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This review of analytic solutions is divided into two parts. The first part reviews electromagnetic induction in

radially symmetric distributions of conductivity, and is appropriate to the study of global problems. In the second
part, local problems of a specific nature are considered, the model being a half-space conductor with at least one
lateral discontinuity separating regions of different uniform conductivities. In some problems, an approximate
surface-boundary condition is used, and it is shown that the accuracy of the solutions has yet to be determined

satisfactorily.

1. Introduction

Is it worth determining analytic solutions to elec-
tromagnetic induction problems? The model conduc-
tivities that can be considered are exceedingly simple
and bear little relation to the real earth. The mathe-
matical difficulties encountered are often great, and
when solutions are determined they are usually ex-
pressed as special functions, as infinite series or in
closed form for example as integral transforms. For
analysing the solutions, or for comparison with mea-
surements in a given situation, these solutions have
to be evaluated approximately by numerical meth-
ods. Indeed, for some closed form solutions, even nu-
merical evaluation is not possible. Why not be con-
tent, then, with solutions obtained by direct numeri-
cal integration of the relevant differential equations?

For the mathematician, part of the answer must
surely lie in the elegance of analytic solutions. How-
ever the main reason for searching for such solutjons
is that, once found, they characterise the problem in
terms of its parameters. The dependence of the solu-
tion on the various parameters can then be investiga-
ted, and special cases may arise when suitable limiting
values are considered. When only numerical solutions
are available for prescribed parameters, a great deal of
computation is usually required to infer the depen-

dence of the solution on any one parameter, and

the investigation can never be exhaustive. For some
applications, analytic solutions have to be evaluated
numerically and this usually reduces to the evaluation
of special functions or the use of well-known tech-
niques of numerical integration. In such cases quanti-
tative estimates of the errors involved in the approxi-
mations can be given. Further, the boundary condi-
tions at infinity play an important part in determin-
ing the form of analytic solutions, but in direct nu-
merical integrations only a limited region of the prob-
lem can be considered and the boundary conditions
will necessarily be approximate. It is important there-
fore to check numerical solutions against analytic so-
lutions, where the latter are available for simple prob-
lems, before more complex situations are investigated.
Finally, however, it should be remembered that these
“exact” solutions relate to the mathematical problem
under investigation, and the differential equations and
boundary conditions will themselves only be an approx-
imation to the physical situation.

This review has to be strictly limited in length
and in material, and is supposed to complement the
review papers presented at the first Workshop on
Electromagnetic Induction held in Edinburgh in
1972. At that meeting, a review of induction in a
plane-layered earth was presented by Weaver (1973),
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and a review of induction in thin sheets was given by
Ashour (1973). The problems considered in these
reviews have features associated with both global
and local problems of electromagnetic induction. It
seems reasonable, however, to divide this present
review into two more or less distinct sections. In
“global problems” I shall consider spherical models
with radially symmetric conductivity distributions,
and in local problems I shall concentrate on semi-
infinite half-space models with lateral inhomogene-
ities in conductivity. The short preliminary section
contains the basic electromagnetic induction equa-
tions in the quasi-static approximation. The notation
is consistent in this review and may not be the same
as in the original articles.

2. Basic equations

In the quasi-static induction approximation,
Maxwell’s equations take the form:

curl £=—9B/ar (1)
and
curl H=J 2

where E and H are the electric and magnetic field
intensities respectively, B is the magnetic induction,
J is the current density and ¢ is time. The constitu-
tive equations are:

B=uH 3
and
J=0oF 4

where ¢ and p are the conductivity and permeability
respectively.

Displacement currents have been neglected in eq.
2 under the assumption that, for most geomagnetic
applications, the rate of variation of the fields is
sufficiently small. Eq. 1 implies that:

divB=0 )
and eq. 2 that:
divs =0 (6)

Eq. 6 is true only within the approximation that has
neglected displacement currents.

Using egs. 1-4, F and H are found to satisfy:

curl curl E=—poE+ 1jugrad g ~ curl E (7)
and
curl curl H=—uoH + 1/0 grad 0 ~ curl H 8)

where dots denote differentiation with respect to time.
The conductivity o varies throughout the earth, and
makes eq. 8 difficult to deal with. However, there are
reasons for assuming that u is constant, and with this
assumption, eq. 7 takes the more amenable form:

curl curl E = —uok )

and the magnetic field can be obtained via eq. 1. Eq. 9
is therefore to be solved in the conducting part of the
earth.

