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Abstract In this review, I discuss the basic principles of joint inversion and constrained

inversion approaches and show a few instructive examples of applications of these

approaches in the literature. Starting with some basic definitions of the terms joint

inversion and constrained inversion, I use a simple three-layered model as a tutorial

example that demonstrates the general properties of joint inversion with different coupling

methods. In particular, I investigate to which extent combining different geophysical

methods can restrict the set of acceptable models and under which circumstances the

results can be biased. Some ideas on how to identify such biased results and how negative

results can be interpreted conclude the tutorial part. The case studies in the second part

have been selected to highlight specific issues such as choosing an appropriate parameter

relationship to couple seismic and electromagnetic data and demonstrate the most com-

monly used approaches, e.g., the cross-gradient constraint and direct parameter coupling.

Throughout the discussion, I try to identify topics for future work. Overall, it appears that

integrating electromagnetic data with other observations has reached a level of maturity

and is starting to move away from fundamental proof-of-concept studies to answering

questions about the structure of the subsurface. With a wide selection of coupling methods

suited to different geological scenarios, integrated approaches can be applied on all scales

and have the potential to deliver new answers to important geological questions.
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1 Introduction

The inversion of geophysical observations is one of the major tools to investigate the

subsurface of the Earth and find out about the structure and composition of the planet we

live on. Boreholes routinely give us access to material at depths of 5 km and in exceptional

cases up to 10 km (Huenges et al. 1997), but only sample a small volume in a specific

location. In some locations, e.g., Kimberlite pipes, geological processes transport material

from depth to the surface and provide us with samples from the lower crust and mantle

(e.g., Griffin et al. 2009). However, the bulk of our knowledge comes from comparing the

output of numerical simulations calculated from hypothetical models with geophysical

observations at or near the surface of the Earth. In some cases, these models are generated

by trial and error through forward modelling (e.g., Leibecker et al. 2002; Gatzemeier and

Moorkamp 2005; Heise et al. 2008). Performed well this process allows us to test different

hypotheses about the physical structures in the area under investigation and it gives insight

into the sensitivity of the data to different structures. However, forward modelling typically

requires a large number of trials and is therefore a tedious task. In addition, the models are

often strong generalizations of the geological structures and preconceived ideas can bias

the type of models that are considered in this process.

For these reasons and due to considerable increase in computing power over the last

years, most geophysical models nowadays are constructed through formal inversion pro-

cedures. Here, we mathematically define the criteria for an acceptable model, typically that

the data predicted by the final model fit the observations in a least-squares sense (e.g.,

Wheelock et al. 2015), and use automated algorithms to find one or a set of models that

fulfils these criteria. Given the importance of inversion not only in geophysics, a large

number of different algorithms to achieve this task exist (Nocedal 2006). Good intro-

ductions to inverse methods in a geophysical context are given by Snieder and Trampert

(1999), Tarantola (2004), Menke (2012), Mosegaard and Hansen (2016) and for the special

cases of magnetotellurics (MT) and controlled-source electromagnetics (CSEM) in Avdeev

(2005), Abubakar et al. (2009), Siripunvaraporn (2012) and Rodi and Mackie (2012).

Despite highly refined algorithms and intense research, the inversion of geophysical data is

virtually always ill-posed, i.e. similar data can lead to substantially different models (e.g.,

Backus and Gilbert 1967) and nonunique, i.e. infinite number of models can explain the

data to the same level of uncertainty (e.g., Muñoz and Rath 2006). This is because we can

only measure at or near the surface, and with large distances between sites compared to the

scale length of geological variations. Furthermore, our measurements are band-limited and

contaminated by noise (Parker 1980, 1983). This results in ambiguities in the inverse

models that need to be considered when interpreting the data. The nature of these ambi-

guities is method specific though. For example, magnetotellurics resolves the thickness of a

resistive layer well, but not its resistivity, while DC resistivity is sensitive to its resistance,

i.e. the resistivity–thickness product (Vozoff and Jupp 1975).

If we can exploit these complementary sensitivities, we can hope to recover the shape

and properties of structures within the Earth better compared to using just a single method.

This is the core idea of joint and cooperative inversion: We combine information from two

or more different types of geophysical data sets in a single inversion algorithm with the

goal of improving the resulting models. The aim of this review is to explain and illustrate

different approaches to joint inversion with a special emphasis on electromagnetic meth-

ods. I will give a working definition for joint inversion and briefly compare and contrast it

with other methods to combine different data sets. I will then present a few selected
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examples that demonstrate strengths and potential pitfalls when using joint inversion

methods. Finally, I will try to summarize where we are currently at and what future

avenues could be. Compared to the recent review on the subject by Haber and Holtzman

Gazit (2013) I will focus on the concepts and applications instead of the mathematical

details.

2 A Short Tutorial on Joint Inversion

For the purpose of this review, I will use the term joint inversion for all approaches where

different types of data are inverted within a single computational algorithm, with a single

objective function and where all model parameters are adjusted concurrently throughout

the inversion (Moorkamp et al. 2016b). Of particular interest are joint inversion approa-

ches that combine different physical properties, e.g., electrical conductivity and seismic

velocity as these provide large potential benefits, but also pose particular problems. In

contrast, cooperative inversion comprises approaches where only a single data set is

inverted and the results from another inversion are used as a reference (e.g., Paasche and

Tronicke 2007). In this review, I will not discuss the theory behind post-inversion inte-

gration, where the relationship of models retrieved from independent inversions is

examined in a quantitative manner (e.g., Bedrosian et al. 2007) and good overviews can be

found in Paasche (2016), Bedrosian (2007) and Hansen et al. (2016).

As the definition of joint inversion implies, one of the first and crucial steps is to define

an objective function that the optimization algorithm will minimize. In its most general

form, this objective function can be written as

Ujoint mð Þ ¼ Udata mð Þ þ kUreg mð Þ þ mUcoupling mð Þ: ð1Þ

Here Udata mð Þ and Ureg mð Þ are the data misfit and regularization terms as used by virtually

all geophysical inversion approaches (e.g., Pedersen 1977; Constable et al. 1987; Olden-

burg 1990; Commer and Newman 2009; Fichtner and Trampert 2011; Menke 2012) and k
is the Lagrange parameter for the regularization. The additional term Ucoupling mð Þ math-

ematically defines the relationship between different subsets of model parameters. Note

that in this general notation the model vector m can potentially contain elements that are

associated with very different quantities. For example, when jointly inverting magne-

totelluric and seismic traveltime data for a layered Earth structure, the first N model

parameters can be the resistivities of the N layers used in the inversion and the second

N model parameters specify the seismic velocities for the same layers. The coupling term

then establishes a relationship between these two sets of model parameters which specifies

what kind of joint inversion we want to perform.

