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INTERPRETATION OF INDUCTION ANOMALIES ABOVE NONUNIFORM

SURFACE LAYERS!

ULRICH SCHMTUCKER*

Using convolution integrals to account for the
inductive coupling between surface layer and
substratum, we derive the conductance of a non-
uniform surface layer above a layered substratum
by direct inversion from the system’s anomalous
inductive response to natural geomagnetic varia-
tions. The conductivity in the substratum and the

INTRODUCTION

We are concerned here with the inductive
response of electrically conducting matter below
the earth's surface to natural fluctuations in the
geomagnetic field originating from sources in the
ionosphere and magnetosphere or from artificial
sources used in geophysical prospecting. In
anomalous zones, where the otherwise stratified
flow of induced eddy currents is perturbed by
lateral changes of the conductivity, we observe
at the carth’s surface a local perturbation of the
inductive response, i.c., an induction anomaly ol
geomagnetic and geoclectric time variations.

The following contribution presents a new
method for the interpretation of two-dimensional
induction anomalies of superficial origin (*‘surface
anomalies’”). Such anomalies arise, for instance,
near coastlines and on islands from the conduc-
tivity contrast between seawater and rock forma-
tions. Similar anomalies are also found inland
where they reflect the varying thickness and con-
ductivity of unfolded sediments above a highly
resistive crystalline basement. It will be assumed
here that the deep conductivity structure beneath
the nonuniform surface cover is without lateral
gradients and that the conductivity as a function
of depth in the underlying crust and upper mantle
is known. The downward diffusion of the surface

uniform conductance of the surface layer at some
distance from the nonuniformity (two-dimen-
sional) must be known. The convolution method
is also applied to the reverse problem: finding the
anomalous inductive response for a given two-
dimensional nonuniformity. Our calculations are
based on Price’s thin-layer approximation.

perturbation into the substratum, therciore, is a
“normal” induction problem. By solving the
resulting diffusion equation for the substratum
with standard methods, we obtain a boundary
condition for the anomalous variation field at the
inner surface of the nonuniform cover, which
takes into account the inductive coupling between
the cover and the underlying substratum. The
boundary condition for the outer surface of the
cover follows from the fact that the induction
anomaly is of purely internal origin and that the
magnetic variation fields to be considered here
may be regarded as irrotational above the earth’s
surface, obeying Laplace's equation.

The ‘“anomalous” induction problem in the
nonuniform surface cover itself will be treated in
accordance with Price’s (1949) original work on
this subject. Thus, the lateral nonuniformity will
be contained in a variable total conductivity

d
T:f a(z)ds, (1)

where d denotes the thickness of the surface cover
and o (2) is the conductivity as function of depth.
The vertical magnetic and the tangential electric
components of the variation field are taken to be
the same at corresponding points just above and
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Anomalies Above Nonuniform Layers

beneath the surface cover, which is regarded as
being infinitely thin. This approximation can be
used when, for the frequency f, the mean skin
depth p of the surface material is several times
larger than its thickness d: p=1/+/Tuoo/
=30.2/+/af in km, when f is measured in cycles
per hour (cph) and the conductivity ¢ in
(ohm-m)~%. Since the conductivity of unconsoli-
dated sediments can reach 1 (ohm-m)™! and the
conductivity of seawater is roughly 4 (ohm-m)~!,
the ultimate permissible frequencies for this
approximation are about 8 cph for inland anoma-
lies and 4 cph for those near coastlines, where the
depth of the overlying material is 6 km. The depth
of penetration of the variation field into the
underlying crust and mantle should be likewise
large in comparison with d. We can expect that
this second condition for Price’s approximation
is everywhere satisfied in view of the high resis-
tivity of the crust down to considerable depth.

A further example, this time {from prospecting
geophysics, is the case of an overburden layer over
a more resistive bedrock. The approximations
and hence the proposed interpretation are valid,
for example, at a frequency of 1000 hz for a 50 m
layer of overburden of conductivity 1072
(ohm-m)~! lying on an infinite half-space (base-
ment) of conductivity 107* (ohm-m)~L. All equa-
tions are written in rational mks-units with uq
as the free-space magnetic permeability.

