverage is needed. Here we will consider only

two dimensional structures and as such we will be supposed te have

data at the earth's surface along a line perpendicular to the strike

of the structure.

In considering any geophysical method of sub-surface investigation,
the question of the inverse boundary value problem must be kept in mind.
In other words, from the available surface data how do we narrow the
deduced structure toward a unique solution? As a general statement,
we may say that in the generalized magneto-telluric method, while the
successive stations at the surface will show the horizontal changes
in conductivity, the different frequencies at every station will afford
coverage of depth, the lower frequencies sampling greater depths. In
the case of the magneto-telluric field in two space dimensions the
inverse boundary value problem consists in solving an integral equation

(T. R, Madden, 1956) of the type

(0l w) = H G (molxy'lw) flu iyl poiyn]dA - (2-6)

the two dimensional structure being in plane x, Y, and y-o the earth's
surface. In the integral equation above u(xo|w) is the measured field

at a radian frequency w, G is the Green's function, F(;',Y') is the
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primary source distribution and &(uyf)is the overall source distribution
which we want to find. If measurements were made at one frequency

only, the inverse problem would be generally undetermined, because in
effect we would be trying to solve a two dimensional problem with one
dimensional data. Considering the analogy between integral equatlons

end systems of algebraic equations we see that the one frequency
measurement would produce a situation resembling a system of n equations

? unknowns. By using a spectrum of frequencies we tend to clese

inn
the gap between the number of equations and unknowns, provided we can
account for the frequency behavior of the right hand side of equation
(2-6). This can be done in cases involving infinite or semi-infinite
boundaries (see section 4.4), but rigorous studies for more general

cases are lacking. In the meanwhile, we must tackle the interpretation
problem (the inverse boundary value problem) from a purely qualitative
point of view. Since the use of a frequency spectrum of waves gives us
two dimensional spatial data, we may devise a crossectionsl mapping

device which is related to the inverse transform of the intégral equatien
(2-6) in a meanner not exactly known. However the relationship must be
close enough so that it provides one with a semi-quantitative picture

of the sub-surface situation. Such concept.has been employed very
successfully by the induced polarization group at M. I. T. (Hallef, Vozoff,
1957; T. R. Madden et. al, 1957) which used the separation between send-
ing and receiving dipoles as a criterium for mapping the properties

at depth. In the magneto-telluric field, the sampling of deeper strata

is accomplished by lewering frequencies and since this sampling is
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related to the amount of current at a given depth, we may use the skin
depth as & depth parameter in our mapping transform.

An example of this type of crossectional mapping for interpretation
purposes is shown in fig. 2-6. The data was obtained on a reduced
scale model of a buried cvlinder in a homogeneous earth, the conductivity
contrast being about 1000. As it will be discussed in detail in the
section on modelling, the material was not very homogeneous and the
measurements were plagued by many troubles which account for the scatter
of values in the homogeneous region as well as for scme lack of symmetry.
The map was made by plotting the values of apparent resistivity at
depths equivalent to the skin depth in the homogeneous material, at the
several frequencies used, under the station at which the measurement
was made,

Before closing this section we may emphasize again that the trans-
form obtained by the mapping is a purely semi-quantitative guide te
interpretation. In the remaining chapters, we will deal with the
direct problem. Only when we understand more fully the direct preblem

can we hope to have some success in solving the inverse problem.
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CHAPTER III

INCLINED LAYERS

3.1 Introduction

This chapter is devoted to the analytic treatment of the effect
of inclined layers on an incident plane electromagnetic wave. The
problem is two dimensional, with the earth's surface defined by angles
$=0 and =1, and the 1line of contact between the media of different
conductivities at an arbitrary angle 4>=X « This type of geometry is
an idealization of a rather common and important greup of geologic
structures. Among them we may cite faults, dipping beds and sea-land
contacts., b

In the following sections we obtain a formal solutiom for the
general inclined layer problem (i.e. the problem in which both media
have finite conductivites). As a step which serves to illustrate the
details of the method by which we obtain the solution to the general
problem, we solve also the problem of a wedge bounded by & non-
conductor on one face and & perfect conductor on the other face. This
problem of course, has considerable interest by itself, because it
can be used as a model for sea-land contacts and inclined layer

problems of large conductivity contrast.
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3.2 The electromagnetic field vectors

As explained in 2.3 we will be dealing with an arbitrary incident
wave, having x, y, and 2 components therefore, and in order to make the
problem amenable to analysis, we break such a wave into a sum of twe
electromagnetic waves, one magnetically polarized (i.e polarized parallel
to the structure, that is with the magnetic vector parallel to the z
axis), the other electrically polarized (Ey= Ey=0, E,=0 ) and solve
separately for each type of wave. We may afterwards reconstruct
the arbitrary wave by superposition of both polarizations.

Although incidentally we deal with electric and with magnetiec
line sources, our actual solutions will concern plane waves. In other
words, we are concerned with the field far away from sources. Because
of this and of the fact that much of the structure of the electromagnetic
field can be found by physical considerations, we will f§rego the use
of Hertz vectors and we will deal directly with the field vectors
E and H. Since according to the polarization we will have either Eg
or Hy the rest of the field can be derived from Maxwell's equations.
This we proceed to do.

Let us consider first the case of magnetic polarization. The field
can be described by the scalar equation

V'H+ K'H =0 (3-1)

where ;i=F'az, 8z being a unit vector on the z direction. From Maxwell's
equations for periodic time variatien

= g 1H
E _Zi:: curl H a, (3-2)



In cartesian coordinates

oH oH

Cu-fl EZ = 5.,(-———— a. ax

So that the field components are

_ “MU é_'_'_{ (3‘3)
Ex= T 2y
(3-4)
w JH
Ey=-iae OO
Therefore continuity of tangential E can be given either by
.—‘- é_ﬂz' - _'.. a__‘:l’-z
kP 2y K, 3y (3-5)
| OHg, - + 2Hz (3-6)

— s

or at the x and y boundaries correspondingly. In cylindrical coordinates

we have - -
CLLTlazH = ar-!; 3j —ad’%_g
(3-7)
E,=- iaw oH
¢ k* 9T (3-8)
= w1 OH
e Kkt T ¢

giving for the continuity of tangential component of E
JH, s aH, (3-9)

———

|
K- b k¥ b
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Now let us consider the case of electric polarization. The field this
time is described by the scalar equation

VE+KE=0
where € =E5.z . Again from Maxwell's equation for periodic variation

we have

I/U.u)

In cartesian coordinates

H = 2E
¥ (la.uJ 97 (3-10)
Hy=-—= 2
1 pw 2x (3-11)
In cylindrical coordinates
1t JH
H‘i’:_if- S5 , (3-12)
H.= —t - 1 2H
TTipw T (3-13)

giving for the boundary condition of continuity of H tangential at a
boundary

dH, . 2H2 (3-14)
2 o
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3.3 Wave solutions for a wedge space

In order to attack the solution of various types of dipping beds
problems, we have to express our wave solutions in a form compatible
with geometry under discussion. Before entering into the conditions
that force the solution to teke special forms we may note that we are
using the cylindriéal coerdinate system, the wedge region being defined
bycb-—-o and Jp:tx s the direction of the angles being counterclockwise;
consequently the z axis is perpendicular to the plane of the paper
(fig. 3-1). We have seen that either for the magnetic or the electriec
polarization, the field can be described in terms of an Helmoltz equatien.

Vutku-=0 (3-15)

where Kz=§MGJ¢; We write equation (3-15) in cylindrical coordinates

| 2 (pd 43tl 214
Le ( e )+"“a¢"+ azl+Ku o

Because no z dependence is involved, the above equation reduces to

z k)

Proceeding by the usual method of separation of variables, we assume

a solution

w(n é)= R(r) &(¢)
which substituted back into (3<16) gives

(r )+_|.a§+l(f-o

allowing us to set

{-a%—(—;'r- g—?)-f-xzr‘__. ~
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and separate the R and § dependent equdations

2. (-38) + (vt R =0 pan

%%z rm =0 (3-18)

The R equation is satisfied by linear combinations of the Hanked!
functions of first and second kind. Since we will be dealing with
divergent, outgoing waves, and do not desire solutions concerning
incoming convergent waves, which would produce singularities in places
where none exist, we will use only Hankel functions ef the first

kind. As for the solutions of the é equation, they are easily

_seen to be formed by combinations of cos m< and sin m¢ . That is

R(MY — H«r)

(4) —> e:inub

or
w(nb) — e H%e) (3-19)
In order to obtain a representation of the two dimensiocnal Green's
functien appropriate to a wedge space (Dougall, 1899), we consider
the field of cylindrical waves preduced by a line source (eventually by
removing the line source te infinity we produce plane waves). This

field can be represented by (Merse and Feshbach, 1323, 1953)

®
Ho (kR) = 2 K (yR) (3-20)
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whereoxﬂ-“ and RSr+r, -2rrges ( - ). By using an addition

theorem for Bessel functioms (Gray & Mathews, 103, 1922) we write (3-20) as
o
HY (ke) = = Z( 2~ €m) K (y?) I(yn) cos m (& - &) (3-21)
m:=0

where r real and O << T, Km (Yf)and I ( YT ) are the modified Beasel

functions of first and second kind respectively and
( m=0
Em =
“ m#0 W
The necessary integral representation of H; (k ) has to allew for the

fact that the angle of the wedge is arbitrary. Therefore, the integral
in question will heve to be over the m variable. Expression (3-21)
shows clearly the potentiality of being transformed into such an
integral, having further the advantage of containing the needed
discontinuity. If ve‘ call S the integrand ef the integral representation
of the Green's | functions that we are looking fory from Cauchy's residue
theoren we know that
80 (-]
%’ g 4A = 2wt L Resioves = ) (2 €md Kon(y) Tin(y) cosm (- &) (3 )
< m:=0
Equality (3-22) requires functien S to have poles at m=0, 1, 2,...
One such functien is f (m)/sin mT which has a2 m i residue (-1)”1:{: (m)
and where { (m) does not pesess any singularities in the complex plane.
Since our integral has to be equal to (3-21), we may suspect that the

nunerator of 9 is

f(m) - (-O)mcos m(¢- &) Km(xr) Im (Yro)
s 605 m(W-$+¢)Kpm (b/r) I (rfo)

By integrating S through the appropriate path, we will achieve the
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double purpose of obtaining the needed integral representation and also
of checking that inded it ylelds the series of the addition theorem. The

integration in the complex plane can be written fully

S Sdy - Solv +j.5‘olm +§ Sdm =o (3-23)

with the convention that the positive direction is clockwise. The
The path of integration is shown in fig. 3-2.
As ?—9 o

% Sdm = } corm @A) n G L) o ik gn, o

Sin mT

As R"’O", the integral along the large circle R vanishes and the only

contribtution comes from the poles along the real axis M

&
%y Sclm = 2M¢ g-; T <o m(p-d) K, (g™ Tm (yr)
Therefore (3-23) reduces to
§SJV - Z(z €Y Kn (™) Tuym) <on 1 (- ) = K,y
Where-“’
S _ _cos m(T-é+ 4) K (Y7) Im(&"'o) (3-24)

sin mT

Now if we let in the left hand side of equation (3-24) V:=(Swe get

‘oco hs(r-$+¢,) -
Ka(HR) =Iao 5 sinh ST Kis (ym) Ty (y) s

Using the equalities

Kis(t(r) = g s

T () - T (9]
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Kb(y*)=bﬁﬁ(yﬂ

We get the final form for the integral representation of & line source

of cylindrical waves
o

Ko (Xz) = %—j COSL s (T ¢1’¢o) K[s ({‘T) K{S(Xn) ds

(o]

Now that we have obtained the Green's function expression for a wedge
space, we may write the general solution to the unhomogeneous wave
equation in such a geometry as a sum of the source term plus the

homogeneous solution (3-19),

W= w(sovrce) + W (reflccteal)

] tim
=L HO (ke) + [ Hy &™)

oo

= _]LT?- Kis (YT‘) K,‘;(XT-) [Cosh S(‘n—- H:'- 4>°’)+ A esﬁ. Bés‘b] AS

o

In dealing with a problem consisting of several wedges, the solution

in the wedges without seurces can be written

C s¢ ~-S¢
w = EzjKt‘s(YT)[Ae + Be ' ]ds (3-25)
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3,4 Difficulties in formulating the wedge problem

In most boundary value problems once the appropriate general solution
is found, the only difficulty usually arises on evaluating the integrals
obtained after the matching of boundary conditions. For the wedge
problem, besides the possible obstacles to the integration of the result,
we must add difficulties in matching boundary conditions. This may
account for the fact that the problem had not yet been formulated
exactly. Let us illustrate these difficulties. Suppose we are dealing
with the general inclined layer problem. Since our sources are in
air and we can describe the field completely in terms of the field
in the earth (due to the general properties of plane wave fields inm the

earth discussed in section 2.3) we would have (see also fig. 3-3)

(o
u, = #;J kas(x.")[/\(s\ cosh 5¢ + B(s) sinh 34’] ds (3-26)
(> \
w,= _:;l Kis(X‘T)[C (s) cosh s¢ + D) sinh SdJJJS (3-27)
subject to boundery conditiens
W, = W, =constant atb=0, =T
w, = Wwo (3‘28)
-‘——Q.‘r.h:-’—‘l‘éa} at ¢ X
KIL 2P Klz 2¢

The difficulty becomes immediately apparent. As we try to matech
the integrands of (3-26) and (3-27) along boundary 4>=°‘ we see that this

is impossible because the factor in the integrand connected with the
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radial dependence consists of Bessel functions which have different
arguments from one side to the other of the boundary. Since the
Bessel functions don't match at the boundary and we cannot introduce
any further radial dependence on the solution, the integrands cannet
ever match at a ¢ constant boundary.

