Acta Geodaet., Geophys. et Montanist. Acad. Sei. Hung. Tomus 11 (3—4), pp. 427 —446 (1976)

MAGNETOTELLURIC MODELLING
AND INVERSION IN THREE-DIMENSIONS

R. C. HEWSON-BROWNE

DEPARTMENT OF APPLIED MATHEMATICS AND COMPUTING SCIENCE, UNIVERSITY OF SHEFFIELD,
SHEFFIELD, UNITED KINGDOM

P. C. KENDALL

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KEELE, STAFFORDSHIRE U. K.

Recent developments in three-dimensional modelling and inversion are discussed
together with the progress which has been made in recent years. Emphasis is placed upon
new work in inversion and large arrays. and on the type of exact solution of the direct problem
which in our judgement has sufficient generality to make it potentially useful in three-
dimensional inversion work. Initially, the equations of the problem are briefly established.
Then, for the sake of argument. “modelling” and ‘‘automatic inversion” are defined as
extreme aspects of the subject area. Typical case studies are included for lower dimensional
configurations: new and robust methods of one-dimensional inversion are now available.
The problem of large magnetometer arrays is mentioned. This is an area full of new and excit-
ing possibilities for deep sounding and the exploration of anomalies. The theory, though, is
only partly developed: available data have not yet revealed profiles as well resolved as those
from a good combined electric and magnetic run at a single station, however, there have
been some remarkable achievements. A new general attack upon the direct problem is re-
viewed, and we include some brief remarks on continental margins and how the edge effect
problem is beginning to assume an optimistic shape through the method of matched asymp-
totic expansions. We conclude by mentioning other recent investigations in the field of model-
ing, the general trend of work over a wide field and some guesses about the future.

1. Introduction

In this series of workshops the inversion problem has been reviewed
before: in 1972 for one dimension (Edinburgh) and in 1974 for two dimensions
(Ottawa). Here, in 1976, we examine the problem for three dimensions, and
look forward with interest to future reviews.

General two-and three- dimensional problems are intrinsically very dif-
ficult, but some excellent and elegant results have already been obtained.
These are well worth reporting in detail. We shall link these new results with
other strands of thought introduced for interest. But first, for those new to
this area, we shall describe our terminology and notation.

2. Equations and terminology

An electrically conducting body is supposed to have a partly unknown
electrical conductivity o(r), where r denotes the position vector of a field
point. The body has many components: the earth, the ocean and (possibly)
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the ionosphere and magnetosphere. We are stationed at a point P on the
earth’s surface.

In one variation of the problem a known, i.e. “ordinary” electromagnetic
field E,, B, in the usual notation, is generated or, more likely, occurs naturally,
at various frequencies w. The induced fields E, B at P are observed, where
E, + E, B, + B represents the total field at this frequency. We are required
to make deductions about o(r) from these observations. There is some suspicion
[42] that not much can be deduced about o(r) in more than one dimension
without employing a grid of observation points P}, P,, ... One also suspects
that from a series of stations distributed along a straight line one will only
gain two-dimensional insight into o(r). Probably a pretty large lattice of
stations needs to be spread in order to obtain some knowledge of o(r) in three
dimensions; but how large, how many lattice points and within what frequency
range?

Ideally one should know what the source field is; more often only natu-
rally occurring magnetic perturbations are available, and the source field is not
known. In that case one can use surface integral techniques to separate the
observed field into “external” and “internal’ parts, or use ratios of the field
to the field at some calibration point, or use ratios of components, or in addi-
tion make some simplifying assumptions, such as plane stratification, about
the local geology. For example the original magnetotelluric method [45; 8]
belongs to the last two classes. Let us assume for the sake of discussion that
the electromagnetic field has been separated into its “external” or ordinary
part E;, B, and its “internal” or induced part E, B.