BASIC EQUATIONS

Consider right-handed Cartesian coordinates
with 2 down (Figure 1). An infinitely thin sheet
with variable total conductivity 7(y), representing
oceans or geological formations above the crystal-
line basement, occupies the (v, ¥) plane between

F1c. 1. Conductivity model and orientation of source
field components with respect to the lateral conductivity
gradient; r is the total conductivity of a thin surface
sheet.
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a nonconducting upper hali-space (air) and a
layered conducting lower half-space (crust,
mantle). The nonuniformity of the surface sheet
shall be restricted to a certain limited range in y,

T(,V) =7, T+ TH(,")) (2)

with 7,=7(— ) as the uniform normal part of
the total conductivity. Ii the nonuniformity lies
between two uniform but different sections of the
sheet, the anomalous part 7,(y) approaches a
constant, 7(+»)—7(—%), as y—+». The
normal part 7, is assumed to be known and the
anomalous part 7,(y) is to be found from the
perturbed inductive response of sheet and sub-
stratum to a slowly oscillating electromagnetic
field which has its primary source in the upper
half-space.

Let the source field be two-dimensional and
with the ZE-polarization perpendicular to the
lateralgradientoir,i.e., the electric vector and the
flow of induced currents are in the x direction,
while the magnetic vector is confined to the
vertical (y, z) plane as shown in Figure 1. The
derivatives of the field components and of the
internal conductivity distribution with respect
to x are zero.

The scalar electric field £ in the x direction and
the vertical magnetic field Z in the z direction
pass as functions of time { without change from
the upper into the lower half-space. The hori-
zontal magnetic component /{ in the v direction,
however, changes discontinuously from H¥
=H({ v, —0) just above the sheet (2=—0) to
H-=H(t, v, +0) just below the sheet (z=40),
because of the induced shect current in the (v, ¥)-
plane. Let 7 denote the density of the sheet cur-
rent per unit breadth in the v direction. Then the
field equations to be solved for the (x, v) plane are

(3a)
(3b)

HY — H- =,

IE v = uoZ,

d
j :f F(s)o(s)ds,
0

as the thin-sheet version of the constitutive
equation. 7 denotes the time derivative of Z.
Since E has been assumed constant over the thin
layer, it may be taken out of the integral and,
using equation (1), we may write § as

with
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4
From the fact that H is divergenceless, we have
dH/dy + 8Z/9z =0 (5)

throughout the upper and lower half-spaces. For
the lower conducting half-space, Maxwell’s field
equations are combined (with the neglect of dis-
placement currents) into a two-dimensional dif-
fusion equation for the electric and magnetic
variation field:

j=1E.

ViF = p,0dF/at, (6)

where F can be E, Z, or H and ¢=0¢(z) within a
layered substratum (Appendix A).

These basic equations will be solved separately
{or the normal and anomalous parts of the varia-
tion field. Here the normal parts refer to the in-
ductive response of the sheet and substratum
without the nonuniformity 7,(y). They are de-
noted with the subscript “a”, e.g., E,. The super-
imposed anomalous parts, which account for the
perturbation of the inductive response due to
1a{(y), carry the subscript “a”, e.g., E,=E—E,.

The separation into normal and anomalous
parts, when applied to equation (4), leads to

(Ta)
(7h)

jn = TnEn,
ja - Ta(En + Ea) + TnEa,

as the normal and anomalous part of the induced
sheet current density. It will be seen that on the
basis of a given deep conductivity structure a
second equation connecting j, and E, can be
formulated, which when combined with equation
(7b), allows the elimination of 7,, yielding 7,(y)
in terms of E,, E,, and 7,. In this way the un-
known perturbation 7, can be found, for a given
normal value 7,, from surface observations of an
induction anomaly in the electric field.