The same happens even for the simpler conditions at 4>=O and
where u) and u, cannot be constant due to the r dependence. Indeed
it turns out that for the above formulation only homogeneous Dirichlet
or Neuman conditions will enable us to use the simple procedure of
finding the functionals A and B from algebraic equations involving the
integrands.

The impossibility of matching the boundary conditions in a simple
way 1is basically the result of the form assumed by the two dimensional
Helmoltz equation combined with the use of the method of separation of
variables. No trouble would arise, for example, if the term containing

k2 in the Helmolts equation could be lumped together with the ¢ dependent

equation and the solution for the R equation contained only the separation
varisble m. A very interesting attempt at bypassing this obstacle was

carried by Kontorovich and Lebedev (1939), whe developped a transform pair

which enabled one to transform the Helmoltz equation in eylindrical coordinates
inte 2 one dimensional unhomogeneous equation in 43 + Unfertunately, restrictions
placed on the behavior of the solution at zero and infinity as well as

the dependence of the transform on the propagation constant k do net

permit the use of this approach in our problem.

In face of the failure to develep means to avoid the problems
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cennected with the behavier of the radial solutiem, we are forced te
tackle the wedge preblem head on. That is, since we cannot match
integrands, we will have to match integrals. The result is that we
are drawn inte the attempt of solutien of systems of singular integral

equatiens with several unknowns. This comprises the following sectiens.

3.5 Inclined layers with infinite contrast

We begin by censidering the case of inclined layers where one of
the media pesesses an infinite conductivity. This is an apprepriate
medel for cases of large contrasts between dipping beds in the earth
or feor the case of the effects of the sea on the magnete-telluric field.

From equatien (3-25) we know that the selution is given by
o

w(rné) = %J Kis (§7) [ AG) cosh s$ + B() sinh Scb] ds  (3-29)

[*]
Since one of the media is infinitely conductive the electromagnetic

field is zere at its boundary. Se the boundary conditions are,

u =h » constant at$=0

o at oo (3-30)

In order for (3-29) te satisfy (3-30), A(s) and B(s) have to satisfy

the follewing pair of simultaneocus singular integral equatiems

bl Ao e
°: éli K‘.s <8T) [A(‘(S)LOSLsd + B(S) S“RL S“] 45 (3..32)

o



Very little is known presently about the solutien of aystems of singular
integral equations. Therefore, rather than attempt 2 direct solution
of (3-31) and (3-32) we try to find an integral transform that will
convert our integral equations inte integrals. One transform that

is appropriate for this end is the Lebedev transform (N. N. Lebedev,

1946). The transform pair can be written as

F(s) “'[ {G) Kis(x) o x (3-33)
X {(x\ =z 2 j K (x)s sinh sT F(5) ds (3-34)
Mt Je

previded that Lesbesque integrals of first class for x2 f(x) and x ; 1(x)
exist.

In erder to identify (3-31) with (3-34) we let

= - h = = _—_é_(_s_‘._.
ke A f(x) Syr Fes) 25 simb T (3-35)
Then A(s) 1s given by the follewing integral
AG) = hs schsw j _K__‘X__"’E‘ T e (3-36)

Te evaluate (3-36) we begin by expressing it in terms of Bessel functions

of the first kind. Using the equalities (H. T. F. II, 1953, 4 and 5)
‘ \LO ()
Ky(z): T e * Hy(iz)
(3-37)

—LPr ]

Ho(z) = —— [T, -7, (z)e

tsan YT (3-38)
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"3
and also recalling that K= [ or {*€ K ve get
- fis
) LE)
: - ‘1 . -T.
Ko(yr) = & € —— [T, («r) T (kr)e "] (3-39)

and therefore integral (3-36) becomes

- s
e L‘s(lt‘l“ _ € Z Jis (KT)J dAr
T T

oo

A65=iﬂLSI[

(4]

(3-40)

Equation (3-40) has the form of an Hankel integral transform whose

inverse is known (T. I. T., II, 1953, 7), so we can write directly
AG) = 2hT cosh s (3-41)

B(s) still remains to be found. However u vanishes identically at

and frem (3-32) we see that B(s) has to satisfy

AG) cosh s + B(s) sinh sa =0 (3-42)
from which
B(s) = — —= “:::i%s cosh sx (3-43)

Therefore the solution to the problem of dipping layers with infinite

conductivity can be written

ainh s«

T cosh %S ~
u<n4»)=%J(k;s(i(’)““"gsw“”“’ KAV cohomsinbspds sy

Integrals of the type of the first term of (3-44) were studied by

Ramanujan and his results quoted by several authors (H. T. F. II, 54)

wne) =u i (3-45)

W= ‘%'JK‘S (81') Cosl\sgmks¢ As = h cos (k7 sing)

Equation (3-45) describes a downgoing plane wave as well as a upgoing
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wave. This last wave cannot of course exist because it would be a
violation of the conditions at infinity; next we will show how the
second term of the integral contains the factor that cancels this
exponentially increasing wave.

The second term of (3-44) is

e J[ Klr) S22 coshso sivhsg [ s 54

sinh sot

Expanding coshsa wh W,s 5 (3-46) becomes

== ,_J ‘S(X )[9331‘_5—(—‘———)— sinhsp + sink ST%SQ«L5¢JC’S (3-47)

$m‘1 X

The second term of (3-47) is again one of the integrals of the type

studied by Ramanujan (H. T. F. II, 53) and we may write

I :
Up=- h sin(krsing) - ——jK‘s(g “S“, (2 al sinh s ds

sm‘\ S&

which mskes the solution

I
U(rd)= he ™t 2“[ K (yr) ""‘LS( D sihs ds s

’ Sth

Equation (3-48) gives then the polarized field in terms of an incident
vertically propegating plane wave minus the field which will arise
from reflection and refraction effects.
If we consider the fact that the Lebedev transform of cosh s(%{-“)
CKYsth X

is given by ’u' e we see that equation (3-48) satisfies the

boundary conditions reducing the h at the surface and to zero at
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We will be satisfied here te leave the selutien in integrel form,
showing thus that the problem can he solved by the application of
fairly simple procedures. The evaluation of the integral in (3-48)
is eanother problem in itself, which we choose not te deal with. We
might add that if we tried to reduce the integral of (3-48) to an
infinite series by use of Cauchy's theorem, this series would be
divergent. The possibility of evaluating the integral by numerical
methods is exceedingly laborious because there are no tables of
medified Bessel functions of imaginary order, and further, because
usually the numerical integration of complex functions requires an
enormous amount of computation., However, the cases of interest connected
with equatien (3-48) have been solved by the numerical method of

chapter IV and the results presented in section 4.6.
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3,6 The general inclined layer problem.

By the general inclined layer problem we understand the problem
of finding the field associated with plane electromegnetic waves inciding
normally to the earth's surface, when the earth is composed of two
regions of different but finite conductivity. These two regions meet
at a semi-infinite planar contact i.e. & fault or a bedding plane
(see fig. 3-3)

The general inclined layer structure is a special case of the
problem known in mathematical physics as the composite wedge problem.
This problem, to the best knowledge of the author, hed not been solved
yeﬁ either in physics or in geophysiecs. I would like to mention that I
am indebted to professor S. M. Simpson,Jr. for the suggestion of extending
the methods of section 3.5 to the genersl problem.

In the follewing, we will treat specifically the case of electrical
polarization, but the case of magnetic polarization is identical with
the exception of the constants in the derivative boundary conditions.

Referring back to equation (3-24) and fig. 3-3, we see that the problem

consists in solving

u,(ﬂ#) = -‘-lj KOS(&/’T')[A(S)COS“ 54> + B60) sinh S4>JJ§
w o (3-50)
8
w, (n¢) =%‘J K"s(b’a’)k(’) cwoshsd + DE)simhsp]ds (3
subject to the boundary conditions
u,=uU, = conslanl , at $=0 (3-52)

w, =W, = const‘mf, at¢=1



w, =u,
du, . du. }“r = (3-53)
2 2%

where u, is the electrical field in medium 1, u, the electrical field

in medium 2, 4>=‘o and ¢:T 1: the earth's surface and ¢p= is the fault

or inclined layer plane. Introducing (3-50) and (3-51) into (3-53), (3-52)
we get a system of 4 simultaneous integral equations in 4 unknowns

A(s), B(s), C(s) and D(s)

=0 -1, J A Ky (gir) s (3-56)

r bo

Kis (Yer) [C(s) cosh ST + D G) sink srr] ds (3-57)

ol {mu s Kis (i) AG) = K (or) €] &
‘e (3-58)
+ Sinltsu[K"s(X‘T) B(s) - K,'S(XJ‘) D(.‘))J}AS

\ 0 - _'.zj s{sinLSR (K;s(x,r) A(s) - Kg,(&") B(S)] +

©

(3-59)
+ cosL Sot [K"s (YF) B(S) - K{s(ra'r) D(S))} ds

Now if we define E ()= C(s) coshsm + D(s) sk STr
(3-60)



equation (3-57) becomes
= 1-!-'[ j K‘S(le) E($) alS (3-61)

which is similar to equation (3-56)

But back in 3.5 we solved an integral equation of the type of
(3-56) and (3-57) by using the Lebedev transform (see equation (3-33)
and (3-34))and therefore we know immediately that the solution to
(3-56) and (3-57) is

AG)
= W,T cosh s’f‘]z_ (3-62)
E(s)
Introducing (3-62) in (3-60)we obtain
DGy = A6)=<6) coshsm (3-63)

sinh s

Therefore we have reduced the number of integral equations and unknowns

from 4 to 2; A(s) and D(s) are known now. So the system of integral

equations becomes,
oo

I{K (Xlr)[cosLsot Cost Fsth‘lb«JC(s) K“((yﬂ stnhs o« ﬁ(s)} ds =
o (3-64)

HK (XT)COSLS& K (for )sml'w ]A(S) ds = W y.m)

hs

j:gl(;,(xzr){siw‘dd ::’:t;‘f coshsa|C(s)- K‘s(r.'r)cosl\soc B(s)jo(s =

) js{Kis (Xlr} simb s ~ Ky (b/zf) %&% } AB) s - v(i"fz,’)

which can be written

(3-65)



oo

W (o for) = J [k 46) €60 = Kis g sivks B ] s
W e ) (3..663

O

T) = [ ] j - T [JS
(2 S K{S( fl ) (S)C(s) K‘.s( . )CoSLSoL B(S)
V(K’X H ) Jo l X X ( )

where

- co _eashsT ool (3-68)
36) coshso Sinh sim

: _ s
{(S)-* sinksat ;“%“s}‘. coshsx (3-69)

Now the Lebedev transform pair cen be written

F(s) = ﬁlj ff_x(’i’olxj Ki, (x)s scnbom F(s) s

So that if we multiply (3-66) and (3-67) by Kis (ﬁl‘r.l and integrate between

r
oandoo,weget

J--K-»"( L Arfk.s(XzT)als)C(s)Js T sinksa gy JW(LJ':,"’—————K;’T({'"J%'

Ssinksk
‘ (3-70)
N K{s( ,?')
kas (zt“) A.rj“ (J/J')}(S) C(S)AS T __Ci::\_:%{‘ 8(5) jV(X.)rz'r) -——‘-“{——Jf‘
o T A o (3-7)

We are now in position of eliminating the functiomel B(s) between
(3-70) and (3-71)
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I Kig (f7) J,-J[s'cosks‘a 46)- 5 sinh s {(s)] Kis (1) C6) s =
r

) ° (3-72)
= Hslcoshs{x w(y.,1:,1)- sinhs V(X'»Xz.")] K.;fa’.ﬂ Ar

Defining
 h(s9) = ¢ coshsa 3(sl -5 sinh s f(,) (3-73)

L(s's) = s coshsx \t\/(r,,xa'r)_ sinhs V((,,(“'r) (3-74)

we write (3-72) as

{ LL) Jer(s s)K.,((J) C(s) ds -f (s, ‘y,,g*)K"(" ’Jr (3-75)

]

The above integral equation will then be satisfied if

C (3-76)
l(s', Koo ¥e ) = Jk(s,s‘) K,',(é/,r) CG)ls =7

Using again the Lebedev transform pair (equation (3-33) and (3-34) )

we solve integral equation (3-75) obtaining

Oe
.2 5 sinhsT t(s, v l,r) (3-77)
C(s) e ___k(S) J YTY K (X‘r)ap'r

where we have dropped the subscripts of s' because now there is no
need to distinguish one s from the other.
Following the same procedure as above, we may eliminate C(s) from

equation (3-66) and (3-77) and get
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N L*(S, “rz..f)
6 (3) = %z 3 :\’, Z:" ] { K“s (J") él'r (3-78)
with
L*(s) =3 C°SL S ? (5,) - S‘ {(S) SI‘P\L Sot (3_79)
(3-80)

* (o), )27 = 8 {(s') W (g, g 7)- 3(5’) Vgt

By substituting (3-62), (3-77) and (3-78) into (3-50) and (3-51)

we obtain the solution to the problem of inclined layers in an explicit

form,
- 2. NL [44] L( 110 )

w(né) == JK-s(XT)[“ Tcosh s, coshsé + 2 5 8 L:?)S Lano S X G -,(X.T)JT]JS
) (3-81)

shslt vnhsi !.Kth’
né) = ¢ r.s((;r)[[ (cosl\s¢— :nki rs*ﬂ“s‘# 1 (s; f‘ T K, (prydr +
+ [u.,Tr coshsT, swh sP J} ds (3-82)
Sinhsi

The full expressions abbreviated by h*, 1¥, h and 1 are given
respectively by (3-80), (3-81), (3-73) and (3-74).
Since in the next chapter we will study by a finite difference

technique the response of arbitrary structures, including inclined
layers, we will leave the solution of the general inclined layer problem
in the integral form of equations (3-81) and (3-82).