As the periods associated with the external field vary from seconds to
days and years we may ignore displacement currents and use the pre-Max-
wellian equations, which in rationalized m.k.s. units, with all variables pro-
portional to exp (iwt), are

curl ETOT — i(’)BTOT (1)
and
curl BTOT = .U.“J. (2)

Here, Eqor denotes the total electric field measured in fixed axes, Bror the
total magnetic field, J the electric current density and p, the permeability
of free space. Ohm’s law J = oErqr. with a scalar conductivity o(r), is gener-
ally assumed to hold. Let E,. B, be the external inducing electromagnetic
field and E, B the induced field so that

Eror = E + E, (3)
and

BTOT =B % Bu . (4')
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Combining Ohm’s law with equations (1) to (4) and introducing the notation

Ke(r) — icopo(r) (5)
gives within the conductor
curl curl E | PPE = —E’E,. (0)
Outside the conductor
curl curl E = 0 . (7)

These are the equations of the problem, presented in terms of the electric field.
The interface conditions at the surface of the conductor are the usual ones:
on occasion the ocean may be simulated by a surface conductor across which
the tangential magnetic field components may be discontinuous. The boundary
conditions, at infinity or otherwise, are chosen to suit the problem in hand.

In the direct problem o(r) is assumed to be known, and a solution for
E has to be found.

In the inverse problem a(r) is to be deduced from the surface observations
of Evor and Brgt. In all methods of inversion used to date it has been essen-
tial to be able to solve a direct problem of some kind: either analytically,
symbolically or by computer.

3. The extremes: modelling and automatic inversion

At the ends of the spectrum of methods available to the geophysicist
lie the two extremes of inversion, namely, modelling and automatic inversion.
In this section these will be described as briefly as possible.

Modelling

Modelling is as much an art as a science. A perfect modern example of
this is the recent investigation by Cox and Firroux [10] of the California
electromagnetic coastal anomaly. A carefully specified conductivity model was
assumed for a (two-dimensional) transverse electric mode problem: an ocean
with a straight coastline was also included for good measure. This model was
based on the authors’ previous investigations of possible conductivity dis-
tributions. They solved the basic equations by computer, and compared their
results with observations for various frequencies. The procedure yielded a
reasonable spatial variation of the amplitudes and phases of various com-
ponents. Results were presented for 0.25, 0.5, 1.0 and 2.0 cycles per hour.
Tt is clear that the solution of the direct problem is of immediate interest
when modelling.
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Automatic tnversion

At the other end of the scale lies automatic inversion. In principle one
would like to produce a computer program which would read in the data and
print out a set of consistent distributions of conductivity, together with in-
formation on the resolution attained.This procedure is more automatic than
modelling, but not necessarily better.

The conduectivity o(r) is partly unknown, but for a given o(r) equation
(6) can in theory be solved for E. Then we may write

E = E [o] : (8)

that is to say, E is a functional of o(r): also, E depends upon the frequency
of excitation w, but it is unnecessary to exhibit this dependence explicitly.

For the sake of argument we now consider any entity g which could
be obtained from the electromagnetic field E, B. For example g could be an

impedance like |E|/|B|, or a phase (say the phase of a particular component

of E), or a ratio of two components (say, B,/B, in some frame of reference):
g could also be a three-vector whose components represented in turn the three
quantities just mentioned. It could also be a multi-dimensional vector, or
)
of transfer functions ([42] p.20) such that
if suffixes 1, 2, 3 distinguish the three magnetic field components,

a tensor. One particularly good choice, involving much computation though
might be SCHMUCKER’s matrix h

mn

3

Bm = 2‘ h’mn Bon . (9)

n=1

Then we would have g = (h,,,), a 3 x3 matrix. We make only one restriction:
g shall be an element in a space with norm ||.|| (for a brief survey of this nota-
tion see RicarvyER and MorTon ([36] p.31). It follows that for two elements
g, and g, of the space,

llgy — gull = 0 if and only if g, = g,. (10)

Then equation (8) is included in the more general statement that

glo] ; (11)

o
f=]

that is, g is a functional of o(r). Alternatively, we may write

g = glr) ; (12)

that is, g is a function of position.
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An artificial example of such a functional is

g(r) =glo] —.Ji]j‘lc(rf)’dx' dy' dz’ . (13)

r r

This shows how one particular conductivity distribution o(r) gives a range of
numbers g(r), so that g itself is a function of position.

The data consists of a finite number of ohservations g,. g,.....g, of g,
at various points r;.r,,...,r, on the surface of the conductor, for various
frequencies. Unfortunately the authors are not in a position to advise on the
features which distinguish good and bad data. but the collection of good data
seems to be an important feature of major investigations [23].