We note at this point that the anomalous field
components E,, Z,, and H,*, when considered as
functions of ¥ in the upper z= —0 plane, are not
truly independent and that their interdependence
is not connected with the internal conductivity
distribution. The second field equation (3b) im-
plies that we can obtain the time derivative of Z,
(or Z,) from E,(E,) by a differentiation with re-
spect to v and conversely can find E,(E,) from
Z2,(Z,) by integration [cf. also equation (18b)].
Furthermore, Z, can be derived from H} as
function of ¥ or vice versa, because the magnetic
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induction anomaly must be of purely internal
origin [cf. equation (13)]. Hence, the intended
inversion to determine 7,(y) from surface observa-
tions can be carried out by starling with a profile
of either one of the anomalous and normal field
components.

Let us add the field equations (3) for a field
which varies sinusoidally in time and in
the y direction. Setting F{, vy, 0)~F(w, k)
-exp(i|wt-t+ky]) for F=E, Z, or H in the (x, y)-
plane, we obtain

ﬁa‘,{_ - ﬁa— - jay
kE, = wpeZ,, and
kE, = wpoZ,

(8a)
(8b)

as field equations for the Fourier spectra of the
anomalous and normal parts in the frequency-
wavenumber domain (see below). These spectra
follow from the original time-distance functions
by the successive transformations

+x
Flw,y) = J( F(t, 3, 0) exp (—iwt)dt

o0

and

+%
Pl B = [ P, 3) exp (~ity)dy

)

w=27f is the angular frequency and k, a spatial
wavenumber. Since the field to be considered is
slowly oscillating, % is #ot the wavenumber of a
truly propagating wave but simply accounts for
the surface modulation of a quasi-stationary
transient field. The notations 7 and F will be
used throughout this presentation to identify
spectral functions in the frequency-distance and
frequency-wavenumber domains, respectively.

BOUNDARY CONDITIONS

The field equations of the previous section are
supplemented by two boundary conditions which
apply to the anomalous magnelic field just above
and below the nonuniform sheet in the (x, ¥)-
plane. They will be formulated for the Fourier
spectra of Z, and H, in the (w, k) domain and
subsequently, after an inversc Fourier transfor-
mation, in the {w, y)-domain.

The inductive response of the conducting
lower bhalf-space to a nonuniform transient sur-
face field can be expressed by a single transfer
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function, when we represent the field by its
spectra in the (w, k) domain. For convenience
this transfer function is introduced as a complex-
valued length C—(w, k), which may be regarded
as the inductive scale-length for the downward
diffusing surface field. As outlined in Appendix A,
the impedance of the anomalous variation field
at the surface of the substratum follows from
this scale-length according to

E, = jwuC-Hy, (10)

which in combination with equation (8b) gives

(11)

as magnetic boundary conditions for the induc-
tion anomaly at the lower surface 3=+-0 of the
nonuniform sheet.

With the aid of Wait’s recurrence formula in
Appendix A, we can derive the transfer function
C~ for any given layered substratum. If, for in-
stance, the lower half-space is nonconducting
down to the depth 2= /* and perfectly conducting
below this depth, we obtain in

C~ = k! tanh (kh*)

ﬁa— = ZAa/(ikC—>_1

(12)

a real transfer function, because inducing and in-
duced field are in-phase. In general, however,
C~(w, k) will be complex-valued.

The z-dependence of the anomalous magnetic
Fourier spectra A, and Z, in the upper noncon-
ducting half-space is exp([ k|z), because the
anomaly must disappear for z—— » and satisfy
the divergence equation (5). Hence, irH.+ [ k] 7.
=0 for < —0, yielding

.= —isgn (BAS (13)

as the magnetic boundary condition for the
upper surface 3= —0 of the nonuniform sheet;
sgn(k) = k/I k’ denotes the signum function.

The corresponding boundary conditions for the
Fourier spectra Z, and H, as function of frequency
and distance y have the form of convolution inte-
grals (cf. Appendix B). These boundary condi-
tions are obtained by applying an inverse Fourier
transformation to the conditions in the (w, k)
domain, which for a function g(k) is defined by

) =f ccg(/’e) exp (iky)dk.