For cooperative inversion, the mathematical formulation looks identical. Again we have

a data misfit term, a regularization term and a coupling term, only now data misfit and

regularization are only calculated for resistivity, for example, and the seismic velocity

model is considered fixed and is only used in the coupling terms to maximize the

resemblance between the models. Figure 1 shows the difference between the two

approaches as a flow diagram for the inversion.

I will now discuss a series of very simple experiments in order to illustrate some basic

properties of joint and cooperative inversions as well as common coupling approaches and

their properties. The basis for all experiments is data calculated from a simple one-di-

mensional three-layered model (Fig. 2). To simplify the discussion even further and aid
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visualization, I will also assume to know the physical properties (resistivity and seismic

velocity) and thickness of the topmost and lowermost layer and only seek the thickness and

physical properties of the middle layer. The inverse problem is therefore reduced to finding

two model parameters for each geophysical data set, e.g., resistivity and thickness of the

second layer for MT, and it is easy to plot the range of possible solutions as a simple scatter

plot.

Figure 2 shows the true model (left) with the layer that we are inverting for marked in

red. The magnetotelluric data predicted from the model (middle) show the typical three-

Simultaneous Joint Inversion

v σ

mi

EM forward
Seismic
forward Coupling

mi+1

Misfit
acceptable?

Final v, σ

Yes

No

Cooperative Inversion

v σ

mi

EM forwardCoupling

mi+1

Misfit
acceptable?

Final σ

Yes

No

Fig. 1 Simplified flow diagrams for joint inversion algorithms (left) and constrained or cooperative
inversion algorithms (right) (Moorkamp et al. 2016b). The main difference between the two approaches is
that for cooperative inversion one quantity that enters the coupling constraint (here seismic velocity, v) does
not change throughout the inversion, while all quantities are adjusted within the joint inversion

Fig. 2 The simple magnetotelluric test model (left), the forward response of this model (middle) and the
space of acceptable inversion models (right) when only inverting MT data. Throughout this tutorial, I
assume that the uppermost and lowermost layers are known and only the thickness and resistivity of the
middle layer (marked in red) are sought

938 Surv Geophys (2017) 38:935–962

123



layer response. In order to illustrate the feasible solutions, I simply generate a large number

of random combinations of trial resistivities and thicknesses, calculate the misfit with the

true response and retain the parameter combinations that fit the data within 2% of both real

and imaginary parts. The resulting feasible solutions are shown as blue dots in Fig. 2 with

the true value shown in red. This simple experiment demonstrates the well-known inability

to retrieve both resistivity and thickness for a thin conductive layer, instead the layer

conductance, i.e. the conductivity–thickness product is well constrained (Parker 1980).

This behaviour is clearly visible in the set of solutions. Looking at the shape of the

permissible solutions, the layer can have any thickness between 20 m and 60 m in com-

bination with the appropriate resistivity.

If we perform a seismic refraction experiment in the same location and determine the set

of permissible solutions from those measurements alone, we get the results shown in

Fig. 3. In this case, the seismic refraction data also show ambiguity and a range of velocity

and thickness values that explain the observations within the assumed error. However, the

range of possible thickness values is narrower, between 30 and 45 m, compared to the MT.

The core idea of joint inversion is that under the assumption that both methods sense the

same structures, finding models that explain both data sets will result in better recovery of

these structures. I will now discuss the most commonly used assumptions and demonstrate

with these simple examples how they can be used, what kind of improvement can be

expected and where the pitfalls are.

2.1 Structural Coupling

One of the most general assumptions we can make about the relationship between different

geophysical methods is that they sense the same geological structures within the Earth and

in particular their boundaries. Thus, if there are any velocity or resistivity anomalies, they

should occur in the same location. Structural joint inversion methods thus do not prescribe

any direct correlation between the different physical parameters, but use spatial relation-

ships between changes in these parameters to couple the different methods (e.g., Haber and

Oldenburg 1997; Gallardo and Meju 2003). I will discuss some examples of different

structural relationships commonly used in joint inversion in the case studies below. For a

layered Earth, a simple structural relationship is to assume that layer boundaries in the

inversion are at the same depth for all methods (e.g., Manglik and Verma 1998; Moorkamp

Fig. 3 The seismic data (left), true model (middle) and set of acceptable velocity–thickness combinations
(right) when inverting travel times individually. As for the MT case in Fig. 2 only the properties of the
middle layer (marked in red) are considered unknown

Surv Geophys (2017) 38:935–962 939

123



et al. 2007; Zevallos et al. 2009; Moorkamp et al. 2010; Roux et al. 2011; Juhojuntti and

Kamm 2015). Figure 4 shows the ranges of acceptable models for both data sets for our

simple example when assuming coincident boundaries.

As no relationship between resistivity and velocity is employed, such an approach

primarily limits the range of permissible layer thicknesses. Given that this range was larger

for the magnetotelluric data, the range of permissible resistivity models is reduced, while

the range of acceptable seismic models is identical to the individual analysis. Overall, the

structural coupling achieves the main goal of joint inversion to reduce the range of

acceptable models even though in this case only for one subset of parameters. Obviously,

for a more realistic inversion, even when assuming a layered Earth, the situation would be

more complex. When inverting for the properties of all three layers simultaneously, there is

significant interaction between the thicknesses and physical parameters of the different

layers. For example, the magnetotelluric data will have reasonable sensitivity to the

thickness of the top layer, and this information will help to constrain the seismic model,

which in turn helps to constrain the thickness of the second layer. Thus in a real-world joint

inversion, it is not always as clear which method dominates the resolution properties, and

in many cases, different methods drive the inversion in different part of the model domain

(Jegen et al. 2009; Heincke et al. 2014; Demirci et al. 2017). I will discuss some of these

issues in the application section; for now I will continue with this simplistic example, as it

distils many important aspects of joint inversion.