There are likely to be infinitely many conductivity models o(r) such that

(r) = 81> 8ry) =g --.8(r)) =8, (14)

[§]-)

the problem is how to find them. One should also properly comment that
equations (14) may be insoluble. In two dimensions there is, for any given
smooth curve, an iterative method of finding that particular normal to it
which passes through a given point not on the curve. BAckus and GiLBERT [4]
generalized this to equations like (14), generating from some initial guess
o(r) a sequence of approximations ¢,.0,, ... which might converge to the
function o(r). They also showed how to generate other solutions from this
solution and in [5] discussed the uniqueness of the solution and the resolving
power of the data. Their contribution [6] to the phenomenon of trade-off
between accuracy and resolution offers an attractive format in which to dis-
cuss the real meaning of any approach to inversion. Their papers are well
written, and easily converted from seismology to geomagnetism.

PARKER [29] applied the Backus — GiLBERT format to reworking an
extremely valuable pioneering determination by Banks [7, 62] of a distribution
of o for a spherically symmetric earth. PARKER’s helpful investigation gave
deep insight, and set a bench mark for judging further investigations. PARKER’s
first iterative approach did not in fact converge; slight inconsistencies in the
data may throw the Backus  Gilbert method off the scene, so that it may
diverge. Jupp and Vozorr [20] have shown how the method may be stabilized
so that it will converge even for ill-posed problems. In that paper, and an
accompanying one, under reversed authorship [50], they carry out thought
experiments for a layered earth, and apply their method also to measurements
above a sedimentary basin. They also use d.c. resistivity measurements in con-
junction with the magnetotelluric method.

It hardly seems fair to include such a thorough investigation as LARSEN’s
[23] under the heading of “automatic inversion”. But he has produced such
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a clear account, and good conductivity resolution that it must be described
here. LARSEN used electric and magnetic field measurements taken on Hawaii,
at what is virtually a single site. Twenty-two months of data converted to
hourly values were used. The observations were of high quality, enabling an
accurate inversion to be carried out using a hitherto unpublished method due
to ScHMUCKER. The method has weighting factors built into it, so that unstable

MHOS / m
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Fig. 1. (After LarseN [23].) Locally smoothed conductivity profile L with spread (vertical

bars) and conductivity errors (horizontal bars) compared with the Friroux profile F' [11],

the Lamirr and Price [21] model d profile LP,, the Banks [62] profile B,, and the PARKER
[29] profile P

features can be quenched if they occur (e.g. the traditional one mentioned by
WemELT [57, p.282], of a poor conductor sandwiched between two good con-
ductors). The Backus — GILBERT technique was used to discuss the accuracy
and resolution of the conductivity profile, which showed a well resolved highly
conducting zone at a depth around 350 km. Apart from this layer the profile
is similar to the reliable portion of Parker’s [29] conductivity profile, as
illustrated in Fig. 1.

The uniqueness of the solution for ¢, originally proved by Tiknonov [46],
Baitey [61] and — effectively — WemEeLr [57]. has now been proved
again by LoEwWENTHAL [27].

WEIDELT [58] has recently made a novel, and strikingly simple approach
to inversion for two-dimensional structures, again by linearizing the problem
in the neighbourhood of a trial solution. He takes o(r) to be constant within
m small rectangles. Since there are m linearized versions of equations (14) he
obtains m equations in n-unknowns at each step of the solution. He solves
these equations by the method of generalized matrix inversion, which itself
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leads naturally to problems of accuracy and resolution. It appears that Wei-
delt’s method is capable of generalization in many ways and isim Geist der
Geophysik.

The whole problem of aligning models with observations lies in the field
of design of experiments in non-linear situations where, often,

gloy(x) + o4(r)] = gloy(r)] + g [o4(r)] - (15)

The geophysicist is likely to find applications to fertilizer and feed con-
sumption in the statistical journals, but a little effort of the imagination
transforms agriculture into geophysics. Our system has a distributed param-
eter o(r), but once the method of discretizing a(r) has been decided, we have
a lumped parameter system. A suitable book to study might be Applied
Regression Analysis by Drarer— Smrta [12].

Since we have mentioned the non-linear inversion problem in this sec-
tion, we conclude with the comment that linear problems in geophysics are
even more susceptible to functional analytic methods. These are useful for
proving the existence of solutions, and can be used constructively to find
solutions. Hutson et al. [17] showed how to treat direct problems of induction
by this means. Ducruix et al. [13] showed how to use these methods to con-
tinue potential fields from uneven surfaces onto flat reference surfaces. Refer-
ences to earlier work and to other authors may be found also in Le MousL
et al. [25] where potential problems have been solved by functional analytic
methods.