—o0

The convolution theorem for the transform of

159

products yields, when applied to equations (11)
and (13), the desired boundary conditions as

H, = K *2, 14
for z=+40 and

Z.=K+x |
and

~+ = -

.= — Kt xZ, (13)
for z=—0, with

K+(y) = 1/ny (16a)

as the inverse Fourier transform of —i-sgn(k).

K= (e, 3)

= g1 f‘” {sin (ky)/[kC(w, k)]}dk (16b)

is the inverse Fourier transform of 1/(ikC™). The
first transform K7 is readily identified as Kertz’s
K-operator (Siebert and Kertz, 1957). The second
transform is expressible as a one-sided sine trans-
form, because C(w, k) is an even function and
thus #C~ an odd function of k. If we have, for
instance, a perfect conductor at the depth 2* and
zero conductivity above, the evaluation of equa-
tion (16b) with C~ from equation (12) leads to

K=(y) = [2k* tanh [(xy)/(2k*)]} -1

This function is shown by the dashed curve in the
upper diagram of Figure 2 for #*=181.3 km,

In order to facilitate numerical calculations of
the kernel K=, we make use of the above cited
transform of the signum function and rewrite
equation (16b) in the form

%

K~(w, ) = K*(3) + n—* f

0

1
| ———— — 1| sin (ky)dEk.
[kC‘(w,k) ] sin (k)

The integration can now be terminated at some
properly chosen limiting value of k, because the
integrand disappears when, for sufficiently large
wavenumbers, C~ approaches 1/k (cf. Appendix
A).

The difference of the kernels K* and K—, as
shown in Figure 2 for simple two-layer models,
reflects as a function of frequency and distance y
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T'16. 2. Upper diagram: Convolution kernels K*(y)
and K~ (w, y) connecting the Fourier harmonics of H,
and Z, as function of v just above and below a thin
conducting sheet. The difference between the kernels
gives the degree of inductive coupling between sheet
and substratum, which, for the chosen substructure and
frequency, sets in at about y= 30 km distance (cf. text).
Lower diagram: Convolution kernel S{w, ¥) connecting
the anomalous current in a thin nonuniform sheet with
the anomalous part of the electric field [equation (27)].
The complex-valued kernels have been calculated for
/=1 cph and the two indicated two-layer models for the
conducting substructure.

the changing degree of inductive coupling be-
tween sheet and substratum. As y—0, the real
parts of K~ and KT merge into the same asympto-
tic curve, while the imaginary part of K~ goes to
zero. Hence, surface anomalies of small lateral
extent (in the y direction) are not coupled by
mutual induction to the deep conductivity struc-
ture, so that Hy = —H; =j,/2. This result applies
when the lateral scale-length L of the nonuniform
zone is small in comparison with the modulus of
the inductive scale-length C—(w, 0) for the sub-
structure. As y— o0, the kernel K¥ goes to zero,
while K~ approaches 1/{2-C(w, 0)] as a finite,
complex-valued limiting value; this behavior indi-
cates that the maximum possible inductive coup-
ling for extended anomalies occurs when L

»>|C(w, 0)].

Schmucker

If the conducting material in the lower half-
space is replaced by a perfect conductor at the
frequency-dependent depth 7*(w) = Re[C(w, 0) ],
this replacement gives approximately the same
real part of the inductive response for small
wavenumbers as the original system. In the
case of the two-layer model 2 in Figure 2, the in-
ductive scale-length C~(w, 0) is (181.3-108.5 ) km
for f=1 cph. By placing the perfcct conductor at
a depth of 181.3 km (model 1 in Iigure 2), we ob-
tain a kernel X~ with the real part of the kernel
similar to that for the original model 2. Hence,
this often used substitution would yield a useful
first approximation for the coupling between
sheet and substratum.