In any non-conducting region, eqgs. 2 and 4 imply:

H=-—grad Q (10)

where €2 is a scalar point function (the magnetic
scalar potential) and then eqs. 3 and 5 imply:

v2Q=0 (1

Across any boundary marking a discontinuity in
o, the field equations 1 and 2 imply the continuity of
(1) the tangential component of E; (2) the tangential
component of H; and (3) the normal component of B.

The above statement of the electromagnetic induc-
tion problem follows Price (1967). An alternative
form can be obtained by noting that eq. 5 implies the
existence of a magnetic vector potential A, where:

B=curlAd (12)

This form of the analysis is described by Lahiri and
Price (1939) and Chapman and Bartels (1940).

3. Global problems

In considering properties of the earth as a whole,
it is convenient to take a spherical polar coordinate
system (r, 8, ) with origin at the earth’s centre. In
the non-conducting region outside the earth, the
magnetic scalar potential € satisfies Laplace’s equa-
tion 11 and the appropriate solution is:

Q= aé l:en(t)(;—)n+ in(t)(i) o jsn (13)
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where a is the radius of the earth and §,, is a surface
harmonic of degree n satisfying:

2
1 a{. aSn) 1 9%8, _
sin 6 90 (sm b ¥ sin20 dp? ta(t1)s, =0
(14)

The terms involving e, () represent the field of ex-
ternal origin so that the coefficients may be regarded
as known functions of time. The terms involving i, ()
represent the field arising from within the earth, and
the coefficients have to be determined for a given
model o. The internal part has been interpreted as
arising from induction by the external part since the
paper of Schuster (1889). However, the causal nature
of this relationship seems not to have been exploited
until very recently (Bailey, 1970).

On account of the linearity of Maxwell’s equations,
the terms comprising the inducing field may be con-
sidered separately, the equations solved for the corre-
sponding induced part, and then the total solution
determined by superposition. Accordingly, the solution
of eq. 9 corresponding to a typical harmonic in the
inducing field is required for various model conduc-
tivities o(r, 6, ). The permeability u also appears in

TABLE 1
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eq. 9 but this is taken to be constant throughout the
earth, and usually equal to the value in free space, .

The conductivity o(r, 8, ), in these global problems,
represents some smoothed function of the coordinates
and it is argued that in the real earth o is likely to vary
more with 7 than with either of 8 or ¢. The approxi-
mation ¢ = o(r) then makes the equations manageable.
Two cases of induction arise, one when the temporal
part of the inducing field is periodic, and the other
when it is aperiodic. Table I gives a summary of the
spherically symmetric models that have been investi-
gated, together with the inducing fields that have been
considered. The method of solution is similar for each
case in Table 1, and it suffices to indicate the form of
the analysis with reference to the work of Lahiri and
Price (1939) and Price (1967). The other examples
cited are then special cases.

Consider a spherical conductor radius ga conduc-
tivity o(r), surrounded by a dielectric shell of thick-
ness (1 — g)a. Let the normalised radius in the con-
ductor be p = r/ga. Then outside the conductor, the
magnetic scalar potential £ may, from eq. 13, be ex-
pressed as the sum of spherical harmonics of the
form:

Investigations of electromagnetic induction in spherically symmetric distributions of conductivity

Investigator Type Model Inducing field Model parameters
radius conductivity permeability

Lamb, 1883 sphere qa k Ko periodic k q
Chapman and sphere (i) qa k m periodic kyq, u
Whitehead, 1923 sphere + qa k Lo

thin shell (ii) a K “ periodic k, g u K
Price, 1930 sphere qa k Ko aperiodic, axially  k, g

symimetric
Price, 1931 sphere qa k aperiodic k, g un
Chapman and sphere qa k periodic and k q u
Bartels, 1940 aperiodic
(useful review)
Lahiri and sphere (i) qa k(r/qa)~ ™ m periodic and kg m
Price 1939 formulae for aperiodic
Ho
sphere + qa k(r/qa)~ ™ o periodic and k,q mK
thin shell (i) a K Ho aperiodic

K, k, g, a, u, up and m are constants.
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Q, =ale,(Dgp)* +i(Hgp) "~118, (15)

In the conducting region, the electric field may
be expressed in terms of toroidal and poloidal vector
fields, and these are of the form curl ¥r and curl curl
®r respectively (Morse and Feshbach, 1953). ¥ and &
are scalar functions of (7, 8, ¢). The poloidal electric
field has no magnetic field outside the conductor and
cannot be excited by any external inducing field.

It does not therefore enter into the induction problem.