Considering further how the resolution to layer thickness is transferred from the velocity

model to the resistivity model and how it affects the range of acceptable models in Fig. 4,

it is also clear that we will find models that fit both data sets even when the thickness of the

layer in the true velocity model differs from the true resistivity model. A thickness of 60 m

is within the acceptable range for the magnetotelluric data, and thus, combining a con-

ductivity model with a layer thickness of 40 m with a seismic thickness of 60 m will

produce a joint model that fits both data sets within the assumed noise level. In the most

extreme case, the layer thickness for the true seismic model might be outside the per-

missible range for the magnetotelluric data, but including the uncertainty of the seismic

results, the two regions overlap and we find a joint model that fits both data sets to an

acceptable level but lies at the extreme uncertainty end for both methods.

In this very simple example, the most straightforward way to perform cooperative

inversion is to select one of the models that fits the seismic data and use it as a reference

Fig. 4 The set of acceptable velocity–thickness (left) and resistivity–thickness (right) combinations for the
individual inversions and joint inversion with a structural constraint based on coincident layer thickness. The
acceptable models for the individual inversions are marked in green, while the joint inversion models are
marked in blue
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model for the MT. In the most strongly constrained case, we can take the layer thickness of

that model as an estimate of the true layer thickness and only search for the resisitivity. The

result is a very confined set of acceptable models. However, if the estimated thickness

differs from the true thickness, the true model will not be included in the acceptable model

set and the estimated resistivity will be biased. An approach that more closely resembles

current practice (e.g., Kalscheuer et al. 2015) is to include a term in the objective function

that requires the thickness of the layer to be as close as possible to the seismic estimate.

Figure 5 shows the acceptable models that agree with an estimated layer thickness of 50 m

within 10%. Compared to specifying a fixed layer thickness, the range of accept-

able models has increased, but is still smaller than for the structurally coupled joint

inversion. Depending on the thickness estimate and the uncertainty that we specify on the

estimate, the true model will be included in the acceptable models or not. In the case where

we have full information on the range of acceptable seismic models, e.g., from a proba-

bilistic inversion approach, the results will be identical to the joint inversion results.

However, if we only have one model and an ad hoc estimate of model uncertainty, the

results depend very much on how these two relate to the true model.

At first, it might be surprising to see that a cooperative or constrained inversion restricts

the set of acceptable models more than a full joint inversion. The explanation is relatively

simple though: As no adjustments to the reference model can be made, the uncertainty of

the seismic data has been taken out of the equation unless we consider the full posterior

model covariance. Thus, models that are the result of such constrained inversions have to

be examined with particular care and can be considered a particular case of hypothesis

testing as discussed below, i.e. we have demonstrated that a model exists that resembles the

seismic reference model and fits the magnetotelluric data.

2.2 Coupling Through Parameter Relationships

Structural coupling methods do not make strong assumptions about the relationship

between the different geophysical methods and thus are widely applicable. As the example

demonstrates though, the result of this can be a moderate improvement in resolution

compared to individual inversions. If we utilize more information about the Earth in the

inversion, we can potentially improve our results significantly. This is generally true for all

inverse methods, additional prior information limits the space of acceptable models, but

bears the risk of biasing the solution (Tarantola 2004; Mosegaard and Hansen 2016).

Fig. 5 The set of
acceptable resistivity–thickness
combinations for an
unconstrained inversion (green)
and an inversion where the layer
thickness is constrained to match
an inferred seismic boundary
within �5 m. In this example, the
true model is part of the
acceptable solutions; however, if
we picked a reference model at
the extreme end of the range
permitted by the seismic data, it
might not be
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Specifying a relationship between velocity and resistivity is one way to introduce such

information and strongly links the seismic refraction and magnetotelluric parts of the

inversion.

Let us assume that from some borehole data or other source of information we have

estimated a relationship of the form

log q ¼ v

3500
� 1 ð2Þ

for the second layer. For the other layers this relationship is not appropriate, but in our

simple example the parameters of these layers are assumed to be known. Furthermore,

there are examples in the literature where a parameter relationship is only assumed to be

valid in a certain depth range (e.g., Hoversten et al. 2006; Chen et al. 2007). If we assume

that this relationship is exact and without any error, we can use it to formulate the inverse

problem for both magnetotellurics and seismics in terms of seismic velocity and use Eq. 2

to convert between velocity and resistivity. This provides a strong coupling between the

two methods, as a change in velocity in the layer has direct impact on the misfit for the

magnetotelluric impedances. Figure 6 shows the feasible solutions in terms of resistivity

and thickness for this case. We can see that with the correct parameter relationship, the

space of feasible solutions is highly restricted as the intersection between the solutions that

Fig. 6 Acceptable resistivity–thickness combinations for joint inversion with a parameter relationship. I
show the solution when the relationship is considered exact and the assumed parameter relationship matches
the true relationship (top left). As before, the acceptable models for the individual inversion are shown in
green, while the joint inversion models are blue. In addition, the seismic models projected into resistivity–
thickness by the relationship are shown in yellow. I also show the results when the assumed relationship is
biased (top right) and when the relationship is not considered exact, but included as a constraint (lower left).
The true and biased parameter relationships are shown in the lower right panel
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are feasible for each individual method is small. This demonstrates the power of such

highly coupled joint inversion approaches and the potentially significant gain in

information.

A special case of joint inversion with a direct parameter relationship is so-called

petrological/petrophysical joint inversion approaches. There the relationship is not

expressed in terms of one geophysical parameter as a function of another, but all geo-

physical quantities (e.g., resistivity, velocity, density) are functions of quantities such as

porosity and permeability (e.g., Chen et al. 2007; Gao et al. 2012; Commer et al. 2014) or

temperature and mantle composition (e.g., Afonso et al. 2016; Zunino et al. 2016). Con-

ceptually, these approaches are identical to direct coupling between the geophysical

quantities with the same caveats, an additional advantage is, however, that the inversion

results are directly obtained in terms of quantities of geological interest.

In practice, we can rarely determine empirical parameter relationships with high pre-

cision. For example, borehole logging data show significant scatter and it is not clear

whether measurements on the scale of centimetres can be used for inversion problems on a

scale of tens to hundreds of metres or even kilometres (Moorkamp et al. 2013; Panzner

et al. 2014). Figure 6 demonstrates what happens when an incorrect parameter relationship

is assumed. Here I used

log q ¼ v

3428
� 1:1 ð3Þ

in the inversion instead of the correct equation above. For such a mildly distorted rela-

tionship, it is still possible to find feasible solutions, but these are biased in comparison

with the true values. Furthermore, the small region of feasible models suggests a highly

precise answer, but the true model is not contained within that solution space. Thus, the

results of such strongly coupled joint inversion approaches have to be investigated with

particular care.