INVERSION FORMULA

Once the convolution kernel A (w, ) has been
found for a chosen deep conductivity distribution
o(z), we are able to derive without further as-
sumptions the anomalous current distribution
Jalw, ) in the (x, v) plane from the anomalous
magnetic spectra Z,(w, y) or H (w,y) above this
plane, i.c., at the earth’s surfacc. By combining
the first ficld equation (8a), rewritten for the
(w, v) domain, with the boundary conditions (14)
and (15), we obtain

- O, -,
— [k + K]« 7,
— A — K-« [K++ 1L

(17)

The second field equations (31)) and (8b) for the
(x, v) plane connect the anomalous electric field
with the anomalous behavior in Z independently
of the internal conductivity distribution. Both
equations are readily transferred into the (w, ¥)-
domain, yielding

0FE,/dy = iwwela (18a)
and
E, = G*Z,
wlG o2l gy
= Liwuo[G * (K + H, ),
with

G(y) = sgn (v)

as the inverse Fourier transform of (—2i/k). By
using equation (31) of Appendix B, the convolu-
tion of a function f(y) with the signum function
can be written as
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76 = [ 1= — s+ )l

We now solve the material equation (7b) of the
anomalous current density j, for the unknown
perturbation 7,(y) and obtain after a transfor-
mation into the (w, ¥) domain

(F, + E.). (19)

Ta = (ju - Tu 411

This formula for the determination of T, can be
evaluated with an empirical profile of E,, Z,l, or
A} for one particular frequency. If, for instance,
Z.(w, v) is given as a function of v, we derive £,
by integration according to equation (18b) and
7a, by convolutions with A and K~ according to
equation (17).

There remains the problem of expressing E, in
a similar way in terms of the normal parts of
II'" or Z. The second field equation holds also for
the normal field; hence,

E, = YioplG x Z,| (20)

inanalogy with equation (18b). The (E,—H, (1))
impedance relation for the upper surface of the
sheet can be established as in the case of the
anomalous part (equation 10) by use of a transfer
function Ct(w, k) for the normal conductivity
structure o(z) and 7,; viz,

Fo = dwuCHHL. (21)

This transfer function is readily derivable from
the corresponding scale-length C—(w, k) for the
lower z=4-0 plane, i.e., for the substratum alone,
according to

Ct=C/(1 4 jwperaC™)  (214)

as shown in Appendix A. Thus, if N(w, ¥) denotes
the inverse Fourier transform of Ct(w, k), the
transformation of equation (21) into the (w, ¥)
domain vields

Fy = iwp N * 1T0], (22)
which is the desired relation between E, and II;[.
With the aid of theserelations, we are able to ex-
press'the general inversion formula equation (19)
in terms of £, and E,,, Zn and Z,l, I:],,+ and ﬁ;, or
in any other combination of one anomalous and
one normal part.

Of particular importance for practical applica-
tions is the special “Cagniard-case” in which the
inducing source field is quasi-uniform in the di-
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rection of y. In this case, it can be shown that
equation (22) reduces to

E, = iwueCt(w, 0)H,", (22a)
i.e., the surface impedance is constant along the
4 axis, while Z",1 is zero. Spatial differences in E
and H' are ascribed, without formal separation,
to the anomalous part and variations in Z arc
considered to be anomalous altogether.

The induction anomaly in this special case is
expressible in the form of linear transfer functions,
which connect as functions of frequency and dis-
tance y the anomalous parts of the field and
current distributions with the quasi-uniform
normal part of H*, The transfer functions are

denoted by
{ a ) iw,uoc”]
Lo s ~
i
{

]

!

r:+ :‘ /111 .I{jr

Ja ) L qu

(23)

=

and can be derived by a spectral correlation
analysis of observational data along a profile
crossing the anomaly; ¢y has the dimensions of
length. The inversion formula equation (19) re-
duces in the Cagniard case to

(I(wy )’)/iwﬂo - T,,C]](w, y)
7(y) = . )
C+<wa 0) + C”(w; y)

(24)

with
gn = — (K* + K=) =
= — (K" 4+ K) * (dcu/0y),
cn = 3G * 2],
and

Zn = /\'4 * /IH.