4. Magnetometer arrays

When confronted by actual data from magnetometer arrays, geophysicists
are forced towards very difficult problems of three-dimensional inversion. The
simplest assumption to make is that the array lies above a horizontally strati-
fied earth, but that the source field is such as to cause telluric curents to flow
in a complicated manner. Even this assumption does not make things easy.

The validity of the one-dimensional approximation used in early mag-
netotellurics was questioned by Warr [51] and later by Price [34]. However,
systematic use of a number of stations on a local rather than a global scale
did not come until 1964 (Scamucker [41]). A valuable review of work done in the
embryonic decade 1950 —1960 has been given by Warr [53]. Following PRrICE’s
pioneering work in 1950 [33] for a uniform half-space, Warr [54] covered much
ground for multilayered spaces; and after work by WaitaamM [60] and Swri-
VASTAVA [44] a major consolidation of the theory was achieved by SCHMUCKER
[42]. His work was written with practical applications in mind, and has had
a wide influence. LILLEY [26] neatly summarized the applications of the
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theory, drawing heavily on the notations of PRICE and ScHMUCKER. We refer
the reader to his paper and that of LarseN [23] for details.

Briefly, the separable solutions of the induction equation (6) with con-
ductivity ¢ a function of z (depth below ground level) only are

E = (P, P‘w MQ exp (iwt), (16)
with the corresponding magnetic induction vector
B —io Y(PJ.. P},Qz, 1 PQ) exp (iwt). (17)

Here, () is a function of z only, P of x and y only, and the subscripts denote
differentiation so that P. = P ox etc. The functions P and Q have to satisfy
the equations

Pt P, PP =0 (18)

and

Q.. — (¥ +#(=)}Q =0, (19)
where 1y is a constant arising from the separation of the variables.

Suppose that k(z) is a constant within each one of n layers being equal
to k,, in the mth layer (of thickness h, ), and we distinguish x, y and z com-
ponents by suffixes 1. 2 and 3. Then we define 0, by
8 = - B (20)

T

and G,(0) by

1 0 0.
=~ — cothl0, h; - coth—'|—L cothlf, h, - coth-1|—% coth [9 h, +
T S e LR Pt

1 3

e P

The bottom layer is of infinite thickness (coth o = 1), and so only its con-
ductivity enters the expression. In terms of these expressions the following

2

ratios hold good:
E|/B, = in/{0,6,(0}} (22)
and

(le ik B2_\‘)!"B3 = 61G1(0)- (23)

In addition there are more complicated relationships invelving P and its
derivatives. We see that if the constant » did not appear in equation (20),
relationships (22) and (23) would hold for all electromagnetic fields. The
presence of v is unwelcome. LILLEY points out that P cannot be simply resolved
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into spatial Fourier harmonics (which would then give from equation (18) a »
for each harmonic) because it is difficult to distinguish between standing waves
and running waves. He shows how magnetometer arrays in which “tens of
instruments simultaneously record magnetic fluctuations over areas of order
10> km?” may be used to sort out the type of wave. He considers also that
“horizontal field gradient values ... for horizontal layering . .. may be some
of the most useful data produced by an array study”. He would use these
in formulae such as (23). and has already carried out a separation of wave
modes on a south-east Australian array. In a forthcoming note in the Journal
of Geomagnetism and Geoelectricity he has succeeded with M. N. SLOANE in
carrying out an inversion to obtain a preliminary estimate of the conductivity.

Of course, we have already seen in LARSEN’s work [23] how one station
can be sufficient to extract the conductivity distribution for a layered structure.
The exciting part about large arrays is the possibility of entering them for
the three-dimensional inversion races. L1LLy’s work is part of the necessary
scientific spadework, and the intention is no doubt to vary the assumption
of horizontal stratification.

Meanwhile, in the north-western United States and south-western
Canada, CamrieLp and GoucH [9] have been carefully studying the results
from a widely spaced array of thirty-one magnetometers. They have been
particularly concerned with anomalies, and have given these a thorough
physical discussion by studying the maps of Fourier transform amplitudes
at various frequencies. They have also carried out modeiling of ¢(z) and come
up with the complicated structure shown in Fig. 2. This diagram illustrates
the considerable progress made possible by the judicious use of models.