One way to incorporate parameter relationships, but reduce the risk of bias is to include

the relationship as a constraint and not use it to directly convert between parameters. In this

case, we keep the parametrization of the inversion in terms of resistivity and velocity, but

in addition to fitting the data require that the model parameters are close to the assumed

parameter relationship in a least-squares sense. This is a first example of the coupling term

in Eq. 1 which so far was only implicit in the common layer thicknesses or the reduction to

a single physical property. The constraint can have the form of a function (e.g., Heincke

et al. 2014; Kamm et al. 2015) or as cluster centres that the relationship values should

group into (Carter-McAuslan et al. 2015; Sun and Li 2016).

Figure 6 shows the result of running the inversion with a constraint based on Eq. 2

instead of a fixed parameter relationship assuming the correct values shown in Eq. 2. As

expected, the range of permissible models is increased as the resistivity–velocity combi-

nations of the models do no longer have to lie exactly on the assumed relationship, but

instead scatter around it. Thus in cases where there is confidence in the overall shape of the

relationship, but individual values might scatter around the general trend, a constraint-

based joint inversion can allow for some deviation from that trend.

If the constraint is based on an incorrect relationship, the range of acceptable models for

the simple example (not shown) is very similar to the ones shown for the direct rela-

tionship. Again the range of permissible models is biased and does not include the true

model. In a practical inversion that is based on minimizing the weighted sum shown in

Eq. 1, fitting the data and satisfying the relationship will trade-off against each other

similar to the way that regularization and data misfit trade-off. It is possible to use this
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trade-off to identify problems with the parameter relationship and I will discuss general

strategies to identify such problems next.

2.3 Identifying Problems and Hypothesis Testing

The above examples have highlighted potential traps when using joint inversion with

geophysical data. When performing joint inversion, we introduce additional prior infor-

mation by assuming coincident structures or parameter relationships. If this prior infor-

mation is incorrect, it can lead to biased results. In the previous examples, I always plotted

the space of feasible solutions that fit the data below the assumed error level in order to

illustrate the spread of solutions. However, not all of these solutions fit the data equally

well. In this case, where the input data are noise free, some solutions fit the data exactly,

while others just about fit within the assumed noise level. For real data with reliable error

information, the target misfit should be a RMS of 1, i.e. on average the observations are

fitted within the estimated error. In practice however, real data can rarely be fit to that level

(e.g., Rao et al. 2014; Peacock et al. 2015; Yang et al. 2015). There can be a variety of

reasons for this including overly optimistic error estimates or the inability to include

sufficiently small surface structures in the inversion. Before any joint inversion takes place,

it is therefore essential to perform individual inversions of each data set to establish a

reference misfit for each data set (e.g., Linde et al. 2006; Moorkamp et al. 2013). Per-

forming these individual inversions also helps to find appropriate regularization parameters

(e.g., Hansen 1992) that can be scaled for the joint inversion (Moorkamp et al. 2016a).

If the joint inversion with comparable model discretization fails to fit the data to the

same level of misfit as the individual inversion, it can be either because of nonlinearities

introduced through the coupling between the methods (Lelièvre and Farquharson 2016;

Heincke et al. 2017) or because the chosen coupling constraints are inappropriate

(Moorkamp et al. 2007). Nonlinearity can be identified by changing the starting model for

the joint inversion, for example starting with the best-fitting individual inversion results

instead of a half-space or similar model. When starting with well-fitting models, the joint

inversion should increase the similarity between the different models under the coupling

constraint and the final model should have a comparable misfit to the individual models. If

this cannot be achieved, it indicates that the coupling constraint is inappropriate, i.e. the

assumptions about the Earth made in the inversion are incorrect.

The result that a carefully constructed coupling constraint, e.g., a parameter relationship

based on an assumed rock-physics model, is inappropriate for joint inversion of a particular

data set might initially be disappointing. However, it is a quite powerful result if we can

show that we can rule out other factors such as the nonlinearity discussed above, issues

with the parametrization or with the data errors. Traditionally, the coupling between the

different methods is considered known prior information and the focus of the joint

inversion is to use this additional information to improve the results compared to individual

inversions. Another way to look at it, however, is that by performing joint inversion we test

the hypothesis that models exist that comply with the chosen coupling method and explain

the observations at the same time. When the joint inversion fails, because we cannot fit the

data to a satisfactory level, we have falsified this hypothesis and demonstrated that the

coupling constraint does not reflect the geological situation. Of course, a large number of

possible coupling constraints exists that can be falsified this way, most of which are

nonsensical. In contrast, if it is possible to show through careful analysis that variations of

resistivity and velocity in the mantle cannot simply be explained by simple variations in

composition, for example, we have learned something valuable about the Earth.
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For typical geophysical inverse problems, usually no clear criteria exist for rejecting the

result of an inversion. Even though least-squares fitting, the core of the majority of inverse

algorithms, is based on a sound and well-developed mathematical foundation, the under-

lying assumptions, such as a Gaussian distribution for the errors, are very often violated

(Matsuno et al. 2014). In addition to using the misfit for individual inversions as a

benchmark as discussed above, another useful way to analyse the joint inversion results is

to look at how fitting the different data sets and satisfying the constraint interacts.

Figure 7 shows the misfit for the parameter relationship against the misfit for the

seismic data for all models that fit both data sets at an acceptable level. When the rela-

tionship assumed in the inversion is correct (left panel), models with a low seismic misfit

also match the constraint better than models with a larger seismic misfit. In contrast, when

the assumed parameter relationship is incorrect (right panel), there are no models with both

a low seismic misfit and a good agreement with the constraint. Thus, plotting combinations

of misfits for the different data sets and the constraints reveals if they are compatible with

each other or minimizing one comes at the cost of deteriorating the match for the other. In

practical inversion, applications such plots can be constructed by varying the weight for the

different terms of the objective function (Thompson et al. 2016) or using specially

designed multi-objective minimization algorithms (Kozlovskaya et al. 2007; Moorkamp

et al. 2007, 2010; Roux et al. 2011; Schnaidt and Heinson 2015; Lelièvre et al. 2016; Niri

and Lumley 2016).