CHAPTER IV

ARBITRARY TWO DIMENSIONAL GEOMETRIES

4.1 A finite difference approach

The difficulties associated with the inclined layer problem--
the simplest problem with conductivity variation in two dimensions--
give us an idea of the enormous mathematical obstacles which arise as
soon as we depart from one dimensional variation of the electrical
parameters. Further, as soon as we go beyond geometries which happen
to coincide with coordinates systems }n which the wave equation is
separable, purely analytie solutions are generally impossible.

However, such complex phenomena are the rule in geophysics. This
immediately suggests the use of something more versatile than analytic
expressions, namely, finite differences. Plane wave problems in two
dimensions are emminently suitable te treatment by such methods for
several reasons. First, plane wave fields can be described by a scalar
in two dimensions. Second, from the discussion in chapter 2.3, we
know that this scalar is constant at the surface of the ground, enabling
us te discuss the field in terms only of its behavior inside the earth.
Since the electromagnetic field dasmps rather rapidly within the earth,
attenuating quickly reflection and diffraction effects, a short

distance from the disturbing region we find ourselves in a region where
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the waves behave like on a homogeneous medium (or like on a stratified
medium or any sort of structure for which we know the analytic solution).
These characteristics allew us to use finite difference nets which cover
a relatively small space dimension.

In this manner, we can approximate the problem having boundaries
at infinity by a perfectly determined boundary value problem with finite
boundaries. The boundary values are that the field is constant at the
earth's surface, zero at & finite depth and that it behaves in a known
manner (like over a homogeneous or stratified earth) far away from the
region of changing conductivity. Dirichlet inhomogeneous and homogeneous
conditions are then given on & closed boundary, while across the
boundaries of changing conductivity electromagnetic continuity
conditions are to be upheld.

It is clear that with such a model, simple progression procedures
eannot work properly. Rather, this is the type of finite difference
problem for which relaxation methods are suited. The following
sections develep a technique to handle by finite differences the
Helmoltz equation with the application of the relaxation method to the
resulting equation.
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4.2 The method of selution

The reductien of a problem involving infinite boundaries te a
problem dealing with finite boundaries, involves certain approximations.
In the present section, we will proceed to specify and justify these
appreximations.

We may start by recalling two characteristics of plane waves in
‘the earth, discussed in section 2.3. First, in the case of a uniform
earth, it was found that the electromagnetic waves propsgated essentially
vertically dewnward, no matter what the angle of incidence was. Second,
fer an earth having arbitrary two dimensional changes of conductivity,
it was found that the electromagnetic field vector pelarized aleng
the strike of the structures would have a constant surface value.
This polarized electromagnetiz field vector is exactly the same vecter
which will be used te describe the field in finite differences, because
its pelarizatien allews it to be treated as a scalar. To these two
properties of plane waves in the earth, we may add a third that
results from the fact that the earth is a dissipative medium; namely,
that the electromagnetic field will be attenuated exponentially with
depth in & uniform earth. This is an extremely impertant characteristie
because it guarantees the rather rapid damping in the earth of electro-
magnetic waves, which as we will see makes possible our method. (As
referred previeusly the far away picture does not have to be that ef
e uniform earth. We adept it here for simplicity of discussion, and
because we are interested mostly in solving inclined layer preblems.

Hewever, this is just a device te allew the specification ef Dirichlet
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conditions necessary to make the problem definite. Any other appropriate
set up could be\used for the far away field).

let us examine how we use the above properties to convert the
infinite boundary problem into a finite boundary problem amenable
therefore to finite difference techniques. The top boundary will be the
earth's surface where we know that the polarized field assumes a constant
value. The bottom boundary will be the depth for which the polarized
field becomes exponentially "zero", to the erder of significant
figures carried in the computation. This bottom boundary does not
have to be parallel to the earth's surface. It certainly won't be in
cases of quarter spaces of different conductivities in contact, i.e.
for faults and inclined beds. For such cases the lower boundary, which
is characterized by the vanishing of the polarized field, may be agsumed
to be as pictured in fig. 4~1. The validity of this procedure is
based on the fact, to be discussed in detail in section 4.5.3, that the
near surface field (which is the one in which we are interested) is
negligibly affected by the depth at which we assume it to "become zero",
as long as at this depth Kry 4, Finally as we go far away aleng the
earth's surface from the region where the changes in conductivity occur,
the field will tend to that of a uniform earth; in other words, the
diffracted field is attenuated geometrically and by absorption away
from the diffracting region and very soon becomes negligible compared
with the incident field. The incident field will behave like

w=Ce™ S (4-1)

at a point of the earth's surface infi-itely far away from the region
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of diffraction. Actumlly, the total field becomes essentially described
by equation (4-1) at distances of only a few kr frem the region of
changing conductivity.

In this manner we have changed the infinite boundary problem inte
a finite boundary problem. The space under consideration is now the
clesed region bounded by the earth's surface, by the depth at which the
field goes to zero within the accuracy of the ealculation, and by the
horizontal distance from the diffrzcting region at which the field
becomes essentially described by a verticelly propsgating plane wave.
At the top and lateral boundaries we have unhomogeneous Dirichlet conditiems,
at the bottom homogencous Dirichlet conditiens and across the bodies of
different conductivities contained within the bounded region we will
have to satisfy electromagnetic continuity conditions.

In order to obtain an idea of the distances along the surface
for which the diffracted field becomes negligible, we will consider,
say, a vertical fault separating regions of different conductivities.
The argument could be carried for any two dimensional structure,
but to meke the exposition brief, we assume the geometric simplisity of

a vertical fault. New we know that the solution far away from the

boundary is
K,
u.‘: Ce' 1 X —P» -po
. (4-2)
LK >
u.3_= CQ ‘\1 X Tee

As we approach the fault boundary from *oo we come under the influence

of diffraction effects. Diffraction iffects behave very much like
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induced sources disposed along the fault boundary. These sources
distort the simple uni-directional field ef equation (4-2) and the
field near the boundary becomes dependent en both x and y coordinates.
Mathematically, this arises from the necessity of satisfying
continuity conditions for E and H tangential at the boundary. The
field in the diffraction region will have the general form

Wixy) = M(xy) e e
Our concern therefore is to determine at what distance from the
fault boundary equetien (4-3) becemes equal to equation (4-2) within
a specified order of asccuracy. A way of obtaining a conservative
estimate of such a distance is to consider the attenuation of a one
dimensional wave, under the assumption that such wave is due to "sources™
at the fault boundary. Referring to table I we note that for a
distance x, such that Re ﬁKx]=S'the plane wave attenuates to 0.7%
of the initial walue; for another distance x, such that Rel]KX]‘=7
the plane wave amplitude reduces to 0.09% of the initial megnitude,
end so en. New, if the "sources" at the fault boundary produced a field
of magnitude equal to that of the incident (primary) field, at this
distance where RQ[KX]=5 the diffracted field would contribute slightly
less then 0,7% of the total field; if we want farther away to x such
that Ke[}(x]=7 , the contribution would be less than 0.09%. (We may
note that the wave length of an electromagnetic wave corresponds to a
distance for which lze[](x] is slightly larger than 6 ) All these
estimates are conservative because in our problem the "gsources" at the
boundary will never create fields equa. to the incident field. Further

the "strength" of these "sources™ is very likely to deerease in an
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approximately exponential msnner with depth.

Using the criteria described above, we can safely choose a distance
x, away from the fault boundary, where the diffraction field becomes
gero to the order of accuracy carried; from such a distance eut the
field will behave uni-directionally as on a uniform, homogeneous earth.
This will be the situation existing previous to the application of
relaxation procedures to the problem. If indeed the choice 1s conservative
after the solution by relaxation methods, the unidirectional behavier
of the field will be extended some more towards the fault boundary,
past the initial estimate.

Summarizing, the problem becomes that of finding the electromsagnetic
field throughout media 1 and 2, given

1) wu, = u,= constant for all x, at y = 0

2) u,=u,=0 fer allx, at a certain depth y =y,
3) u-=vy

4) w,=cC tey at x =—x, for all y=0

5) u,= ce'y at x =x, for ally =0

This is the situation for a vertical fault at x=0. For any other

-geometry the treatment is 8imilarly straightforward
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4.3 The Helmoltz equation in finite differences

4.3.1 The Helmoltz equation in homogeneous media

We will be dealing with phenomena obeying the Helmoltz equation
V'w+kw =0 (4-4)

where K*= t'/u»w q, S the magnetic permittivity, « the radian frequency
of the slectromagnetic wave and G the conductivity of the media. As
usually we neglect displacement currents and sinusoidal time dependence
e"wt has been assumed.
In order to be able to treat the complex scalar W by finite
differences, we obtain from (4-4) two equations dealing with real

variables in the following way. Let w-= A+18
Vi(A+iB) + luw o (a+i8) =0 (4-5)
from which we get by separating real and imaginary parts
VA-mwGB =0 (46)
VB +MWOA =0

These two coupled equations can be written in cartesian coordinates

P PY. S
2x’-+ 97 wB =0

(4=7)
Z 2
JB + 28 +tMmWwWdA=0

Te obtain the finite difference representation of these differential
equations, we consider the representation of a function in a Taylor

series about a point
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-a /a -a)l ”“)
@) = {@+% RIS Zf SR (4-8)

‘.

Then feor {(o&k) and {(ﬁ‘k) (see diagram 4.2) we get, neglecting 4th

and higher order terns

" at+th)-24(@) o-
['@= fark) L{‘ e (4-9)

Similarly, neglecting third order terms and higher, we obtain for the

first derivative the expression

fe = {(ML)Z L“‘r ») (4-10)

Writing for the successive points in the x direction {M_ ' -f.,._ and -f mei
instead of &(a-k), ]c(«) and f(ourt.) , and for the points on the y

direction 45*_ , ,{,. , {M, we can express (4=7) as

Amﬁ-“;’ZAm't Am-l,n . Am,n*r ZAm,n+Am,n-c

z 2
h, hy
(4-11)
bmﬂ;;{ B"‘:"' B"'")" Bm net 2 bmnt Bm,h ! /“'u) G'Am,n— o
b, hy
x !
m,n+l
? 2
n.!-l m 4mu m-‘c.n fm'n m;l,n
2 3 o 1
— h—>
FIG. 4-2 FiG. 4-3 ém,n-i
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If we let hx:.yy, we can simplify the above equation te

I / \ — 2 =
Nmern ° m-t,n /\m’n-rl m o e 4Am’n /.L(.JO'L B”" @)
’ n

(4-12)
+ B

m-i,n

g,
Bmsin +Bmmﬂ+5mm4—4Bmgh»wGLAmKJD

If for easier reading we use subscripts 0, 1, 2, 3 and 4 insteed of
(m, n), (m+1, n), (m, n+1), (m-1, n) and (m, n-1) (see fig. 4-3)
we rewrite equations (4-11) and (4-12) as

- — g, =0

2 -
B.f— Bz+ 83+ 54—4B°+/A.wo“L A.=0 (4-14)

where the 5 first terms in each equation can be recognized as the
laplacien operater in finite differences. We see frem (4-13) and (4-14)
that at every point of the region under consideration, we have to satisfy
a gystem of two finite difference equatiens in two unknewns. Consequently
at every peint of the finite difference net, we will have two solutionms,
oene for A another for B.