Another feature of Camrienp and GouGH's array studies is the appear-
ance on their maps of anomalies which appear to be due to physical features
off the maps. They suggest for these the name Vartran anomalies, for ““variable
transmission”. They have not attempted a major physical interpretation of
these, and it would be interesting to see a discussion in terms of magnetic
field line topology, extending methods like those in Lawrie [24]. HyNpDMAN
and CocuranE [18] or HEwson-BrowNE and KeEnpaLL [15]. It is certainly
true that regions of high conductivity would tend to exclude magnetic fields
travelling at certain speeds, and that every non-uniformity in ¢ has associated
with it a speed at which the field lines will suffer maximum drag.

Basour et al. [3] report another large array of 60 stations operating
in the Northern Pyrenees from 1972 to 1974. The periods were measured in
the range from a few minutes to a few hours. As their report has not yet been
published, it is difficult to relate their inferences that the induced electric
currents appeared to have a distribution independent of time to the work of
Lirtey and of Scamucker (loc. cit.). We look forward to the appearance of
their work.
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depth. The conductivity model for the sedimentary layer is shown at lower right. with 25-fold
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Three-dimensional modelling

Nature invents such a variety of configurations that it would be possible
to spend a good many years legitimately studying the electromagnetic re-
sponses of discs, ellipsoids, wedges and other shapes. Fortunately this topic
has been long studied [22] and reviewed recently [16]see also [38, 52], so we
can concentrate on problems with some generality in them. It is important
though, for workers in this area to keep on producing exact solutions wherever
possible, as they will always be useful.

Accordingly, we concentrate on (i) a recent method of computing the
effects of anomalies, and (ii) a method of solving problems involving the edge

of a finitely conducting ocean.
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Three-dimensional anomalies

WeinerLr [58] suggests that the next class of problems capable of solu-
tion by computer in a finite time is as follows, Within a horizontally stratified
half-space S lies a single domain R (which he calls anomalous) whose con-
ductivity is non-uniform and different from that of S. The problem is to
calculate the extra response of R, and RarcHE [35] has shown how to do this
by using Green’s tensors. TREUMANN [47, 48] has used Green’s functions for
two dimensions. (One can speculate that the Green’s tensor solution might be
useful for autematic inversion). Suppose that equation (6) (omitting equation
(7) for brevity) has been solved for a nermal conductivity distribution ,(r)
in the absence of the anomalous region R. Let the solution be E, so that if
ki = iopo,

curl curl E, + KJE, — EiE,. (24)

Then defining the anomalous induced electric field by E,=E — E_, and

n
conductivity by ¢, = ¢ — o, equations (6) and (24) give

curl curl E, + KXE, = —kxE, + E, + E,) , (25)

where ki — iwp,0,. In these equations o, and o, are known scalars and o,
will be zero everywhere, except in the anomalous region R. In R the con-
ductivity will be o, + ¢,. The vector field E; is the ordinary field which in-
duces telluric currents to flow, and E, can be found from it vie equation (24).
So the only unknown in equation (25) is the vector field E, which appears
on both the left and right hand sides. Introducing a Green’s tensor G(rr’)
in the usual notation, equation (25) can be written as an integral equation

E, = —pfka(r')G(x|r') - (Ey + En + E)dx’ dy’ da'. (26)

Here, the Green’s tensor is for the operator on the left-hand side of equation
(25). There are certain advantages in using an equation such as (26), for
0,(r) vanishes outside the anomalous region R, and the integration is therefore
confined to this finite region. Moreover, the Green’s tensor within the normal
layered structure can be constructed analytically; here WEIDELT quotes Som-
MERFELD [43] and Warr [55]. He also has to do considerable extra work!
Equation (26) is then soluble by numerical methods. One should notice how
the region over which the computation extends has been reduced from an
infinite one (cf. [19]) to the finite one R at the expense of the simplicity of
the finite-difference technique but with a gain of integrity. Both treatments
are necessary and important complementary methods.

WEIDELT has validated this technique upon various buried anomalies.
Satisfactory convergence of a numerical Gauss — Seidel method of solution of

Acta Geodaetica, Geophysica et Montanistica Acad. Sei. Hung. 11, 1976



438 R. C. HEWSON-BROWNE, P, C, KENDALL

(26) occurs at conductivity contrasts of up to 1 : 100. The method offers the
chance of carrying out thought experiments such as that shown in Fig. 3 in
which a transition is effected from a two-dimensional problem to one of three
dimensions. It is a promising competitor for finite-difference techniques.