A successful interpretation of induction ano-
malies with the aid of the inversion formulas
depends (i) on the proper choice of the normal
total conductivity 7,, (ii) on the proper choice of
the deep conductivity distribution o(3), and
(ili) on the validity of the assumption that the
substructure is without lateral conductivity
gradients. On the other hand, a test is provided by
the fact that the nonuniformity 7.(y), found by
inversion, must be real and independent of fre-
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1. 3. Application of the inversion formula cquation
(24) to the induction anomaly of geomagnetic variations
in central California. The profiles extend from Mon-
terrey at the Pacific coast in northeasterly direction,
crossing the San Joacuin valley between the stations
Lick observatory (LIC) and Turlock Lake (Tur). Upper
diagrams; Transfer functions z for anomalous Z varia-
tions after the removal of a coast effect. Lower diagram:
Total conductivity found by inversion from the zy
profiles at the two indicated frequencies, using 400
(ohm-m)~* as normal value of r and model 2 in Iigure 2
for the deep conductivity structure. For hoth fre-
quencies, the inversion vields matching total conductiv-
ity anomalies with a negligible imaginary part and with
1000 (ohm-m)~* as maximum total conductivity for the
sedimentsin the center of the San Joaquin valley.

quency. Hence, the interpretation should be
carried out with at least two different [requencies.

Figure 3 gives an example of this test. It shows
the empirical z; profiles for two frequencies
across the San Joaquin valley in central Califor-
nia; the profiles have been derived from the
analysis of anomalous Z variations at six survey
stations (Schumucker, 1970; Figure 4+1). The most
prominent feature on these profiles is the coastal
anomaly of the Pacific ocean. However, the in-
land anomaly, which is shown in Figure 3 after
the removal of the coast effect, has been well
cstablished by a series ol cross profiles. The
anomaly coincides with the sedimentary basin of
the San Joaquin valley, which is bounded by the
Coast range to the west and the Sierra Nevada
to the east. Because no electric observations have
been made, the transfer function ¢y for the anom-

Schmucker

alous part in £ has been derived by folding the
zr profile with the signum function G [cf. equa-
tion (24)].

The crust and upper mantle are represented by
model 2 in Figure 2, which has been found to be
appropriate for the interpretation of the coastal
anomaly. Hence, the kernel K= of the same illus-
tration is used to obtain from z; the normalized
anomalous current distribution gy. Assuming the
source field to be quasi-uniform, we get from the
recurrence formula of Appendix .\ as the transfer
function (H{w, 0) for the upper surface of the
sheet (148.1-120.6 {) km for 1 cph and (77.1-
76.2 1) km for 4 cph.

The total conductivity profiles thus derived
from equation (24) show a fair agreement for the
two frequencies used and are basically real. The
total conductivity in the center of the San
Joaquin valley is found to be in the order of
1000 (ohm-)~! in comparison to the adopted
normal value of 400 (ohm-)~! {or the surround-
ing surface cover. Since the crystalline basement
is about 6 km deep near the center of the valley,
we obtain 6 ohm-m as mean resistivity for the
overlying sediments.

MODEL CALCULATIONS

The inverse problem, namely to find for a
given conductivity anomaly 7,(v) the anomalous
field and current distribution, has been exten-
sively treated by Price (1949) and several other
authors (cf. Rikitake, 1966). The following ap-
proach employs again a convolution integral to
deal with the effect of a conducting substratum.

The anomalous parts of the electric field and
current, ¥, and j,, are connected in two ways.
The first link gives the material equation (7h),

Jio=1tF, + 1,E, (25)
for the spectra of £, and J, as functions of fre-
quency and distance y. The second link follows
from the inductive coupling of the anomalous
currents in the (v, v) plane with those in the
conducting lower half-space. By combining the
field equations (8) with the boundary conditions
(11) and (13) for the (w, k) domain, we obtain

E, = — liwwC=/(1 4+ |k C)]ja (26)

or, after an inverse Fourier transformation into
the (w, ¥) domain,
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Ey = — iwwlS * ] (27)

The convolution kernel
* C(w, k)
Story ot [ D)
o 14 kC (w, k)
-cos (ky)dk

(28)

is the inverse transform of C—/(1+ ] /c[ C), which
is an even function in k. Hence, the transform
can be written as a one-sided cosine transform.
Ttis readily verified that

+=
f S(w, v)dy = C(w, 0).