The selution of the system of equations in A and B is not geing
to give us directly the quantities in which we are intercsted, that is,
the compenents of the electromagnetic field. Hewever, there is &
simple relationship which we will shew presently.

If we attempted to solve the problem analytically, we would
express it in terms of the field component, E or H, which would be
aligned parallpl to the z axis (aAd parallel therefore to the generatrix
of the geolegic structure). This compement would satisfy Vu+Ku=0

where k is conblex, and the solutien of this differential equatien would be



u,(x,Y) = M(x,y) eiw("'Y)

where M is the magnitude and W the phase angle of the field component.
In the finite difference set of equations we have an A and a B
at every point of the net so that the solution is given by
U = Ampn +8 By (4-16)
In order to relate the solution of the finite difference
equations to that of the differential equation, it is sufficient te

expand (4-15) and equate it to (4-16), from which we get

Am,n = Mm,n. cos WM,n

(4-17)
BPmn = Mu,n Stn Wi n

We may note that the equality sign is not very rigorous insofar as the

finite difference solution will always be slightly different from the

differential solution, but we use it with this understanding. Therefore

the megnitude and phase of the field component (E er H) at every point

of the finite difference net will be given by

Mm,n. = \/Ai",‘*" b:‘”

(4-18)
W, . = 4are tan @.2.‘.4.'_"
" mn

The other field component can be deduced from Maxwell's curl
equations. As we have shown in 2.3 and 3.1, at the earth's surface the
curl reduces, for both magnetic and electric polerizations, to the
vertical derivative of the polarized field. Since our interest is

basically in ebtaining the non-polarized field at the surface, we wiil



have to make sure that the finite difference solution pesesses a reliable
vertical derivative, at least near the surface; this subject will be

discussed further in an appropriate place.

4.3.2 Relexation operators in homogeneous media

The unit relaxation operators corresponding to the Helmoltsz
equation are readily derived from equations (4-13) and (4-15) and are
shown in fig. 4-4. As fig. 4~5 illustrates, each equation and operator
posssses one term in the plane of the variasble not included in the
Laplacian operator. Therefore a change in one of the variables, besides
affecting its own Laplacian, is transmitted to the equation with the
Laplacian in the other varisble. Convergence in #uch a system can be
delicate. From equation (4-13) and (4~14) we may note that this "feed-
back" effect depends solely on k? hz , a quantity which is the measure
of fineness of the net. In general the convergence of the relaxation
is slower the finer the net size. This is because, with decreasing
net sizes, changes in one of the variables affects the equation with the
Laplacian on the other variable increasingly less. It should not be
thought though, that for differential intervals the coupling between
the equation disappears completely; this is not so. Whatever the
interval, as long as the relaxation pfecess is far from the solution,
although k' n" may be very small, the necessary change in the variable
will be perforce large, cancelling thus the effect ef wesk coupling.
The slowing down of convergence only comes in when we approach the

solution and then there may be seme tendency for escillatory convergence.
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For large net sizes (MZLLZZ) the convergence is very fast because
relaxation can be effected in a manner such that by the change of one
variable we achieve liquidation of the residuals of both the A and B
equations.

Up to this point we have been speaking of the simulteneous
convergence of both equations., Yet we have also to consider the
convergence of each equation per se, which becomes important as the
coupling weakens, that is, as the net size becomes smaller. This type
of convergence can be speeded up by the use of relaxation operators
which operate mainly at the node, little affecting the neighboring
points. Such procedure is sometimes called "block relaxation" and
any block relaxation operator can be formed by superpesition of the
simple operators described by equation (4-13) and (4~14), and fig. 4~4.
A rather convenient operator of this type is despicted in fig. 4-6.
Generally, bleck relaxation is useful only when dealing with fine
grids er media of low conductivity (in contrast with another of
higher conductivity). Otherwise its cumbersomeness does not make up

fer the added speed.
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4¢3.3 Relaxation operators for boundary conditionms.

All the previous relaxation operators were develeprped for a homo-
geneous mediu. As such they camnnot be used at boundaries of medla of
different electrical properties, where continuity of normal derivaties
or of some multiple of the derivatives are required. This impossibility
erises of course from the need to compute residuals at the boundary
peints, which would lead to the inclusion of & point beyond the region
where the operator used is valid.

The problems in which we are interested deal with more than one
medium. Since continuity of E and H tangential have to be satisfied at
the boundaries of the media, and since in our formulatien E er H can
be obtained as derivatives of H or E_every problem to be considered
will involve continuity of derivative conditions. In order to exemplify
the procedure used te find the relaxation operators valid at boundaries,
we will present the development of two important types of boundary
operators: operators for straight boundaries (coinciding with nodes)
and operators for boundaries in the shape of a corner.

a. relaxation operator for the straight boundaries

As an illustration of the changes undergone by the operators of
equation (4-13) and (4~14) at a straight boundary coinciding with the
nodes, we will consider a vertical boundary between two media. Let us
say that the electromsgnetic field is magnetically polsrized, so our
scalar component is the masgnetic field. We may notice that this is the
type of boundary eperator for the problem of vertical layers or fault.
As seen previously in that problem we need not consider the boundary

the earth's surface, There, the specification of a constant polarized
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field, implies no vertical component of the non-polarized field veetor,
so that one boundery value actually satisfied both electric and magnetic
boundary conditions. The continuity conditions are to be used at the
interval boundaries of the bounded region, nemely at the vertical inter-
face.

The conditions, in the case of megnetic polarization are

w =u,
1 du .t Ju,
K2 ox K, ox

T .
where I<j==9““343 (for electric polarization simple equality of normal
derivatives is required)

Let us first consider the continuity of multiples of the normal

derivatives
Q_—‘A(l) R DBU‘ a R —a_é(l) . 36‘2,
l/uwc'(z)[ax-i-(-;—; J— L/J.w()'("”[ax #LZ;-( ]
or
K A7, K2 2A : 28" 2 2B
@ Hyx T W x Kp)§; =\ 3x

'
where K 3#4061, and also where the superscripts er subscripts in
parentheses indicate the medium in which the function is defined. 1In

finite differences, we write the above equations as
2 w o) 2/ (2 @)
Ky (A1= A ) = Ky (AT- AY)

1))

K(:\(B?)" By ) = K <B‘.2\— By )

(4-19)

(4-20)
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Fig. 4=7 shows the position in the finite difference and indicated by

o ) @ )
the subscripts 1, 2, 3, 4. Clearly then A, , B, and A; and B, are

ficticious points, that is, they are not in the region where the functions

(0
u' and um are defined, respectively.

Recalling the expression for the Helmoltz equation in homogeneous

media

) o) ( ()
A Uy AT AT+ A;)—4A° Ko Bo =0

o Ul -
B+ B+ By + BY'- 4B, AL =0 Medtwml (-2
A(z\ A( . A(';)'f A4 -4 AU.)_ K" ngfz)z

@, gt @ o@ (2
B + B, B3t By -ap + K(2>LA° Medium 2 (4-22)

we elliminate between equations (4-19), (4-20) and (4-21), (4-22) the
) Q) @) (2
ficticious points A, , B, , A; and B; (Seuthwell, 1946; Allen,

1954) ebtaining

L m 0) M (1 @ @ @) (z)
e ki 0l AL a2l < (A AV
(4" LT 2 (4 23)
K(z)(45 ka)l"A Bla By-28;)=K, (7-3 5 +B4 4 le\ ;{"

The additional conditions specifying the continuity of tangential H

require
As= AT ,"= B.”
A(;) - AP BY - Bu.) (4-24)
A? _ Af:) 5:) - 31:2)

at the boundary. This reduces equati m (4-23) te
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2 2,0 (;
4A (K(z)* K(n +2Ku) l" B- (Ku)+ K(z) Ar (e ot Klz;)/\‘,—ZKQ,A;-z K(,‘, ,":o

(4-25)

A8, (Kt Kn) = 2 Koy Ky WA (K i k) B (6B 2B 2K B2

where the components without supercripts (or subscripts) in parentheses

are understood to be at the bowndary of the medium. We may write equatioms
(4=25) in & more familiar form

2
2 E a0 2 KoK, h
Z K A(Z)+A + 2 <z)L A, A4— 4A, 2‘ @) — B,=
k( + K t ' 2 K(:-)"" K(’, KU) + K(z)
2) ) (4-26)
Sy L@ 2 Kg ® 2 Ky ch» y
KO g B+ 2@ B+ By 4Bt —— A0
K;Sf %Q: 2 k%l o) ‘QH +'Kbl

Considering equation (4-26) we see that the first row of nodes adjacent
to the boundaries is affected by the weighing factor of the normal
components of the Laplacian. Therefore, in order teo keep the operators
of this transitional nodes consistents we must alse weigh one of the
components of their Laplacian. From (4-26) and (4-21), (4-22) it is
easily deduced that the operator for the row of adjacent nodes will

be in medium 1

4 2
) 2 K 0) ¢) a2 g
ZA;'*"‘——&-)‘ "4Ao (u)L o—o
i=2 k(!f' K(z)
4 (4-29)

Z g Kw‘ B'O—) («)L‘A' )

u! 2)
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and for medium 2
2 z 2
(2) Z K - —
A(‘l)+ Ail)* A:"' ~ ("z A3— 4Ao K(Z) L\ =0
Ko t %@ (
4~28)
3
5% 8%+ 8% 2K g - 4B,+ Kgh =0
'

P X t N
Ko+ Ka)

The graphicasl pattern of these operators 18 despicted in fig. 4~9.

b. relaxation operators at right angle wedge shaped boundaries

The right angle wedge shaped boundary is very useful in the
idealization of buried structures, i.e. finite bodies of rectangular
shape, dikes, step like structures (which could be used to study the
effects of roots of mountains or the effect of abrupt change in depth
from an oceanic to a continental crust), etc. We will show presently
that a possible type of operator for such "corner" points is one that
probably could be written down intuitively from the results for the
straight line boundary.

If we assume again that we are dealing with magnetic polarization

and considering now fig. 4-~10, we see that at point O we have to satisfy

K'LQA = KL JA
oM N
K'lé;b' = k?— ﬁ,
é97 27

as well ag continuity of A and B, But from the chain rule fer partial

derivatives and from the type of symmetry under consideration, we alse
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have
- - ok
)7 97 I X Y

where u stands for any of the field components A, Ai B, or 32 then we

-—-‘f:——--———i—‘g—@:)—z-—g_‘_* g
27 x 2

can express the boundary condition in finite differences as
' ' /
K“[Au‘Az'AL+A4J = Kk? [Au"As‘ AL+A'4]
(4~29)
2 1 I’_ [ ’
K*[B,-8;- B, By ] = K[ B/~ B~ B+ By ]
From the Helmoltz equation for homogeneous media

HA - K*h'B,=0 {HA'- K*h*B, =0
148 + KR A= 0 HB'+ K*LA=0

we have that
~(AJ+A) = A+ Ag- 4A~ KK'B,
(A, +Ag) =-Am A+ 4A.+ k2LEB,

and similarly for B and B:

Substituting this back into equation (4=29)
we get
z 2 z 2
2K ZK 2 K' 2K —4p - 2K K 2g -
K+ Kk At e Mt L M e Aq o T SR
2t
2kt 2k’ 2Kt 2K B-4B P 2K 120
—_— Rt z. .z 4 ° k&Kt °
K.1+K; ' K.1+Kl 2 K'l‘f‘ Ke 3 K'“+ K +K
(4-30)
These operators are shown in fig. 4~11. At the adjacent nodes 1, 2, 3
and 4 ,

the regular operators will have also to be modified in a
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manner similar to that illustrated by equations (4-27) and (4-28) in

the case of straight boundaries.

4e3.4 Graded nets

The problem in which we are interested will commonly deal with
two regions between which there will be a sharp contrast in electrical
properties. As a result, in one of the media, or even in part of one and
the whole region of the other we may have to describe the field by
cleser nets in order to obtain a sufficiently accurate solution.

A way of making the transition from a coarser to a finer net is by the
use of the sc-called graded net technique (Southwell 98, 1946; Allen
69, 1954)

We will make the transition usually away from the effect of
boundary operators and in the media where the solution is more accurate
(by reason of the finer net size). In this manner we will minimize the
inaccuracies due to finite difference approximation.

The manner in which the change in spacing is accomplished is
i1llustrated in fig. 4-12; for the coarse grid the finite difference
equations are known to be

HA — k*h%B,= 0
(4-31)
He + kK*hA,=0
where H denotes the Laplacian operator. For the finer grid the above
equations sre altered to the extent that instead of h we have h/a.