Continental margins

Very many investigations have to cope with the edge effect due to sedi-
mentary layers or the presence of the ocean. This effect often extends a long
way inland [18,63, 9,10, 39], so it is worth a brief discussion. Following the
discovery of the Parkinson vector [30, 31, 32] Rikrrake [37] formulated
an early model of the Pacific ocean as a hemispherical shell of infinite
conductivity. AsHourR [1. 2] then obtained an elegant exact solution
to this problem, and confirmed theoretically the gross effect predicted by
Parkinson. The actual ocean, though, is of finite conductivity, and the
problem of a resistive shell over an infinitely conducting sphere has proved
less tractable. By using physical arguments based on the merging and decay
of magnetic fields Hewson-BrowNe and Kenpart [15] and Hewson-
Brown~e [14] have shown how to evaluate the oceanic electrie currents flow-
ing near the edge of an ocean of arbitrary shape and arbitrary marginal edge-
slope. We are optimistic that thin highly conducting regions may soon be
regarded as normal, rather than anomalous.

Extending and simplifying our earlier analysis we first solve the edge
problem for an infinitely conducting ocean which is large, but of arbitrary shape.
We then extend the problem to the case of finite conductivity. Provided that
the curvature of the coastline is large compared with the shiclding depth
P/2, the method of matched asymptotic expansions [49] can in principle,
at any rate — be used. We concentrate on the first order solution only.

First, solve the problem of the source currents or fields, passing above
an infinitely conducting sphere coincident with the earth’s mean surface
(a sphere of radius R). This will give the following components of a horizontal
magnetic induction vector: Bf parallel to the local mean coastline, and
By at right angles to the local mean coastline.

Second, solve the problem of the source currents or fields, passing above
an infinitely conducting sphere of radius R. — P2 in the absence of the
ocean. Let the value of the downwards vertical magnetic induction vector at
the point where the edge of the coast would lie be Bfxy, a constant.

The value BF should be near its true value and perturbations to it are
probably best obtained after matching to the two-dimensional inner problem.
Then using a local system (u, v) of rectangular Cartesian co-ordinates with the
u-axis horizontal and parallel to the coastline and the v-axis vertical, for the
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solution of the inner problem, we choose the complex potential in the complex
w-plane, where w — u + w to be, in the absence of the ocean,

2
B — P—1 Bixy (w+%iP] + Byw, (27)

where B, and B,, the u and v components of B are given by
B, iB, = d®"/dw . (28)
The solution is such that B, vanishesatu= —(1/2) PBY/BZxr. A sketch of

the magnetic field lines in the presence of the infinitely conducting ocean is
shown in Fig. 4.

Ay
A2

P2

Ay

/ s P

Fig. 4. (c.f. Scamucker [42].) The underlying infinitely condueting model: A,EA, is an

infinitely conducting sheet, and the region below A A, is also of infinite conductivity. The

magnetic field lines of the inner expansion are shown. The neutral point NV is shown in the

diagram for convenience only. It will usually be at a great distance from the end E of the

sheet, and serves usually to provide a slight gradient in an incident field which would other-
wise be uniform

Solving the complex variable problem as illustrated in Fig. 4 gives the
inner solution near A] as

BlszEXTP-'-|u:+; log 22121} 4 B, (29)
Jt
and near A4, as
P 2 u
B, ~ 2Bixy P! lu - Yy ] + Bj. (30)
27 P

Following Ropen [40] and PARKER [28] we may develop an integro-
differential equation for the electric field E(u) within the strip 4,EA, when
its surface conductivity x(u) becomes finite. If B,is the component of magnet-
ic induction in the v-direction, the induction equation gives

aEjou = iwB, . (31)
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But B, can be found by using the formula “u,l/(27r)”, putting in equal and
opposite image currents, and adding on what the value of B, would be if
the strip 4,EA4, were absent. Thus,

] P= e ¢(uw')E (u')du’
E__ L0 Ho ﬁ‘[ . #(w) E (u')du = — iw Bgxr. (32)

du 27 ~u'){Py + (u— u')?}
Integrating with respect to u leaves us with a free-floating constant - a con-

stant of inspiration. This can be evaluated if x —+ 0 asu >  oc.The asymptotic
form of E is then

E.— %iw P (B3 + 2u Bixr P) (33)

and the integral equation is
- 0 . I3
E MJ 0 (@) E (u') log |- =) gy
4 - (v — u')® + P?