Throughout the preceding discussion, I have concentrated on electromagnetic and

seismic data, as this combination of methods promises significant improvements compared

to individual inversions and different physical quantities need to be coupled in the

inversion. Naturally, the discussion applies also to combining electromagnetic and gravity

data (e.g., Maier et al. 2009), but to a certain degree even when inverting different types of

electromagnetic data together (Commer and Newman 2009; Newman et al. 2010; Haroon

et al. 2015) or electromagnetic with DC resistivity data (e.g., Candansayar and Tezkan

2008; Yogeshwar et al. 2012; Hoversten et al. 2016). Even though in the latter cases the

physical parameter under consideration is electrical conductivity, magnetotellurics is

sensitive to horizontal conductivity, whereas controlled- source methods are sensitive to

horizontal and vertical conductivity which leads to effective anisotropy in finely layered

sedimentary environments (Newman et al. 2010). Thus, the conductivities retrieved by the

different methods will differ and appropriate coupling methods have to be introduced in the

joint inversion, e.g., by introducing electrical anisotropy in the inversion (Commer and

Fig. 7 Trade-off between fitting the seismic data and matching the parameter relationship constraint for a
correctly assumed parameter relationship (left) and a biased relationship (right). It can be clearly seen that
when the relationship is incorrect, there are no models that satisfy the data and the constraint simultaneously
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Newman 2009), and data misfit will trade-off with the amount of anisotropy permitted by

the inversion.

3 Some Recent Examples of Integrated Analysis in Practice

The previous simple examples have illustrated the concepts of joint inversion and I will

now discuss concrete applications of these concepts to real data. Integrated methods are

now applied in a wide range of fields, and recent reviews have been published on joint

inversion in hydrogeophysics (Linde and Doetsch 2016), mineral exploration (Lelièvre and

Farquharson 2016), hydrocarbon exploration (Moorkamp et al. 2016b), lithospheric

imaging (Afonso et al. 2016) and deep mantle studies (Zunino et al. 2016). Here, I will

focus on some of the most recent work and aspects that have not been fully covered by

these reviews.

3.1 Joint Inversion with Direct Parameter Coupling

As a first case study, I will compare the results of Panzner et al. (2016) with Heincke et al.

(2017). Both studies investigate the same region and use similar data sets. However, the

methodologies and several choices on how to combine the data sets differ. This comparison

is therefore a good way to demonstrate how in practice subjective choices can lead to

different results. The target of both studies is to image sub-basalt sediments in a region

south-east of the Faroe Islands along the so-called Flare6 line. The thickness of the basalt

and the geometry of the sediments below is of great interest for hydrocarbon exploration

(Christie and White 2008; Manglik et al. 2009; Patro et al. 2015) as it determines the

potential prospectivity of the hydrocarbon reservoir.

Both studies use a combination of seismic travel times and electromagnetic data for

their inversion approach. However, while Panzner et al. (2016) use a combination of MT

and marine controlled-source electromagnetic data (CSEM), Heincke et al. (2017) only

utilize magnetotelluric measurements, but also include gravity data in the inversion.

Furthermore, Panzner et al. (2016) use a sequential analysis of the different data sets,

where inversions are performed individually, but information is exchanged between the

separate inversions. These kinds of integrated workflows are often used in hydrocarbon

exploration instead of full joint inversions, either because a full joint inversion is con-

sidered intractable (Um et al. 2014), or because the main goal of the inversion is to

generate improved models for migrating seismic reflection data (Colombo and Stefano

2007; Colombo et al. 2008; De Stefano et al. 2011; Colombo et al. 2014; Cui et al. 2015;

Takam Takougang et al. 2015) or full waveform inversion (Zerilli et al. 2016). Heincke

et al. (2017), in contrast, perform a full joint inversion of all three data sets.

In terms of the coupling between the different methods, both studies employ a very

similar approach and utilize cross-property relationships from a borehole in the area to

relate seismic velocity and electrical resistivity. Figure 8 shows the cross-property plots

and the fitted relationships. From these plots, it is clear that both of these relationships are

only approximate representations of the true variation of the parameters in the subsurface.

Both velocity and resistivity scatter significantly around the values predicted by the

relationship. This is partially due to noise in the borehole measurements, but also due to

fine scale variations in lithology. Thus, when averaged to a scale of 100 m, comparable
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with the size of individual cells in the inversion, the scatter is much less dramatic and the

relationship appears to be appropriate (Fig. 9).

Still, based on the same observed data, both studies choose different parametrizations to

represent the parameter relationship. For P-wave velocities of less than 6000 m/s, the
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Fig. 8 Velocity–resistivity (top left) cross plots and depth plots for logging data from the BRUGDAN
borehole (top right) used in the study of Heincke et al. (2017). The lower row shows the same information as
used by Panzner et al. (2014)

Fig. 9 Velocity–resistivity cross
plots for logging data from the
BRUGDAN borehole averaged at
100 m intervals. The colour of
each point corresponds to depth
below sea floor. The estimated
cross-property relationship by
Heincke et al. (2017) (black line)
and the velocity–resistivity
relationship used by Panzner
et al. (2014) (blue line) are also
shown
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differences are relatively subtle, while for higher velocities the relationship by Panzner

et al. (2016) predicts significantly higher resistivities than the relationship of Heincke et al.

(2017). Even though at first sight the difference might appear dramatic, an order of

magnitude or more difference in predicted resistivity, for velocities greater than 6200 m/s,

in practice the impact on the inversion results is not that strong. First, such high velocities

are only reached in very thin layers and the average velocity in the bulk of the borehole

varies between 4000 and 6000 m/s where both relationships are very similar. Second, these

high velocities and high resistivities are encountered within the basalt which is covered by

conductive sediments. Magnetotelluric data only resolves the minimum resistivity of such

a structure (Chave and Jones 2012), and the maximum resistivity is unconstrained. Thus,

the MT data allow any resistivity value above a certain threshold, but the regularization

will limit the resistivity. This is confirmed by the inversion results of both studies. In

neither case do the retrieved resistivities exceed 100Xm.