Consequently in the region with smaller grid spacing, we have



-69-

212
HA - “—;L B.=© (4-32)

212
HB + K——L‘ A,=0
4
Equatiens (4-31) and (4-32) refer then to the nodes marked [ ] and @
respectively. Te write the equations for the intermediate nodes, we
2
invoke the property of invariance of the operater V' with respect te
a rotation of the axes of coordinates. Since at these intermediate

nodes (denoted by O in fig. 4-12) the spacing is h/\/2, their finite difference

equations are

kZh®
2

HA -

B, =0
4~33

HB + K—?‘ A,z o0 .
Although the abeve equations would correspond to the solutions of the
Helmoltz equation in homogenecus regions compesed exclusively of nedes
ke (1 , @ and O, the fact that we are dealing with a transitien
region introduces nodes where careful applieatioh of the above éperators
is necessary. We have to keep in mind that the unit operator at a
given node will be affected by all other nodes in the calculatien of which
residuals it enters. Consider for example, the node called A in fig.
4=12. Equatiens (4-31), (4-32) and (4-33) show that this node enters
in the calculation of residuals at nodes B and C. Accordingly, the
relaxatien operater at A will contain points B and C a&s shown in fig.
4=13. The same applies feor nodes like B, C, D, E and F which have the

relaxation operators shown in figs. 4-15 to 4-18. All other nodes will
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have either the coarse net operator of equation 4-31 or the finer net
operator of equation (4~-32)

The technique illustrated here for a change of net size starting
at a straight vertical line of nodes can be easily adapted to horizontal
line of nodes or extended to & two dimensional change of net size,

i.e. when the transition line is a right angle corner.

L<3.5 Propagation constant and node separation

In problems of potential theory, which are the most commonly
solved by finite differences, one gets used to have the node separation
solely dependent on h. In problems involving the electromagnetic lew
frequency Helmoltz equation, the size of a finite difference net is
tied down to the propagation constant as well as to the quantity h.

Abbreviating the Laplacian operator by

4
Hu_ =.-Z_ W, — 44U,
i=
We write the Helmoltz equation as
(2 -
HA -k h B, =0
kA
HB +K'h A =0
It is of course the dimensionless quantity k* n° , which is analogous
2 2
to the differential (kx) or (kr) , that dictates the node separation.
As we have seen previously, the Helmoltz equation assumes the above form

for equidimnensional x and y sepgrations. If, for example x* hi=2,

solving for h we have h ==J§7k, vhich is the expression for the skin



depth (see equation 2-5). The node separation in this case is equal
to the skin depth or slightly less than a sixth of the wavelength.

It is interesting to note how the finite difference formulation brings
out the importance of the quantity kh. This is very closely relsted

to the ideas of electrodynamic similitude discussed in next seection.

4.4 Generality of the finite difference solution.

In obtaining finite difference solutions, which are on the form
of contour maps of the function being investigated, one is interested
in knowing how general a given solution is. Does it hold for all
frequencies and inductivities? How do we convert from one conductivity
to the other? What restrictions must be obeyed? And so on. Clearly
this can be studied by the use of the concepts of electrodynamic
similitude (Stratton, 488, 1941; Cagniard, 1953; Sinclair, 1948)

In general a given solution is valid for all similar geometries
provided certain relationships are upheld in going from structure to
structure. These can be easily deduced if we consider two structures,
which are geometrically similar; then an electromagnetic field in one
of the structures is described by

VT + ki =0 (4-34)
whereas in the other structure we will have

V T+ ki T (4-35)
1T being the Hertz vector. One aim is to investigate how the
quantities involved can be changed in one of the structures while

keeping T and iFaat corresponding points of both structures invarient.
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Equations (4-34) and (4-35) contain three variable quantities namely
time, length and conductivity. (We are assuming the magnetic permeability,
M- constant.) Let us suppose that they are related from one structure

to the other by the constants of proportionality Ky, K. K¢

that is
L'= K L
ao'= Ke T
T'= KT

where L is the length dimension, G the conductivity dimension and
T the time dimension. Substituting these relationships into (4-35)
we get

f Yt (KLK ) z.—TF':
Vimr+ ({Ze%e ) K o
Kr

So that, in order to preserve invariance of 7? and :ﬁ;we need to keep
kr = KLZ. Ke
This fundamental relationship for electredyneamic similitude when
displacement currents are negligible, also tells us that if we are
dealing with a geometry having components of different conductivities,
the ratios of the conductivities in one of the structures have to be
equal to the ratio of conductivities in the other structure; only in
this way invariance can be preserved.

Therefore, in the general case, we can transform a given finite
difference solution to a different size, conductivity or frequency by
applying equation (4-36); if the problem concerns & structure having
regions of different conductivities, the conductivity contrasts have to

be kept during the transformation.



However, in geometries without finite dimensions, the finite
difference solution is much more general. Such geometries are of
great importance in geology because they comprehend faults and dipping
beds, a rather common feature. In effect, since these geologic
features, from the analytic standpoint, do not have finite boundaries,
only semi-infinite ones, from a dimensional point of view, there is no
way of fixing the length scale without bringing the electromagnetic
wave for comparison. In other words, in a semi-infinite structure, the
conductivity of the medium and the frequency of the wave fix our
length dimension. As & result in this class of problems the only
parameters to be varied are the inclination of the layers and the
conductivity contrasts. For a given conductivity contrast and dip
we could, for example, obtain the complete frequency response of the
structure from one map only. Referring to equation (4-36) it can be
seen that this could be done simply by changing - isotropically the
scale of the map.

In geometries having finite dimensions the finite difference
solution becomes much less general. The length dimension is not
arbitrary any more and as such the frequency response of a structure
cannot be obtained from onc single solution. The fundamental similitude
relationship loses its previous freedom and becomes completely constrained.
If we change the scale we actually change the structure and we obtain
the response of a scaled up or down (but different) structure at either
another frequency or conductivity, or both. Because of this lack

of generality in the solution, no computation of fields over such



structures will be carried in this work. The need to compute the
magneto-telluric fiela at different frequencies plus the combinations

of size necessary to give an idea of the trends, would become prohibitive
for desk calculator calculation. We may have to wait for the adapt-

ation of the method to digital computers.

4.5 The method of approximation and the Helmoltz equation

Up to now we have been developping the technique of finite
difference solution of plane electromagnetic problems without reference
to the errors and inaccuracies inherent to the finite difference approach.
In this section, we will pay attention to this aspect of the problem.

Four types of approximation have been inclu&ed in the previous
discussion. First, we should consider the truneation errors, that is,
the errors introduced by representing a differential equation by a
finite difference equation. Second, during the solution of the various
boundary value problems, the residuals will never become completely
gero; this is another source of error. Third, when we constrain the
Helmoltz equation to become zéro at a given depth, we must choose this
depth so that the error is negligible. And fourth, since the non-
polarized surface field is obtained through & numerical differentiation,
it is convenient to study the accuracy of this operation.

Graphical and numerical presentation of the behavior of the ene

dimensional Helmoltz equation can be found at the end of section 4.5.3.
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4.5.1 The finite difference approximation
Let us assume that a and b are the solution to the differential
equations

Vla - bi =0
(4-36)

Vb+Ka-=o
Call the finite difference Laplacian operator H and the finite difference

solutions A and B
E 3
HA-Kk*h'B, =0

ug + KA, =0 (4-37)

Recalling the way in which the second derivative expression in finite
differences was developped (see equation (4-8) and (4-9) ) we see that the

main term of the truncation error is

Ry, T - A
* 2 ox4 ' ~ 2z 374

and similarly for B. We have then that

lHA-— Kval ¢ —5—4{ %* %.?4]

12
Subtracting (4-36) from (4-37) we find the finite difference error to be

4 4
- R[2A , 2A
(a All"]{z[ax"i'a\’ﬂ

rpt . %6
IL-B'-L—-};[;N oyt |



These results show that for net sizes corresponding to one skin

depth the solution will be in error by less than 16%, while for
separations equal to half the skin depth the finite difference error
should not exceed 0.2%. The first estimate is too high for most of

the region under consideration (ecomputed values are usually within

10% for the one dimensional equation) while the second is too low,
because of course, it is based on the agssumption that the relaxation

is carried to complete liquidation of residuals. By carrying sufficient
significant figures and spending enough time, this accuracy could be
epproached. In our case relaxation will be taken to within 0.5% to

2.5% of the differential solution in mest cases.

4¢5.2 The relaxation approximation
In practice, the relaxation process is never led to the point

where all residuals are zero. Therefore, if the exact solution of the
difference equations is

HA-k*h"B =0

HB +K*WA=0
where H is the Laplacian operator, then the solution obtained by
relaxation methods would be

HA" K‘Ll6'= LN

HB + k2hA'=s
and the error introduced at the node and surrounding points would

have to satisfy

He, + wthieg 25
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where és’-A'-A and €, = B'-B . We may obtain a conservative estimate of
the error involved if we assume that the errors in the points around
the node add up to zero, so that all the error is concentrated in the
node. In this case, solution of the equations for €5 and €y give

2

i*h

le- 2
Z)

S+

Sis

é,.‘--—

<=

Y

éKle—r
€ & + FYICTY S
K
4+(_a_)
If the residuals r and s are of the same magnitude, say m, the above

equations become ue
m!l+‘k—"g)

€p¢ — 222
4- ()
€. ¢ m EiLtJ)

s T KZhEy 2
4+ (%)

4.5.3 Zero cut-off at depth approximation

The finite difference solution of the electromagnetic problems
related to the magneto-telluric field depends on the ability to transfora
infinite boundary problems into finite boundary problems. This was
accomplished by considering the field to become zero beyond the depth
where its magnitude became smaller than the significant figures carried
in the calculation. From a physical point of view constraining the field
to go to zero at a given depth is equivalen£ to placing an infinitely

condueting layer at that depth. In order to see how the depth at which



COMPARISON BETWEEN DIFFERENTIAL AND FINITE DIFFERENCE

A,B
100

SOLUTIONS OF THE ONE DIMENSIONAL HELMOLTZ

EQUATION IN A DISSIPATIVE MEDIUM

A SOLUTION

u=A+iB

AT THIS SCALE, PLOTS OF THE ONE
DIMENSIONAL DIFFERENTIAL HELMOLTZ
SOLUTION ON A UNIFORM MEDIUM
COINCIDE UP TO Re(KR) :=2.25

WITH THE FINITE DIFFERENCE SOLUTION
CONSTRAINED TO ZERO AT Re(KR):= 4

— — DIFFERENTIAL SOLUTION A
—=-DIFFERENTIAL SOLUTION B

FINITE DIFFERENCE NODE SEPARATION thz=~|6

B SOLUTION
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the layer is, affects the surface field, we may set up the boundary

value problem

w= Ae*l . Be-ikr
w=h at y=0

u=o at y=2

which is easily seen to yield

W ol sink(y-a)
Sin kKa

where kz-c’/n.wa’. Now the field at the surface of a uniform earth is
W = he ixy
and a magneto-telluric measurement would be characterized by
Ez _ _«k
Hx A
Similarly, the magneto-telluric measurement over a two ‘layered earth

(with the botton layer being infinitely conducting) yilelds

..E.._zr:.w K tan K(Y—-&)

“} S l'/d.w
and at the surface
-E-'—z- = .K tan Ka
H’ 7:0 "}AW ‘
defining F = 1/}&&16'/2,
—E—-'- =K _ fan Pa(|+i) = K E"P‘*"ta"z' Ei
“"l)‘ 7:0 L'/"""“) o fan Pd t&nl’t Pa + L
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The above equation clearly becomes identical to that of the magneto-

telluric field over 2 uniform earth if tanh pa=|. If we attend at the

behavior of tanhpe we have

pa tanh pa
3 0.99505
4 0.99933
5 0.99991
6 0.99999
6.5 1.00000

Thus we see that if we force the solution to zero at depths for which
the surface field will be negligibly affected. If on the other
hand we were actually interested in studying the wave fields inside the
earth, we would have to choose the cut-off point at a greater depth,
say, at depths for which Fa)é . We may note that r:a = "—‘i‘z-"—g-_ a=|
corresponds to the skin depth.
The following tables and graphs present some finite difference

solutions for different sizes of net as well as some comparisons with

the differential solutions.