On the other hand, it is arguable that the spirit of the present approxi-
mation is best fulfilled by ignoring Bfxr. It then becomes possible to let
% — %, as u —» — o, where x

of E is then

iz a constant. The correct asymptotic form

o«

B, =— —‘1) inB;’:;/ (1 + %iwﬂo%mP ) (83)

and the integral equation is simply (34) with Byt = 0.

The problem considered by HEwson-BrownNE [14] was the finite width
strip problem, but our present, more general, formulation can be readily con-
verted to his by taking

B, — Bixr and a:—;f PB3/Bixr (36)

where B is the downwards uniform inducing field at the surface of the strip,
and 2a is the width of the strip. The integral in equation (34) would be from
—2a to zero. In 1973 loc. cit. we demonstrated the hook over in the real part
of the electric field at a distance C from the edge of a rapidly shelving ocean.
If the surface conductivity is a constant x, except near the edge, the value
of C is given by

C = (opgey) 1. (37)
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(Another value would be needed for a slowly shelving ocean, but for the sake
of simplicity we confine our attention to one case only.) Let the tilde dis-
tinguish the infinitely conducting model. HEwson-BrownNE suggested that
when the current sheet for the infinitely conducting model is 2;.1512?1, we
may assume that the real part of the electric field is given by

2E1f(%0#"0) u < —C
Re E — (38)
EreaL G g =200,

where Egp . is a constant making Re E continuous. The coastal enhancement
in the imaginary part of E is modelled by
0 u<< G
Im E — (39)
Eivac G<u<0,

where E|y.g and G are constants. Assuming that the integral equation (34)
is satisfied on the coastline u — 0 and substituting for E from equations (38)
and (39) gives sufficient information to evaluate G and E,y,; provided
#(u) is known. HEwsoN-BROWNE assumes a uniform surface conductivity x,
to a distance D from the edge. The conductivity is then assumed to decrease
linearly to zero at the edge. Taking the sea water’s conductivity to be 4mho m 1!
and its depth to be 4 km, gives a value for %, of 16 - 10 mhos. Taking v =
= 27T, with T measured in seconds, and y, = 4 7 - 107, in rationalized m.Jk.s.
units, we obtain C = 8T, measured in metres. Thus, with an infinitely con-
ducting half-space at a depth P2 beneath the ocean, we have

C<P (40)
for a range of periods. Moreover, Hewson-BrownNE also assumes that
D=6, (41)

that is, the oceanic depth shelves to zero over a distance small compared with
the scale length for the oceanic current sheet. This is therefore a limited case.
suitable only for periods greater than 3.5 h. By the analysis mentioned above,
the approximate parameters for a strip of width 2a satisfy the equation

E a D a 3D
By Ao —oBAL | g (—] +3+ " log {— . 42
IMAG 97 g C ac 5| AC (42)
where G is the solution of
i[log [“J 1 | 2B, o B, [_“. L 2B (43)
a G aFiyag 2a D | da
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For the strip problem, omitting a factor u,/(»,B,) from the left-hand side
the following approximate results were obtained, with the exact results shown
in brackets for comparison. For C = a/20, P = a/5, D = a/100.

Erear = 0.69(0.90) Eimag = 0.91(0.94) .
Also, taking C = a/50 (equivalent to taking a higher frequency) gives

Egpar = 1.4(1.4) Bymae = 1.3(1.9)

6. Concluding discussion

The developing, and therefore most interesting, regions of theoretical
inversion and magnetotellurics appear to be:

(i) Theory and interpretation for large scale magnetometer arrays.

(ii) The production of new methods of solution for general direct
problems.

(iii) The stabilization and formulation of new and reliable inversion
methods.

(iv) The theory of the qualitative interpretation of observations.

We have not discussed:

(v) The finite difference method of direct solution (cf. [19]) as this now
seems to be a fairly well established technique, and is being used extensively
for modelling. The finite-element method is also currently being used, and we
expect papers using it to appear soon. We have also not discussed:

(vi) Advances in formulation, innovation in configurations and analyt-
ical solution such as typified by Weaver and Taomson (1972) and the
references to Weaver’s work contained therein.