—w

Even though the real part of .S becomes infinite
as y—0, the area between Re(S) and the y axis is
finite. The integration in equation (28) for a
given substructure and transfer function C(w, k)
can be terminated at some ultimate value &
=ky, when the integrand approaches cos(ky)/
(2k), by adding the tabulated cosine integral for
the integration between k=4ky and k= .

The inductive coupling with a perfect conduc-
tor at the depth /1* is given by the kernel

S = (4m)"In [1 4 (2h*/¥)?],

as it is readily seen by solving equation (28) with
C~ from equation (12). This function is shown in
Figure 2, together with the S kernel for a simple
two-layer model for the earth’s interior.

By inserting equation (27) into equation (23},
we obtain

]a = TaEn - 'T.OJ/J()T[S *ja] (2()‘1)

as an integral equation for determining j, as a
function of y for a given frequency, conductivity
model, and source field configuration. In the case
of a quasi-uniform source field, we may replace
Ty E”, and F, by their respective transfer func-
tions as introduced in equation (22a) and equa-
tion (23). This gives

g = iw,u,U[Tu(,u“(w, 0) — 7(S = (/11)J (29hb)

as an integral equation for the normalized anom-
alous current with respect to I} In the case of a
nonuniform source field, E,, as a function of
position and frequency has to be inferred from the
assumed source ficld geometry and the chosen
normal conductivity model without the pertur-
bation 7,.{(y).
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Suppose that the kernel S has been calculated
for a certain deep conductivity distribution ¢(z)
and that 7(y) is given at a number of discrete
points along the y-axis. This total conductivity
profile should have sufficiently long uniform sec-
tions on each end and the spacing of the grid
points should be small in comparison to the
inductive scale length of the substratum. Numeri-
cal solutions of the integral equations (29a, b)
are then obtained by matrix inversion or by
successive substitutions, yvielding estimates for
the anomalous current density at the chosen grid
points.

The iterative solution can be started in two
complementary ways similar to Price’s (1949)
original proposal: (i) We disregard for a first
approximation the effect of anomalous seli-
induction, generating E,. This procedure gives
jP =7,E, as a first approximation. By a con-
volution of ji" with the S kernel for the chosen
substructure, we obtain according to equation
(29a) a second approximation j((,z), and so on. The
normalized equation (29h) is treated
spondingly.

The convergence of these successive iterations
is markedly improved when we include in the
first approximation the convolution with S for a
small range Ay around the considered point y. As
described in Appendix B, we expand j,(¢gu)
within this range into a Taylor series, set

corre-

Ay
€D (D
[S * T, | = 27, f S{w, 1)dy,
0

and obtain in this way

(n ~ . A
Jo = FEar, / 1 + 2iwuer S(w, n)dn
0

as an improved first approximation.

The anomalous electric field of the last approxi-
mation as obtained {rom equation (25) is then
used to derive the anomalous magnetic field
according to equations (18a) and (17). The result
can be tested with the methods of the previous
section. Ideally, an inversion when applied to the
calculated induction anomaly should bring back
the original total conductivity model 7(y). The
discrepancies indicated in Figure 4 reflect the
imperfections of the model calculations and the
subsequent inversion with a limited number of
grid points.
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F16. 4. Model calculations for a conducting thin sheet with a 100 km wide two-dimensional strip of two-fold in-
creased total conductivity. The adopted substructure is model 2 in Figure 2 and the inducing source field (quasi-
uniform) is in F polarization with respect to the strip. The transfer functions for the anomalous electric (cx) and
vertical magnetic (sy) variations have been calculated for a frequency of 1 c¢ph by solving equation (29b) with six
iterations and 21 grid points, 20 km apart. The cy profile is symmetric and the zx profile mirror-symmetric to the
center of the anomaly. The anomaly of the surface impedance can be inferred from the cy profile, by using the outer
left scale [cf. equation (23)]. The inversion of the calculated ¢y profile according to equation (24) yields a smoothe
image of the original boxcar-type model. The discrepancy is due to the rather limited number of grid points and

their coarse spacing.