4e5.4. Finite difference derivatives

Our ultimate aim is calculation of the magneto-telluric field
over arbitrary geometries. Since the polarized field is constant, the
surface non-polarized field is the quantity we are most interested in

obtaining. However, all problems are solved in terms of the polarized



TABLE I

NUMFRICAL SOLUTION OF THE ONE DIMENSIONAL HELMOLTZ EQUATION

uzA+1B
éy (red.) 4 B é‘y(rad.) A B
0 100.00 0 3.75  -1.93 -1.34
0.25 75.46 19,27  4.00  -1.20 -1.38
0.5 53.23 29.08  4.00  -1.20 -1.38
0.75 34,56 32,20  4.25  -0.64 -1.28
1.00 19.88  30.96  4.50 -0.23 -1.08
1.25 9.03 27.19  4.75 0.03 -0.86
1.50 1.58 22.25  5.00 0.19 -0.64
1.75 -3.10 17.10  5.25 0.27 -0.44
2.00 -5.63 12.30 5.50  0.29 -0.29
2.25 -5.95  7.37  5.75 0.27 -0.16
2.50 -6.58  4.91 6,00 0.24 -0.07
2.75 -5.90 2.4 6.25  0.19 -0.06
3.00 -4.93 0.70 6.50  0.15 0.03
3.25 -3.23 <042 6.75 0.11 0.05

3050 ‘2083 “1.% 7-00 0007 0.06



TABLE II

COMPARTSON BETWEEN SOLUTIONS u=A+iB OF THE DIFFERENTIAL AND DIFFERENCE
EQUATIONS VANISHING AT A DEPTH Y=4 /2 /k

differential solution difference solution

R b2 k2 h%1/ 2 k2 h?-1/8
Ky A2 A B A B A B A B
0o 100.000 0 100,000 0.000 100.000 0.000 100.000 0.000
0.25 74.L6 19,27 75.3 19.2
0.50 53.23 29.08 53.004 28,201 53.1 29.0
0.75 34.56 34.55 32.1
1.00 19.88 30.96 2Q1.32 27.2 0 20.097 29.908 19.9 30.8
1.25 9.03 27.19 9.05 27.0
1.50 1.43 22.23 , 2.132 21.565 1.5 22.0
1.75 "3029 17.60 “3.25 16.8
2.00 -5.87 12.37 -2.941 11.76 -5.035 12.175 -5.75 12.0
2025 -6o22 7.50 .6n85 8.2
2050 “6.87 5020 "6.20 5-320 "'6.7 5.4
2075 "6o17 2.88 "509 3-35
3-00 ‘5-12 1034 "3.675 0.009 -40695 1058 "408 1.8
3o25 "3026 O.M "3#5 0o8
3.50 -2.60 0.02 -2.40 0.19 ~2.2 0.2
3.7% -1.29 0.06 -1.1 0
4.00 0 0 0o 0 0 0 0 0



vecter component, so that the other electromagnetic vector, which is
needed to define a magneto-telluric measurement, has to be obtained
through Maxwell's curl equations. This involves finding the derivative
of the polarized field at the point where we want te know the non-
polarized field. In particular, since the magnete-telluric method

is characterized by the ratie of tangential E and H at the earth's
surface, we have to calculate the nermal derivative of the polarized
field at the earth's surface (see section 3.2)

In sectien 4.2.1 we presented a two peint derivative based on
central differences. Although useful for boundary eonditioms, this
type of derivative 1s not appreopriate to the earth's surface where
we went a derivative in terms of forward differences. Frem the
expression fer the Tayler expansion abeut a peint (equation (4~87))

we may easlily deduce the three point derivative
J -
5;5[7;0 = [-3{(o)+ 4 {(h - ;(zL)]

which has a truncatien errer

T, ¢ 4V ")

The error in the derivative depends primarily on the spacing of the
finite difference nodes, not so much from the error introduced by large

spacing on the finite difference solution, as actually frem the diffieulty of
trying te fit a lew degree polynormal to a high degree one. There-

fere, when we go from regions of lew conductivity te another of

high conduetivity, keeping the same size of net (which is a practical

necessity), we will get less accurate results on the more conductive



TABLE III

COMPARISON BETWEEN THE FINITE DIFFERENCE SOLUTION AND DERIVATIVE WITH

x2 p2:1/8 AND THE SOLUTION AND DERIVATIVES WITH k2 h%= 2 INTERPOLATED

37
0

0.25
0.50
0.75
1.00

2w
a\‘ =0

k2 hi= 1/8

A

100.00

75.30
53.10
34.55
19.90

B

0.00

19.2
29.0
32.1
30.8

49.7

100.00

k2 he= 2

A B

21.32 27.2

43.5

0.00

TO K? h?=1/2 AND k2 h2=1/8

k2 h3-2
A B
100.00 0.00

53.35 29.24

21.32 27.20

52.3

K2 b= 2
A B
100.00 0.00
75.93 18.44
54.2 27,36
35.89 29.53
21.32 27.2

51.6
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regien. We have seen in 4.3.5 how the conductivity of the medium is
intimately connected with node separatiocn. Thus in treating the
errer introduced by the finite difference derivative, we have te

discuss them with respect te the parameter k2 h2 .

Let us consider & uniform earth fer which Re (k)=0.5. In the
differential solution the normal derivative of the pelarized field
at the surface will have a magnitude 0.5. The corresponding finite
difference solution will have a node separation equal te half the skin
depth or k2 h?=1/2. Using the above expression for the truncatien
error, we find that for such spacing the derivatives will be in error
by less than 10%. Actual computation shows that they are in error by
4%. If instead, we decrease the net size by half, making k? h?=1/8,
we get from the truncation fermula an estimated error of less than
3%; the actual errer is 0.6%.

From these calculations, we see that 3 point derivatives teken
with separations of K2 h2==1/3 are excellent fer our purpeses. However
in many occasions, the time available will compel one te use larger
separations (& typical vertical layer problem with a separation ef
K2 n?=1/2 may need 80 points; with a separation ef x? h2=1/8 the number
of nodes will increase to 320. Graded nets are an alternative, but
in most cases they also will increase sharply the computatien lead)
which yield sufficiently accurate solutiens, but which may be toe lerge
for the derivatives. In this case we may improve the derivatives by
interpolation. That is, we may interpolate one or more points between
the surface node and the next sub-surface node, by making the interpelated
points satisfy the Helmoltz equation and coineide with the two nodes
in question. Of course, the ideal procedure would be te solve all the
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problem in a fine net. However, by interpolating, we increase our
accuracy without a prohibitive amount of computation. Supposing that

we are solving a uniform earth problem on a ' hzéz net, we know from a
previous discussion that the error at the points near the surfece

will be less than 18%. By interpolating one point we reduce the error

by less than half and by interpolating more points, we reduce further
the finite difference error. At the seme time we improve the derlvative,
so that the process produces a much more accurate result. This is
illustrated by table 4. The 3 point derivative of the one dimensional
Helmoltz equation for a spacing kt’hﬁtz is in error by 13%. By
interpolating one point we reduce the error to 4.6% and by interpolating
3 points we reduce the error further to 3.2%., The error in the derivative
by solving the whole problem in e finer net (equivalgnt to the 3

point interpolatiem) is 0.6%.

4.6 The magneto-telluric field in specific structures
4.6.1 Apparent conductivity patterns in inclined layers

As referred in 4.4, the finite difference solution of inclined
layer problems is characterized by a degree of generality not found
on finite boundary geometries. For this reason, we have chosen to
illustrate the use of the finite difference method developped here
with the calculation of the magneto-telluric field over a group of
inclined layer structures, from which we can draw certain general
conclusions on the behavior of the field over such structures.

Before going inte the specific cases, we will point out that by
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using the "semi-quantitative transform" concept discussed in section
2.5, the apparent resistivity patterns in inclined layer gecmetries

will have definite identifying characteristics. We may recall that

the "semi-quantitative transform " was ebteined by pletting the apparent
resistivities at a given statien at a depth equal to the skin depth

in the mediu. As a result, all the lines of equal apparent resistivity
will go through the strike of the fault. Thus the transform accemplishes
the identificatien ef the type of geometry involved. The only parameter
lacking will be the dip of the bed. In order to de this, once we knew
that we are dealing with an inclined bed gecmetry, it is a simple
procedure to obtain the frequency response of the structure. From

this point om, it is & question of synthesis, which can usually

be accomplished by curve matching. However, the synthesis preblem

is unique because it depends on one only variable, the angle of dip.
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4L.6.2 Sea coast effects

One of the most striking instances of lateral changes in conductivity
is that associated with sea-land contacts. Its importance derives as
much from its widespread sccurrence as from the conductivity centrasts
involved, which are on the order of 1000 or more. The magnitude of the
contrast introduces effects on the apparent conductivities measured
inland, to an extent that they may give an erroneous picture of the
sub-surface structure if proper care is not exercised.

An incident plane wave will penetrate between 10 teo 1000 times
deeper on the continent than in the sea. For example, at 1 cycle per
second, on a shield type area, an electromagnetic wave would be
attenuated as much at a depth of about 80 kilemeters as at a depth
of 500 meters under the sea. This means that as we approach the sea,
the telluric currents in the erust have to move upward. Once they get
to the sea they become concentrated near the surface, by comparison
with their distribution with depth in the continent.

In order to make a quantitative study of the behavior eof the
magneto-telluric field near the sea, we may set up an 1nclined layer
model where one of the media has an infinite conductivity. Physically
this is equivalent to a zero skin depth in the sea; in other words,
it is the same as having the telluric currents in the sea concentrated
entirely at the sea surface. This is certainly a valid approximatien
when we consider the ratio of about 1/100 and more between the distributions
of the current with depth at sea to that inland. A problem of this type
was selved by finite differences and the reader is referred to fig. 4-22

for the results.
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According to our solution, as we approach the sea, the upward
movenent of telluric currents only becomes noticeable at a distance
equivalent te kr=2.5. At 1 cycle per second, fer an earth with a
resistivity of 10° oha-meters, this would mean 40 kilometers from the
coast; at 0.01 cycles per second it would be 400 kilemeters. The
fellowing region, comprised between kr=12.5 and kr=1.5, is consequently
characterized by apparent resistivities which are slightly higher than
the actual resistivity of the medium (this would be a region 16 kms.
long at 1 eycle or 160 kms long at 0.0l cycles per second, for the
same resistivity as above). Finally, from kr= 1.5 on, towards the sea,
the apparent resistivity falls eff sharply; at kr=0.5 (8 km at 1
cps; 80 at 0.01 cps) it has decreased to about 60% and by kr= 0.25
it has been reduced to about 40% eof the actual resistivity.

The above description of the expected behavior of the magneto-
telluric field near the sea assumes, of course, movable locations at
a fixed frequency. Let us see now what it means in terms of a spectrum
of frequencies at a fixed pesition. In this case the "kr" of the statien
is changed at every new frequency and for each one a response as
described previously would follew. Therefore, under the assumption of
the possibility ef measuring a very broad band spectrum, at the
highest frequency, we would get an apparent resistivity equal to the
real resistivity under the station. Then, as we lewered the frequencies
and went through the range which made the "kr" of the station about 2,
we would get slightly higher apparent resistivities. Finally, as we
keep lewering the frequency, we would run inte the frequency region

where the apparent resistivities begin to fall very rapidly. The
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curious fact is that this type of response has the same general
features of the frequency response of a two layered earth, where the
bottem layer is more conductive than the top layer. And, one is tempted
to suspect that the profusiom of papers dealing with two layered earths
with infinitely conducting substrata has its origin in the mistaken
identification of sea coast effects. However, we must add that with
good data, that is, with a fairly large range of frequency response
of apparent resistivities and phase angles no confusion should occur.
Yet one must remember that practical matters of all kinds dictate the
smount of data collected. Wide frequency response, simultaneocus
recording of magnitudes and phases of the angles require an amount of
instrumentation not easily available.

In order to illustrate the above comments more coneretely, let us
take an example. By now, it must be fairly evident that the curves
of fig. 4-22, giving the characteristics of the magneto-telluric
field in function of the distance from the sea can also be used as the
frequency response of the magneto-telluric field at a given station.
This is, of course, because from previous considerations of electro-
dynamic similitude, by changing the frequency we change what we may
call the electromagnetic distances invelved; in other words the position
of the statien changes with respect to the wave length of the electro-
magnetic wave.

Now in fig. 4~22 values of the field are given at distance intervals

equivalent to kr =0.5. A given station or observatory will be at a
distance r from the sea; since the k ef the solutien is actually the

real part of the propagation constant as it is usually defined, it is

given by k = " L w 5‘/2 s where w 1s the radian frequency and ¢
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the conductivity of the medium. The medium under the station will have
a conductivity O ; therefore, by changing the frequency «> the
product kr assumes different values. In this manner the coordinate
showing the distance from the sea in fig. 4-22 can be transformed inte
a frequency coordinate.

Let us for example consider an observatory 40 lkms from the sesa,
in & medium of resistivity 103 ohm-meters. The frequency respense

of the apparent resistivity due to sea coast effect would be approximately

peried (seconds) apparent resistivity
1.0 o 103
2.8 0.85 x 103
16.6 0.6 x 1073
100.0 0.4 x 1073

To the observer unaware of the nature of sea coast effects, this data
may seem to peint to a layer of higher conductivity at depth. In fact,
using the usual interpretational techniques of curve fitting, we would
see that these measurements fit very closely the curve for a two layer
earth with a top layer of resistivity 103ohm-meters and a bottom layer
of resistivity 0.5X10° ohm-meters at a depth of 20 kms.