Even though in this case it appears that the differences in parametrization do not have a

significant impact on the inversion results, this comparison highlights the difficulty in

finding appropriate representations of cross-property relationships and the requirement for

users of joint inversion methods to carefully consider their choices. It is clear that in many

cases simple approximations through continuous mathematical functions are not appro-

priate. Clustering methods (Paasche and Tronicke 2007; Paasche et al. 2010; Sun and Li

2016, 2017) provide an alternative for certain scenarios, but also involve a number of

choices by the user and assume that lithology can be represented by a finite number of

cluster centres. Finding reliable representations of cross-property relationships and

assessing their reliability under a range of conditions is therefore one of the most pressing

tasks in joint inversion and integrated analysis and in my opinion a highly fruitful field for

further research.

Figure 10 shows the inversion results from both studies with the trace of the Brugdan

borehole (Schuler et al. 2012) in both plots for comparison. The overall geometry and

thickness of the basalt layer are similar in both models, but there are differences in some of

the details. In particular, the model of Panzner et al. (2016) predicts a significantly stronger

change in basalt thickness in the vicinity of the borehole compared to the model of Heincke

et al. (2017) and shows deeper high-velocity structures potentially associated with pre-

rifted basement that do not appear in the model of Heincke et al. (2017). Considering the

sensitivities of the different data sets (Fig. 10 in Panzner et al. 2016), the addition of

CSEM data helps to resolve these structures. In comparison, the gravity data included by

(Heincke et al. 2017) do not seem to contribute much to resolving structures at depth.

Fig. 10 Joint inversion model of Heincke et al. (2017) (left) and Panzner et al. (2014) (right)
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3.2 Joint Inversion with Structural Constraints

The second example taken from Gallardo et al. (2012) is also related to hydrocarbon

exploration. As prospecting for new resources has moved into geologically complex areas,

the value of integrating different types of data has been recognized by the industry and

significant investments have been made to develop integration platforms (e.g., DellAver-

sana et al. 2016) and sponsor case studies in order to gain the necessary experience (e.g.,

Colombo et al. 2010; Chen and Hoversten 2012; Moorkamp et al. 2011; Roberts et al.

2016). In addition, the importance of so-called nonseismic techniques in the exploration

workflow has increased over the last fifteen years (Constable 2010; MacGregor and

Tomlinson 2014; Strack 2014; Streich 2016). In this case, the focus of the study is on the

Santos Basin, offshore Brazil, and to which extent integrating seismic, magnetotelluric,

gravity and magnetic data can help to constrain the geometry of salt and carbonate units.

Salt structures in particular are difficult to image with traditional seismic reflection

methods due to the steep flanks of the structures and internal scattering of the seismic

energy (e.g., Key et al. 2006; Hokstad et al. 2011).

Given the range of different lithologies with highly variable physical properties in the

Santos Basin, it is difficult to construct rock property relationships and it is likely that any

constructed relationship will not be valid in significant parts of the study area. Thus,

Gallardo et al. (2012) use the cross-gradient (Gallardo and Meju 2004, 2007, 2011; Meju

and Gallardo 2016), a versatile structural constraint, that has established itself as one of the

most popular coupling approaches in joint inversion (e.g., Linde et al. 2008; Doetsch et al.

2010; Lochbühler et al. 2013; Sánchez and Delgado 2015; Tarits et al. 2015; Zhou et al.

2015). Other structural constraints include curvature based measures (Haber and Olden-

burg 1997), directed constraints (Molodtsov et al. 2013), using the roughness of another

model to modify the regularization (Günther and Rücker 2006), Gramian constraints

(Zhdanov et al. 2012) and joint total variation (Haber and Holtzman Gazit 2013).

Depending on the scenario, these coupling methods can have superior properties under

certain circumstances. However, to date none of these has achieved the popularity of the

cross-gradient.

The cross-gradient function sðm1;m2Þ between two model vectorsm1 andm2 is defined

as the cross-product of the spatial gradients of each model, viz.

sðm1;m2Þ ¼ rm1 �rm2: ð4Þ

Haber and Holtzman Gazit (2013) and Meju and Gallardo (2016) discuss some of the

issues implementing this constraint for practical inversions. Figure 11 shows an example

of two conceptual models, their spatial gradients, i.e. lateral changes in the physical

properties represented by each model, and the resulting cross-gradient. As this function

will be included in the inversion algorithm either as a constraint (Gallardo et al. 2012) or

one of the terms of the objective function (Moorkamp et al. 2011), the model cells with

large cross-gradient values are considered to violate the constraint and will be modified by

the inversion. Figure 11 shows that despite very different visual appearance of the two

models, the cross-gradient vanishes in large parts of the model domain, either because one

of the spatial gradients is zero, or because the gradients are parallel or anti-parallel to each

other. This means that a variety of models will be considered compatible under the cross-

gradient constraint and is one of the main reasons for its popularity. Even in situations

where the different physical parameters in the joint inversion react differently to changes in

underlying geology, the cross-gradient constraint will very likely be able to accommodate
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this. The flip side of this flexibility is that the coupling between the methods is less strong

than with more restrictive approaches and, in some instances, can be insufficient for

effective joint inversion (Lelièvre et al. 2012; Heincke et al. 2014). It is important to note

that in practical smoothness regularized inversion, the case of zero spatial gradient for one

or both of the physical properties does not occur very often, as the regularization tends to

produce parameter changes over several models cells instead of sharp boundaries (cf.

Moorkamp et al. 2011). In fact, it is likely that this phenomenon helps to achieve the

desired similarity between the models, as the influence of the cross-gradient is extended to

a larger region compared to the sharp boundaries of Model 1 in Fig. 11.

In their case history, Gallardo et al. (2012) invert for seismic velocity, electrical

resistivity, density and magnetic susceptibility and thus include six cross-gradient con-

straints in their joint inversion, one for each pair of model parameters. Figure 12 shows the

magnitude of the cross-gradient for all combinations of model parameters for individual

inversions and joint inversion of all data sets. It is immediately visible that calculating the

cross-gradient for the individual inversion results produces significantly larger values for

all parameter combinations in the entire modelling domain compared to the joint inversion.

This means that for the individual inversions in large parts of the modelling domain,

changes in different physical parameters occur in different directions. In contrast, for the
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Fig. 11 Conceptual sketch illustrating the cross-gradient constraint using two hypothetical models (Model
1, top left and Model 2, top right). For each model spatial gradients are calculated and plotted (lower left).
Black lines show the gradients of Model 1, while red lines show the gradients of Model 2. The resulting
cross-gradient (lower right) is nonzero where both gradients are significant and point in different directions
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joint inversion these changes occur in the same direction, there is only a small region at a

depth of about 2 km that shows significant nonzero cross-gradient values. Gallardo et al.