(iiy If Price’s parameter 8=wuerL (L is the
half-width of the anomaly) for the anomalous self-
induction is larger than unity, we may assume
for a first approximation that the anomalous Z
variations are completely suppressed. Hence, we
set Z.” =0 and, therefore, =0, implying that
FY = — (r,/7)- Fy according to equation (25).
The second approximation for Z, follows by a
differentiation of 7." with respect to y [equation
(18a)], which in turn leads to improved approxi-
mations for 7, [equation (17)] and £, [equation
(25)]. The quality of the final approximation can
be tested with the aid of the kernel S in equation
@2n.

APPENDIX A

CALCULATION OF THE INDUCTIVE SCALE-LENGTH

C(w,£) FOR A LAYERED CONDUCTING SUBSTRATUM

Let the lower half-space of Cartesian coordi-
nates consist of N uniform conducting layers, the
last layer extending downward to infinity; o,
and d, shall denote the conductivity and thick-
ness of the nth layer, n=1,2, - - - Nand dy=».
The electromagnetic diffusion equation (6) has
in the (w, #) domain a general solution in terms
of hyperbolic functions with

K.d, = (iwuge + kY2 d

as argument for the nth layer (cf. Wait, 1933).
These functions define for each layer a dimen-
sionless ratio

KN.g.;1 + K1 tanh (Ad))

g“ B l\rn 1 +7]\7ngn 1 tzmh (A’ndn) y

which can be found by successive substitutions for
all layers, beginning with g¢yv=1 (continuity
condition). The impedance at the surface of the
nth layer is fwuoeg./ K, which defines C,=g,/K,
as the inductive scale-length for this surface,
including the surface 2=0. As k— <, K,=%k for
all layers of finite conductivity, i.e., the scale-
length C, approaches 1/ k| If the top layer is a
“thinlayer,” we obtain, after replacing the hyper-
bolic tangent by its argument for #=1, equation
(21a) with C; and C: denoting the scale-length
just above (CT) and just below (C) of the thin
layer.

APPENDIX B

CONVOLUTION WITH THE KERNELS §,K', AND K-

The convolution of a function A4(y) with a
second function B(y) yields a third function

o) = AB= [ A= B@d ()

-0
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If the convolution kernel 4(y) is either an even
or an odd function of y, the convolution can be
written as a one-sided integral:

Cy)

© 31
:f A()-[B(y — ) = Bly + n)]dn. G

The upper sign applies when A is even and the
lower sign when 4 is odd.

The real parts of the kernels K, K=, and S
[equations (16a), (16b), (28)] approach infinity as
y—0, i.e., K~ and At have a 1/y singularity,
while the singularity of S is logarithmic. There-
fore, let us expand the function which is to be
folded with either one of these kernels within a
small neighborhood of y into a Taylor series,

B(y + 1) = B(y) + 28'(y).

This gives, when inserted for n <Ay into equation
(31,

C(y)

v = (32)
= 2];@).[ A(n)dy +f C e dy
0 Ay
when A is even, and
Sy
€)= =28 [ nitin
’ (33)

c [T
Ay

when 4 is odd.
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The convolution with S is carried out accord-
ing to equation (32). By reversing the order of
integration, we obtain for the numerical evalua-
tion

sy ©  C(w, B)
f S(w, n)dn = r"‘f ————
. o k4 EC(w, k)

-sin (Ayk)dk.

The convolution with Kt and A~ is carried out
according to equation (33) with

Ay
[ aktan = 2y
0

For a sufficiently small distance Ay, the same
relation applies also to the kernel A™.
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