However, if simultaneous recording of the phase angles were made,
we would immedistely detect the error of ascribing the response
obtained to a layered structure. While for the layered structure the
phase angle should start at 45° and go up with lewer frequencies, for
the sea coast effect the phase angle starts at 45° but decreases
with lewer frequencies. The reader is referred to Cagniard's
paper (1953) for a set of stendard interpretation curves in the case

of a two layer earth.
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We may conclude therefore by emphasizing the similarities between
the apparent resistivity response of the sea coast and of & two layered
earth, at a given station. The farther inland the station is the
the deeper the conductive lower layer appears to be. This is illustrated
by the apparent resistivity map in fig. 4-22. Besides the effects
mentioned above, we also must be aware that these lower resistivities
at depth may mask the other sub-surface structure. It should also be
peinted out that the way to avoid the pitfalls of interpretation is by
taking as complete a set of data as possible. Geographic coverage is
necessary. When it is impossible, apparent resistivities and phase
angles throughout a wide spectrum of frequencies are a must. With
simultaneous measurements of magnitude and phase no confusion between
sea coast eff .cts and layered medie should arise. However, the only

way to detect unambiguously the sub-surface structure is by geographical

coverage.



4.6.3 Inclined layers

In this section, we will discuss some results concerning inclined
layers when both media have finite conductivities. These results were
obtained through the finite difference method that we have been
describing. Fellewing the treatment of previous sections, we will
examine the magneto~telluric field for electric and magnetic polarization
separately. For electric polarization, the E vecter is parallel te
the strike of the structure, and the current in the earth runs parallel
to the strike; fer magnetic polarization, it is the magnetic vector
that aligns itself along the strike and the current in turn runs
normal to the strike.

In the follewing discussion, in order to achieve a certain
degree of generality, we will speak of distances in terms of kr's
away from the strike. Thus when we write "at a distance kr=2 in
the resistive side" we mean a distance from the strike at which kr =2,
By using kr for the dimensions, we take in aceount conductivity, wave

length, and the actual length dimension at once.

a. Electric polarizatien.

In dealing with this type of polarization, the current flew lines
actually never cut across boundaries separating regions of different
conductivities. Further, the boundary conditions require continuity
of the electric field and its normal first derivative. These
characteristics would lead one to expect a rather smoeth and gradusal
change in the magnetic.field at the surface, across the region of

changing conductivity. Three examples of the magneto-telluric field
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for electric pelerization are given in fig. 4-20, 4-24, and 4-25, and
they justify our expectations. These examples concern inclined
layers with conductivity contrasts of 4 snd angles of dip ef 45°

90° and 135° . In all of them the apparent conductivity just takes
intermediate values as we go from the ﬁore resistive to the more
conductive side.

For the vertical layer case (90° angle of dip) as we approach
the strike frem the resistive side we begin to feel the influence of
the boundary at kr=1.5. For ease of exposition, let us call the
difference between the resistivities of both media 100%. Then, as we
get te kr=1 in the resistive side, the apparent resistivity has
already dropped about 5%. At kr =0.5 the apparent resistivity has
decreased by nearly 20%. When we reach the strike, the apparent
resistivity is reduced to 30%. As we preceed into the more
conductive medium, the apparent resistivities keep drepping; at a
kr=0.5 in the conductive side they are down to 14% and finally
by kr=1 the apparent resistivity equels the resistivity. Between
kr=1 and kr=3 our solution showed a region of slightly leower
apparent resistivities. These effects were on the order of 3% ef the
actual resistivity and it looked like some sort of recovery effect.
Although we can be sure of its existence since it appears in other
vertical layer and 135® layer examples more accurately solved, we
cannot decisively say that in this case it disappears at a kr= 3.
Probably it ceases to exist anywhere between kr =1 and kr =3, but since
3% effects are at the limits of our accuracy on the more conductive

side, its impossible to state exactly where.
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The values assumed by the phase angle as we cross over the
vertical layer show & high degree of symmetry about the strike. This
symmetry is in terms of actual distances not eof kr's. At a kr=1.5
in the more resistive medium, the phase angle is half a degree lower
than in an uniform medium . The minimum phese angle occurs at kr=0.5
and it is about 42®, From here towards the fault the phase angle
increases and the maximum occurs at a kr=1 in the conductive side;
its value is 48° and we may note that both the maximum and minimum
are equally deviated from the 45° characteristic of an uniform
mediumn. At a kr=3 in the conductive side, the boundary ceases te
affect the phase angle.

Let us see how these characteristics are modified when the angle
of dip i1s changed from 9P to 45°. A 459 degree dip means that actually
we have a conductive layer sleping dewnward underneasth the resistive
medium. Therefore, as it would be expected, the apparent resistivities
on the resistive side are affected farther away from the strike than in
the vertical layer case. Actually, there is an added feature: in the
resistive side, between kr=3 and kr= 2 there is a region of slightly
higher apparent resistivities (~2%). From kr=2 on, towards the
more resistive side, the apparent resistivities fall in a gradual
fashion and as we get to the strike they are reduced to about 3%
of the difference of the actual resistivities of both media, By kr=1
on the conductive side no boundary effects are detectable.

As to the phase angle, the lateral effects begin at kr=2.5
on the resistive side with a steady decrease froem 45%. The previous

symmetry about the strike disappears. A very abrupt change occurs,
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still on the resistive medium, in the short space between kr=1 and
the strike line; here the angle goes from & minimum of 320 teo a
maximum of 54°. We may note the greater deviation of the angle on the
gide nearer to the dipping contact; the same will be seen to happen
foer 135°. At a kr =1.5 in the conductive side, the geometry no longer
affects the phase angle.

Finally, we may leok inte the response of an inclined bed at
135°, Here the fact that the resistive bed slopes under the conductive
one keeps the apparent resistivities on the resistive medium unaffected
until about kr=0.5 from the strike. The usual pattern of gradually
falling apparent resistivities follows and as we reach the strike, the
apparent resistivity is the average of the resistivities of both media.
At a kr=2 on the conductive side, we get real resistivities, but then
fer about 2 kr's fellows a region exhibiting the same slightly lewer
apparent resistivities as in the case of vertical layers.

The phase angle shows the same general pattern as before except
for the fact that the minimum and maximum occur now respectiveiy over
the strike and at kr=1 on the conductive side. Also, as pointed out
previously, the maximum (which is in the side nearer to the inclined
layer) represents a greater deviation from the uniferm earth phase
angle than the minimum.

The knowledge of the response of dipping beds is useful either

to detect and define dipping beds or te avoid their effects. We may

summerize our results for a contrast of 4 (and certainly generally

applicable within a certain range of 4) by stating that the detection
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of inclined beds in the resistive side begins at:

kr=3 for 45° dip
kr=1.5 for 90° dip
kr =0.5 for 135 dip

The corresponding distances in the conductive side are

kr=1 for 45 dip
kr=3 for 90° dip
kr = 0.5 feor 135° dip
having in mind that beyond kr = 0.5, kr =1 and kr = 2, respectively, the

effect is & very small one.

A1l the discussion up to now has been based on the rather lew
conductivity contrast of 4. In order to estimate how the contrast
affects the distances at which the effects are felt, we solved 2
vertical layer problems dealing with limiting cases of extreme
conductivity contrast. In one, a finitely conductive medium was
assumed to be in contact with an infinitely conducting one; this is an
approximation to the case of very large contrast as seen from the more
resistive medium. In the other, the finitely conductive medium was
assumed to be in contact with a nonconducting medium; this is, of course,
the approximation to the case of very large contrast as seen from the
less resistive medium. The data obtained is given in fig. 4-22 and 4-23.

These results are very interesting because they show that for
vertical layers the region where the changes in apparent resistivity

take place are the same either for a contrast of 4 or for a contrast
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of infinity; this is, kr =1.5 on the resistive side and kr =3.5 on the
conductive side. Besides, these results also show the small recovery
effects described previously; On the resiative side they occur between
kr=2.5 and kr=1.5 and amount to 2% of the actual resistivity; on the
conductive they occur between kr= 2 and kr =3.5 and are on the order of
5% of the actual resistivity. In face of these results, we may conclude
that the general features of the results for a contrast of 4 can be
used to estimate the response for higher contrasts.

In a manner identical to that described in the preceding section,
we may use the magnitude and phase curves which we have been discussing,
te study the freguency response at a glven station near an inclined
layer. At the highest frequencies the values would be those of an
uniform earth (provided the kr were large enough i.e. kr=3) and at
the lewest frequencies the apparent resistivity would tend to that of
the strike. Again, we see that for a fixed location we would obtain
curves similar to those of a two layered earth. On the resistive
side the substratum would appear more conductive, on the conductive
side the substratum would appear more resistive. However, any
confusion would be dispelled by the phase angles which consistently
go in the direction opposite to that expected of the two layered earths
described above.

We may note that the point directly over the strike of an inclined
layer has the interesting property of constant apparent resistivity
throughout the range of frequencies. Therefore, a magneto~telluric
on the strike would seem to show an uniform earth of resistivity

different from that of either medium in question. For inclined layers,
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the phase angle deviation frem 45® would show the erroneous inter-
pretation. But for a vertical layer, even the phase angle is nearly

45%°. Here is then one more instance calling for geographical coverage.

b. Magnetic polarization

The fact that in magnetic polarization current flew lines run
across boundaries separating regions of changing conductivity and that
although the polarized field is continuous at the boundary its normal
derivative is not, might lead one to expect a less smooth behavior for
magnetic polarization than for electric polarization. This turns out to
be true. The reader is referred to figs. 4-21, 4-26, and 4-27, which
give results for inclined layers with dips ef 45°, 90° and 1359,
respectively, in the case of magnetic pelarization.

The general behavior of the magneto-telluric field fer several
inclinations of the layers is very similar. As we approach the strike
from the resistive side, the first effect is a downward flow of current
which produces lewer resistivities. This occurs generally aroumd
kr=3 from the boundary. The minima on the apparent resistivities
comes in at kr =2, k=1, and kr=1.5 for 450, 909, and 1359, res-
pectively. As it might be expected, while for the 459 inclined layer
the effect is rather strong (20% of the difference in econductivities of
both media) at 900 it is reduced to sbout 4%, and at 1350 is little
more than 1%. After this minimum, we run into a region where the

current is rushing to the surface and consequently preduces high

apparent resistivities. This maximum eccurs at & kr=1, kr=0.5

and over the strike, for the 45, 909 and 135° inclined layers.
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Such behavior can be explained in terms of the current flew trying
trying to force its way into the nearest region of higher conductivity.
In the resistive side the current at depth :ttempts to reach the
surface. For dip angles pf less than 90°, the surface current near
the contact tries to go down; for dip angles of more than 90° the
currents at depth have to climb at a much steeper angle than for
smaller dips. The result is that we get more pronounced resistivity
maxima for inclined than for vertical layers. For the 45° fault, we
get apparent resistivities which are twice as large as the resistivity
of the less conducting medium; fer 135° fault they are one and a half
times larger. In comparison, the vertical fault produces a small
effect, on the order of 5% of the resistivity of the less conducting
medium.

In all three cases the current is moving down as we cross into the
more conductive side. An exception is the 135° fault where the surface
current moves down from both sides of the strike and cresses the
contact essentially horizontally . Immediatly follewing the strike,
on the conductive side, we usually run inte a region with apparent
resistivities smaller than the actual resistivity of the conducting
medium. This effect is small for angles larger than 90° (about 1%)
but for 45° it reaches 8% of the true resistivity of the conducting
medium. By kr=1.5, kr=2 and kr=3, for 45%, 90°, and 135° , respect-
ively, the boundary effects cease to be detectable.

The above results are partially confirmed by modelling work. A

model involving a vertical bed over a nonconducting substratum (fig. A-3)
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showed the same sequence of apparent resistivities from the resistive
to the conductive medium, namely, the minimum follewed by the maximum
and decreasing values as we went acress the contact. Another scale
model, that of a buried eylinder near the surface (fig. 2-6) again
showed the minimum in the apparent resistivity at a kr between 3 and 2
from the cylinder, follewed by the maximum clese to the cylinder
boundary.

Let us turn our inquiry from the geographic response, to the
frequency response of the magneto-telluric field in a given locality.
The previous results show that in the resistive side, the ineclined
layer will produce changes in the apparent resistivity resembling those
due to a three layer earth (or even a four layer earth, if the minimum
is pronounced); such a layered earth will in general appear to have a
very conductive bottom layer and a very resistive middle layer. On
the conductive side, as the angle of dip goes beyond 90°, a response
like that of a three layered earth, of small conductivity contrast
and with a resistive bottom layer and a conductive middle layer, will
be obtained; for smaller inclinations of the beds the number eof layers
will appear to be two, with a conduective bottom layer (correspondingly
in the resistive side it will loek like a 4 layer earth). In all these
cases, however, the phase angles will show that the layered earth
interpretation is wrong.

Finally, we may add that if the lecation is on the strike, the
apparent resistivities will be unchanged throughout the frequency spectrum.
This response might be taken for that of a uniform earth, if it were net

for the values assumed by the phase angles.