(2012) do not further discuss possible causes of this discrepancy, but given the discussion

on hypothesis testing in the tutorial above, it would be very interesting to investigate the

cause of the high cross-gradient values, as these clearly indicate a violation of the

assumption of similar structure. Examining Fig. 12, the main violation of the cross-gra-

dient constraint occurs between the magnetization contrast and all other methods in an area

where the observed magnetic data change rapidly along the profile. Thus apart from some

unknown geological reason, it is also possible that these high values are caused by model

discrepancy, i.e. an inversion grid that is too coarse to accommodate the necessary

changes, or too optimistic data errors. Without additional information, it is impossible

though to assess the contributions of these three effects.

In any case, the joint inversion has produced models that are significantly more similar

to each other than the individual inversion results and as such can be considered better.

One problem with multi-parameter inversions is to distil the information in a form that can

be easily analysed. In addition to the traditional form of plotting the models for different

physical properties next to each other, Gallardo et al. (2012) also use what they call

geospectral images in an attempt to present all relevant information in a more compact

form. Figure 13 shows the geospectral representation of the individual inversion results

and the joint inversion. Three of the physical properties are represented by different

colours, and variations in the values of each property are shown as variations in lightness of

that colour. The fourth property, here magnetization, is represented by contour lines. The

result is a single image that represents all four properties simultaneously and where certain

colours indicate specific combinations of physical parameters. While this representation is

very compact and certain lithological units can easily be identified, some of the more subtle

variations are lost and can be more easily seen in the individual plots. Still, it is a first step

towards solving the problem of visualizing all the information gained from integrated

inversions efficiently.

One likely reason that the violation of the cross-gradient is located near the surface in

this case study is that generally inversion models of surface-based observations tend to

Fig. 12 Magnitude of the cross-gradient between different physical parameters for individual inversions
(below diagonal) and joint inversion (above diagonal) in the study of Gallardo et al. (2012)
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become smoother with depth due to the decrease in the sensitivity kernels (Li and

Oldenburg 1998; Streich and Becken 2011). As a result of this loss in sensitivity, the

influence of regularization increases and thus changes in model parameters are distributed

more broadly and the amplitude of anomalies is reduced. Consequently, the cross-gradient

value at depth is similarly reduced compared to the near surface. A similar phenomenon

can be observed in other studies as well (cf. Moorkamp et al. 2016a). Bennington et al.

(2015) propose a normalization of the cross-gradient constraint to avoid this natural

decrease in cross-gradient and ensure that structures at depth are equally constrained. They

demonstrate the feasibility of such an approach on a synthetic example and data measured

across the San Andreas fault. However, so far a careful comparison with the regular cross-

gradient is missing, and thus, it is difficult to quantify the contribution of the normalization

in improving the joint inversion results. The lack of systematic investigations of the

properties of different approaches and their comparison is a general problem in joint

inversion at the moment. Being a relatively young field, most authors have focused on

Fig. 13 Geospectral representation of the individual inversion results (top) and the joint inversion results
(Gallardo et al. 2012). In both cases the contours show the magnetization model
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developing new approaches and demonstrating that these work in principle and only few

studies have provided comparisons between different types of joint inversion (Moorkamp

et al. 2011; Le et al. 2016) or looked how particular settings affect the inversion results

(Moorkamp et al. 2016a). As the field matures, such studies become more and more

important in order to help selecting the appropriate approach from the variety of

possibilities.

3.3 Cooperative and Constrained Inversion

I will now discuss some case studies of inversions that incorporate information from other

geophysical studies as constraints, but do not perform a joint inversion. This means that the

information is considered as an estimation of ground truth, potentially with some uncer-

tainty, but there is no feedback to modify it as a result of the inversion. As discussed in the

tutorial above, this potentially restricts the range of acceptable models more strongly than a

joint inversion, but great care has to be taken to assess the validity of the constraints and

assess its uncertainty.

The first case study (Kalscheuer et al. 2015) for constrained inversion combines a range

of electric and electromagnetic data with constraints from a coincident seismic reflection

profile. The aim of the study is to identify potential sources of groundwater in the Oka-

vango Delta, Botswana. Kalscheuer et al. (2015) jointly invert audio-magnetotelluric

(AMT), controlled-source AMT and transient electromagnetic (TEM) data in terms of

layered models at a number of different locations. The seismic reflection profile is used to

identify the depth to two lithological boundaries: (1) a boundary within the sediments, the

so-called POM, and (2) the depth to basement. Without any seismic constraints, the data

can be sufficiently explained by three-layer models at all locations. However, introducing

depth to basement as a constraint in a three-layer inversion significantly increases the data

misfit. Adding a fourth layer to the inversion allows to satisfy the constraint and fit the data

to the same misfit level as the unconstrained inversion. This kind of analysis is similar to

the procedure discussed in the tutorial above and in Moorkamp et al. (2010). It again

highlights the importance of performing individual inversions before attempting any kind

of joint inversion or constrained inversion, as it is necessary to have a benchmark misfit.

Figure 14 shows a comparison between unconstrained four-layer inversion models (top)

and inversions where the lower two interface boundaries have been constrained to match

the boundaries interpreted from the seismic reflection profile. In this case, Kalscheuer et al.

(2015) estimate the uncertainty to the depth of these boundaries as �10m, but note that

larger deviations from these depths are permitted by the electromagnetic data. The result of

the constrained inversion is that the models at all locations are virtually identical, there are

only some minor fluctuations in the depth to first layer boundary. As Kalscheuer et al.

(2015) note this means that the electromagnetic observations are compatible with the

inferred seismic boundaries. If we accept this as a reflection of the true geological situation,

it suggests that the differences in inversion models for the unconstrained inversion are

merely a mapping of data errors into the results.