Both (v) and (vi) are important, and it is hoped that mathematicians
will continue to produce exact solutions for specific configurations. These will
be useful building blocks provided that a principle of superposition can he
developed (¢f. [58]). Even if such a principle cannot be elucidated, the idea
of an “‘anomalous” region, buried in an inhomogeneous “normal” region,
deserves considerable attention.

In (i) and (ii) there is much room for new work. The formulation of
general qualitative principles, as in (iv), has hardly been touched.

In (iii), one-dimensional inversion has now reached such a form in
large part due to PARKER’s promulgation of the Backus GiLBerT view of
inversion that it would be possible as a run up to the next meeting in two
years time to hold an inversion competition on some idealized data. chosen

to highlight various difficulties occurring in practice.
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MATHHUTOTEJIUTYPUYECKHME TPEXMEPHBLIE MOOEJIMPOBAHMWS WM MHBEPCHS
P. C. XbHO30H-BPOYH-P. C. KEHOAJLJ1
PE3IOME

PaccmaTpuBalorest HoBefilliee pasBUTHE TPEXMEPHLIX MOJIEJIHPOBAHHS M HHBEDPCHH, 0CO-
OeHHO Mporpece 3a Mocje/HHe rojibl. BblIensiorest peayabTaTbl, JOCTUIHYThIE B 00JacTH HHBEp-
CHM M M3MePeHHIT B PACIIMPEHHBIX CETHX M W3 TOUHBIX pelleHuil npsiMoil 1mpodJieMbl TUII, SIBJIsI-
HOLMIACS T0BOJIbBHO 00LIIHUM /151 TOT'O YTOOLI €10 MOYKHO ObLI0 HCII0JIB30BaTh B TpeXMEpHOi pa-
doTe 10 WHBepCHU. B BBEJCHMM KPATKO HM3JAralores 0CHOBHLIC YPABHEHUS MpodJjembl. 3aTem,
JUIST 000CHOBAHMS JUCKYCCHHM, ONPEAesioTesl MOHATHS ¢MoAeTUPOBaHie) M «aBToMaTHYecKas
HHBEPCHsly, Kak Kpalinie acnexTsl oOcyxaemoii reppuropun. Manaraiorest tHnmunbie ciydan
JUISL MAJ0OMEPHLIX KOH(UIyparnii: HblHe CTajlu JIoCTYIHLIMI HOBLIE 1 9QpeTUBHbIE METO/Ll B
00J1acTH 0 HOMepHOI HHBepcHH. ABTOpbI KACAlOTCsI M Bollpoca O0JbLIMX ceTeil M3MepeHHbIX
MATHUTO MeTpoM. ITO TAKasl 00J1aCTh KOTOpAsl [10JIHA HOBBIX M BOJIHMTEIILHBIX BOIIPOCOB B
00J1aCTH HeeseoBaHNS riyOHMHHOTO 30HIUPOBaHUA W aHoma mil. Ho Teopust paspaboraHa ToJb-
KO HACTHYHO: JOCTYITHLIMH JAHHLIMU €11¢ He pelasiich nNpo(uiin B TAKOM PAa3Je/IeHHH, KaK Ha
CAMHCTBEHHOM CTaHIMM ¢ XOPOUI0 KOMOMHHPOBAHHBLIMH JIEKTPOMATHHTHBIMH H3MEPeHHUSIMH, Bee
Ae TOJIYUIIIHCh Y3Ke 3HaUYNTe /IbHbIe pedy bTaThl. Fanaraercst HoBBI, 00LMiT akermepumenT st
peureHHst IPsIMOi TIPOOJIEMBL M JIAI0TCSI HEKOTOPLIE TIOMETKI 0 KPasiX KOHTHHEHTOB I 0 TOM, KaK
HAUYMHAIOT HAXO0ANUTE IPABUTEIbHOE HAIIpABIEHHE Kpaesble 3(eKTn BCAeACTBHE ITPHI0XKeHHOTO
ACHMIITOTHYCCKOTO paspetneHnst. HakoHel, yKasbiBaeTes W Ha ApyrHe, CBASAHHBIC ¢ MOACIHPO-
BaHHEeM, padoThl, pACCMATPUBAIOTCH HATIPABICHNE pagBuTHs Gosiee HMpoKoil odiacTit U MporHo-
3bl OTHOCHUTEJIBHO (F)y,z‘l,y[llfﬁT‘()A
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