APPENDIX I

A SCALED DOWN MODEL FOR THE MAGNETO-TELLURIC FIELD

1.1 An analogue model for the magneto-telluric field

At the beginning of this investigation, it was thought that much
information regarding the behavier of the magneto-telluric field could
be obtained from a scaled down model. Unfoé%een difficulties restricted
the value of the model and reliable results were obtained for only
two geometries. However, this data is well worth reporting on account
of the complete lack of results regarding plane waves in two dimensionel
geometries. It provides confirmation of the field behavior predicted
by the finite difference methods of chapter IV as well as an inquiry
into the possibilities of model work.

The first question to be taken is the manner by which the magneto-
telluric field was simulated in the laboratory. The problem consisted
in producing a field analogous to that associated with incident plane
waves in the earth. As discussed in section 2.3 this field is characterized
by horizontal and uniform current flow in a- homogeneous earth. The idea
o f transmitting antennes or other methods involving electromagnetie
coupling between sender and ground, was ruled out on the basis of the
resulting low level signal interference from objects in the laboratory
and restrictions on the distance at which the antennas could be placed.

Instead, a system relying on conductive coupling was adopted. This
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consisted of two horizontally lying rod electrodes, parallel to each
other, located at each end of the model tank and buried just beneath
the surface (fig. A-1).

The sending electrodes were 2 feet apart and the model measure-
ments were carried along a one foot center strip, running perpendicular
to the rod electrodes. There was provision for checking the lateral
uniformity of the field through 2 parallel lateral strips, 4 inches
to each side of the central strip.

The receiver was a dipole with a one centimeter separation
between electrodes. High frequency coaxial wire was used in the
receiving system as well as everywhere possible, but the need for a
return wire between sending electrodes posed serious electromagnetic
coupling problems. In speaking of these coupling difficulties, we
must bear in mind that the voltages measured were extremely small,
on the order of tenths of millivolts. Thus a very small amount of
electromagnetic coupling was enough to spoil the measurements.
Whenever using metallic model materials, we were restricted to
frequencies below 250 kylecycles; even at lower frequencies care had
to be exercised in the layout of wires and some of the larger decoupling
transformers could not be used due to induction in their highly permeable
cores. With more resistive materials, such as sand with a saturated
NaCl solution, electromagnetic coupling became less of a problem.

With appropriate precautions, percentage changes in the field for

a homogeneous half space of the order of 10% from a point at the center
of the tank to the point nearest to the rod sender, were achieved. This

deviation from uniformity posessed always a trend towards higher apparent
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resistivity at the outer ends of the measuring strip. Such behavior
could be thought to be connected with the gradual adaptation of the
current coming out of the rod electrodes to horizontal flow. However,
the fact that the percentage change in the apparent resistivities from
the center to the ends went also up with frequency seems rather to
point to electromagnetic coupling effects.

As referred above, the frequency response of the half space,
within the measuring strip, agreed with expected behavior of a plane
wave field up to frequencies of 250 kylocycles whenever very
conductive material was used, which was most of the time. Above this
frequency, the ever present electromagnetic coupling masked completely
the plane wave field.

It should be mentioned that the intrumentation of fig. A-1l wes
done by T. R. Madden, D. A. Fahlquist, and the author, for the model

research connected with the A. E. C. contract AT(05-1)-718

1.2 The size of model

In obtaining a scaled down model of the earth, the electrodynamic
similitude relationships of section 4.4 must be upheld. These
relationships state the need te keep certain ratios between the
dimensions of length, frequency and conductivity. In our case, practical
considerations dictated the first restriction, a restriction on the
length dimension. The problems of interest were the large scale geologic
features (such as inclined layers) for which the existing large tank was
unsuitable; the possibility of building a self supporting surface of

contact between two different electrolytes, with dimensions 5' x 6!,
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without introducing extraneous electrical properties at the contact
appeared very dim indeed. In this manner, we were led to the consideratien
of a small model. Here a few calculations show us that the choice is
rather restricted. The reader is now referred to fig. A-2 in which the
parameters of importance are presented graphically. One of the
restrictions is of course how small a voltage one can measure. Without
going into extremely complex instrumentation, we cannot expect te
measure below 0.1 mv. At the same time currents of a few amperes,

2 or 3 should be considered the maximum, on account of heating and
contact problems. Since the wanted receiving electrode separatioen should
be on the order of centimeters, we sece that we will have to work in

the region below the line 0.1 mv/em/a in fig. A-2. From the lines for
skin depth, we get our model size. The amount of material needed as

well as the "structural® problems just mentioned lead us to choose a

size corresponding to skin depths of about 5 ecn. Electromagnetic
coupling effects, the relaxation time of electrolytes (important at

about 109 cps) and displacement currents force us to use frequencies

of less than 106 cps. We see therefore that we are thus restricted to

e region calling for conductivities on the range of 102 to 104 and
frequencies between 5 x 104 and 106. These requirements, plus those
connected with allowance for wall effects were satisfied by & 2' x 1'x 1/2!
model tank which had been built for the A. E. C. project previously

mentioned and which we were kindly permitted to use.
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1.3 Model materials

We have just seen how we were confined to work with materials
on the 1072 to 10~4 ohm-mater range. In looking for natural occurring
substances having these electrical properties, we find that these
consist largely of sulfides (table V). Unfortunately, sulfides do net
come in large homogeneous blocks, one foot by one foot by & half. The
alternative was then to achieve such conductivities by the use of
mixtures of metals and appropriate fillers. An extensive investigatien
aimed at developping a workable mixture was carried by the M, I. T.
group and most results have been reported in the annual progress
report (T. R. Madden et al, 1957). The results were not completely
satisfactory., Brass filings, in saturated NaCl solution to provide
better contacts and more homogeneous distribution of current, had
about the right conductivity and the best frequency response characteristies,
but these were far from ideal. The following measurements illustrate

the main difficulty with brass filings. Just after they were laid down:

frequency 100 lke 10ke 100ke 200ke 400ke 600ke
(z~m)x10~3 2.2 2.2 2.2 2.1 2.1 2.1 2.1

One day later:
(n-m)x10~3 0.76 0.76 0.75 0.762 0.78 0.83 0.93

T. R. Madden has suggested that as the material settles and becomes

more conductive, an inductive component of its impedance becomes noticeable.
Such an inductive component could be produced by the self-inductance df

the brass fillings resulting from the fact that the current paths are not



TABLE IV

HIGH CONDUCTIVITY

Substance

eopper
aluminum

brass

nickel

iron

Dow metal

lead

monel

stainless steel

graphite

MEDIUM CONDUCTIVITY

magnetite
pyrite
galena
specularite

marcasite

Resistivity (r-m)

1.73 x 10-8

3.66 - 5.8 x 10~°
6.4 x 8.4 x 10~5

9.6 x 1078
1.2 x 1077
1.83 x 1,0'7
2.27 x 1077
455 x 1077
7.1 x 10~7

1.4 x 1070

3.6 x 1074
2.4 x 1074
2x10 3
3-7x10"
1x 107t



TABLE IV (cont.)

LOW CONDUCTIVITY

Substance Resistivity (r-m)
5N NaCl 5 x 10™2
6N KC1 2 x 1072
3N MgSO, 2 x 1071
Selt water 2x107t

Tap water 50
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straight. Simple calculations on the basis of a medel of loosely

wound parallel coils predicts frequency response difficulties for current
flow paths of 1 cm radius, one turn for each 4 cm length, and materials
of resistivity smaller than 10~2 in the 100,000 te 500,000 cps range

(T. R. Madden et al, 73, 1953)

Other effects that had to be taken into account were induced
polarization and heating. The former, arising from the conversion from
lonic to electronic current flow, became conspicuous whenever large
surface contzcts between electrolyte and metal existed. The latter
derived from the necessity of using high currents to obtain readable
voltages and produced a rather steady drift with time of the volt-
ampere ratios.

Finally reference should be made to the relative size of the brass
filings, which ranged between 1/5 to 1/10 of the electrode separation.
The resulting many possible arrangements of ohmic paths between
electrodes introduced a scatter on the measured apparent resistivity. 1In
extreme cases this scatter reached 10% of the volt-ampere ratio being
measured. Since the resistivity is proportional to the square of the
volt-ampere ration, one can see how difficult it would be to detect
small frequency effects.

Until great improvements are .mede on the materials, models of the
type desired for our purposes will only yield results in cases where

spectacular effects are present. This is true of the model structures

described in the next section.
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l.4 The magneto-telluric field in specific model structures

l.4.1 Vertical layer geometry

All the model work was done with magnetic polarization, that is,
with the current running normal to the strike of the structures. In
the vertical layer model, brass in a saturated solution of NaCl was
used for the more conductive quarter space and sand with the same NaCl
solution for the adjoint less conductive side of the vertical layer
geometry. The conductivity contrast was about 200.

The results of fig. A-3, show us the behavior of the current flow
as 1t is forced to come nearer to the surface in the more conductive
quarter space. This behavior is not totally expected but agrees with
that predicted by the finite difference solution. Rather than just
rushing nearer to the surface as it approaches the boundary of the
more conductive medium, the current actually dips down a short distance
before the boundary. This produces a minimum in the apparent resistivity
with values lower than the actual resistivity of the less conducting
medium. Only very close to the vertical layer does the current
concentrate near the surface causing a maximum in the apparent resistivity.
In our particular case the minimum was on the order of 65% of the actual
resistivity while the maximum was only about 15% above the resistivity
of the medium. Just before crossing the boundary from the resistive
to the conductive medium, the surface current is moving downward againj;

epparently, in adapting itself to the more conductive region, the

current initially concentrates nearer to the surface than it would on a

homogeneous medium of equal conductivity. Thinking in terms of wave
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propagation, we recognize in this the familiar ngource" effect characteristic
of corners. Finally at a distance corresponding to & kr of about 3
(away from the fault, in the conductive side) the current flows like in
a homogeneous earth, without being affected at all by the vertical layer.
We have seen therefore that the field behaves in a distinct fashion from
one medium to the other. Approaching the vertical layer from the
conductive side the surface current just moves upward; approaching from
the resistive side, the surface current goes through a complete cycle
in the direction that it takes. We may note again that this confirms
the relaxation results.

A point we have not discussed is the frequency dependence of the
apparent resistivities in the less conductive side of the model of
fig A-3. A consideration of the frequency and conductivities involved
leads one immediately to suspect that the frequency dependence arises
from reflections from the bottom of the wmodel tank; on the more
conductive side, where skin depths are a fraction of the depth of the
depth of the tank, these effects are not found. A comparison between
the theoretical response of a layer with the depth and conductivity of the
resistive quarter space, overlaying a non-conductive bottom layer, fits
very closely the model results (fig. A-4). Therefore it might be more
appropriate to label the model in question & vertical layer overlying

a non-conductive horizontal bottom layer.
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l1.4.2 Buried cylinder geometry

This model was prepared partly to show the interpretative pos-
sibilities of the magneto-telluric method. For a map of results the
reader is referred to fig. 2-6.

Probably the most importent result from this model is a further
confirmation of the nature of current flow when it runs into horizontal
changes in conductivity. Again, as we approach the more conductive boedy
from the less conductive one, we go through & minimum in the apparent
resistivity, followed by & maximum just before reaching the boundary.

It is rather interesting to notice that the minimum occurs at a distance
from the cylinder for which kr is between 3 and 2, a result that
agrees with that of the finite difference solution for a vertical

layer with infinite contrast.



APPENDIX II
WAVE FIELDS WITHIN THE EARTH

2.1 Relaxation maps.

This section contains all the complete solutions of the electro-
magnetic field within the earth. It was from these solutions that the
examples of section 4.6 were obtained.

We are including the complete solutions on the appendix for
various reasons. They may be used as starting points for finer nets
and more accurate solutions. As they are, the maps show the degree
of accuracy to which the relaxation proceass was taken in the different
regions. Further, from them, one can find the general patterns ef
the electromagnetic field within the earth. Of course one must be
avare of the existence of a certain ameunt of distortion, arising
from reflections from the boundary at which the solutien was
constrained to zero. All these are points of interest not enly
regarding the present work, but also, as far as future investigatiens
may be concerned.

It may be added that in plotting the maps, the top number refers
to.solution A and the bottom one to solution B; the total solutien,
as before, is u=A+1B . The dimensions are indicated in the map,
but it should be kept in mind that equidimensional horizontal and

vertical separations are being used. The station numbers are indicated

at the top of the map.
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magnetic pelarizatien
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infinite contrast
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SUGGESTIONS FOR FURTHER WCRK

The sequel to any investigation is the appearance of new

problens related to those studied. Two of the more evident topics

are:

1.

The adaptation of the finite difference method of chapter IV
to a high speed computer. Only then we can solve the host
of geometries that will give us a sure feeling for the

behavier of the magnete-telluric field.

The integration of the formal solutions for the inclined

layer problems.
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