In the preceding example, the seismic reflection data mainly show two strong, hori-

zontal reflections that clearly identify lithological boundaries and the remaining weak

amplitude variations can be attributed to noise. More generally, seismic reflection profiles,

or similarly ground penetrating radar (GPR) or migrated receiver function images, show a

multitude of reflections with complicated geometries and varying amplitudes. Although it

can be possible to extract significant discontinuities and incorporate the information in an

inversion (e.g., McGary et al. 2014), in many cases it is not clear which reflections are the
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most significant. Here semi-automatic procedures can help to transform a guiding image

into a form that can be used to steer a constrained inversion. Zhou et al. (2014) have

developed an image-guided inversion approach that uses such a transformation. Based on a

guiding image, e.g., a GPR section, two quantities are calculated: (1) a metric tensor field

that identifies directions of major changes and directions of homogeneity, the long axis of

this tensor is aligned parallel to the direction where the reflection amplitudes are contin-

uous, and (2) semblance, to identify the location of strong discontinuities, semblance

values are low at major discontinuities. This process is fully automated and can be applied

to depth migrated GPR and seismic sections or even to geological cross sections. In order

Fig. 14 Comparison of the unconstrained electomagnetic inversion results (top) and the inversion results
constrained by seismic data (bottom) by Kalscheuer et al. (2015). Both sets of models match the data to
comparable levels of misfit. Introducing the seismic constraint has made the models virtually independent of
location

cFig. 15 Guiding image, calculated metric tensor field and semblance from that image as well as individual
and constrained inversion results from the study of Zhou et al. (2014). Introducing the structural constraints
has increased the sharpness of several boundaries and changed the geometry of several structures
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to incorporate the tensor and semblance information in the inversion though, it is necessary

to define a threshold below which the semblance is considered to indicate a boundary.

Figure 15 shows an example of a guiding image based on a GPR section, the calculated

metric tensor field at a few locations and the semblance. Semblance values below the user-

defined threshold are shown in red, and at these locations, the regularization will be

modified to smooth along the direction of the long axis of the metric tensor and permit

changes along the direction of the short axis. In this proof of concept, the authors use fixed

values for the smoothing weights in these two directions, but note that these can be

adjusted to reflect the length of the axes of the tensor.

Introducing these constraints in the inversion has a significant effect on the resulting

model as can be seen in comparison with the unconstrained inversion (Fig. 15). As

expected, the constrained model shows stronger resistivity changes across most of the

inferred boundaries (e.g., between profile km 0–15), although not all structures are directly

related to changes in resistivity (lower structural boundary at profile km 25–45). The data

misfit is only marginally higher compared to the unconstrained inversion, but it would be

instructive to look at the distribution of misfit in detail and assess which structures have an

impact on the data misfit and whether this is an expression of noise in the data or changes

caused by the constraints that are not compatible with the observations. Furthermore, the

impact of the different user-defined parameters, semblance threshold, smoothing weights,

should be tested and their impact on the inversion results assessed.

As a general methodology, imaged guided inversion is attractive though as it can be

used to introduce complex structural information with only modest user-interaction.

Compared to manually drawn tear zones (e.g., McGary et al. 2014), it can be used to

permit varying degrees of structural heterogeneity by using smoothing weights based on

semblance magnitude, but lacks the insight of an expert user into the geological signifi-

cance of different structures. However, this is a general trade-off between manual and

automated procedures to produce geophysical models. In the hand of an expert user,

manual methods such as forward modelling and constraints based on the interpretation of

other information can be highly powerful, but the result strongly depends on the user and

can be biased by her expectations. Most automated procedures such as inversion algo-

rithms also require some user-defined quantities, but in most cases the major structures will

be comparable (e.g., Miensopust et al. 2013).

These two case studies demonstrate just some of the possibilities of introducing geo-

logical and geophysical information in the inversion. Others include mutual information

(Mandolesi and Jones 2014), or geostatistical methods in a probabilistic inversion (e.g.,

Zahner et al. 2016). Bosch (2016) and Hansen et al. (2016) discuss the theoretical basis of

using geological prior information in more detail.

4 Conclusions

The tutorial section of this paper has demonstrated the strengths and weaknesses of joint

inversion and constrained inversion approaches. Used sensibly, they can significantly

improve the inversion results and obtain models that better reflect the subsurface. How-

ever, using multiple data in a sophisticated automated inversion algorithm does not alle-

viate the user of the need to critically evaluate the inversion models. At a minimum, the

data misfit of the joint inversion should match the misfit of the individual inversion, but

ideally the trade-offs between fitting the different data sets and the impact of all parameter
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choices on the results should be explored. I have described some possible recipes that can

be used as indications where the integration can be considered successful and where it has

to be used with caution. Particularly when the models strongly depend on the choice of one

or more parameter, e.g., the weighting between the different data sets or the weight of the

coupling constraint, it is necessary to clearly understand why this is the case before any

inferences can be made from the models.

Notwithstanding these difficulties, integrated approaches have reached a level of

maturity that makes them suitable for application in a large number of areas from the near

surface to the deep mantle. A plethora of methods exists that can be tailored to the

available data and prior information and the case studies above have exhibited some

examples. For some, such as joint inversion with cross-gradient coupling, sufficient

experience and systematic studies exist that provide a clear picture where it can be

expected to work and where not and how it should be used. Other approaches still lack this

kind of information, but with increased use similar strategies can be developed. This is

particularly important for methods that require a number of user-defined parameters and a

fruitful field for future work. As discussed above, despite the multitude of coupling

approaches, there is still room for new developments, particularly on how to include

parameter relationship into joint inversion schemes.

In terms of applications, integrated schemes including electromagnetic methods have

been used on all scales and with different targets in mind, but to date there seems to be a

shortage of studies targeting geothermal exploration problems or investigating the structure

of the crust. Here significant developments can be made with potentially large impact.

Acknowledgements I would like to thank the programme committee of the 23rd Electromagnetic Induction
Workshop and the committee members of IAGA Division VI—Electromagnetic Induction in the Earth and
Planetary Bodies for inviting me to write this review and giving me the opportunity to share my thoughts.
Comments by the editor, an anonymous reviewer and Michael Commer improved the initially submitted
manuscript. Research cannot be performed in isolation and particularly joint inversion requires the expertise
and input from a wide range of people. I would therefore like to take this opportunity to thank my colleagues
and collaborators, especially Alan Jones and Marion Jegen, for setting me on this path and enabling me to
pursue it over the years.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abubakar A, Habashy T, Li M, Liu J (2009) Inversion algorithms for large-scale geophysical electro-
magnetic measurements. Inverse Prob 25(12):123012

Afonso JC, Moorkamp M, Fullea J (2016) Imaging the lithosphere and upper mantle. In: Moorkamp M,
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