Substituting the toroidal solution into eq. 9, the equa-
tion for ¥ is obtained as:

V2 — uo(r)¥ =0 (16)

Corresponding to the surface harmonics S,, in eq.
15 a separation of variables in eq. 16 shows that there
are solutions of the form:

W, =aR, (1, 9)S,(0, ¥) (17)

where R, satisfies:

3R
%(pzTﬁ = [n(n + 1) + pa®p?0(p)8/31)R,,  (18)

Thus the electric field in the conductor is:
E=curl [aR, (2, 0)S, (0, v)r]
=aR, (t, p)r ~ grad S,

(19)

The solution in the dielectric and in the conductor
has now to be matched at the boundary p =1, and
the continuity conditions are satisfied if:

n de -n—1di,
Ry, 1) = g [‘nq.,._l_d.r“n‘ + g—n— Et_] (20

and

[(-,a—p,{pRn(t, »0)}1)=1 = fu[q" %‘n*‘q_"‘l %‘}
(21

Eq. 20 makes both the tangential component of E,
and the normal component of B continuous and eq. 21
ensures the continuity of the tangential component of
H.

The problem is now reduced to the determination
of R, (¢, p) and hence 7,,(¢). There are in general two
linearly independent solutions of eq. 18, so that R,
will be arbitrary to within two constants. However,
only one solution will be analytic at the origin, so
that if the conductor occupies the region 0 < p <1,

the two boundary conditions 20 and 21 are sufficient
to determine uniquely the remaining constant from
eq. 18 together with i,,. (Any further spherical dis-
continuity between 0 and 1 results in two more
constants and another two boundary conditions.)

What remains is to find solutions to eq. 18 for
prescribed conductivity distributions o(p), and it is
because of the complexity of this equation that only
very simple distributions of o can be dealt with ana-
lytically.

The simplest approach seems to be to replace
98/9t by a parameter p, and solve eq. 18 as an ordinary
differential equation for R, (p, p). Periodic inducing
fields may then be considered by writing p = iw
(where w, the angular frequencys, is real) and aperiod-
ic fields by interpreting the solutions in terms of
known results in the operational calculus (Lahiri
and Price, 1939). An alternative method for aperiod-
ic fields is afforded by determining the free current
systems that can exist in the given sphere. The bound-
ary conditions can then be satisfied by a particular so-
lution of eq. 18 for the given inducing field, together
with the appropriate sum of these free current systems.
For a uniform sphere, this method is used in Lamb
(1883), Price (1930) and Chapman and Bartels (1940).

The most general conductivity distribution so far
considered analytically (Lahiri and Price, 1939) is:

o(p) =kp™™ (22)

where k and m are real constants and k& > 0. With

m > Q distribution 22 represents an increase of con-

ductivity with depth. The simpler case of a uniform-

ly conducting sphere is obtained by taking m = 0.
With the distribution 22, eq. 18 becomes:

i( 2&)- + 2,—m+2

7 el R CCRRVAR SR PH (23)
where

§2 = pakp (24)

For m # 2, the substitutions:

1 _
Rl’l :p_2wn s z= lmzlepl mf2 ,
y=-2atl (25)
im —21

reduce eq. 18 to the Bessel equation of order v whilst for
m =2, eq. 18 is homogeneous linear. Accordingly, in
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the three cases m <2, m =2 and m > 2, the solutions
of eq. 18 for R, regular at p = 0 are:

m m<?2 m>2
1 1 1
p72 (@) pT pT2K(2)

where /,, and K, are the modified (or hyperbolic) Bessel
functions of the 1st and 2nd kinds, respectively (Morse
and Feshblach, 1953), of ordervand s = [n(n + 1) +

+ 4l + ¢2]2. In the case of a uniformly conducting thick
shell, with m = 0 in distribution 22, it is convenient to
write £2 = —¢2 and then the general solution of eq. 18
is:

R, = Aj,(kp) + Bn, (%) @7

where j,, and n,, are spherical Bessel functions of the
1st and 2nd kinds, respectively (Morse and Feshbach,
1953). A and B are arbitrary constants and for a com-
plete sphere (including the origin) B = 0, leading to
the same regular solution as above.

This completes the formal solution, and the electric
and magnetic fields together with the induced current
distribution can all be obtained from the above equa-
tions. The interpretation of these solutions for period-
ic and aperiodic inducing fields and many asymptotic
formulae useful for computation are given by Lahiri
and Price (1939). The case m = 0 is well documented
by Chapman and Bartels (1940).

The above type of model can be made more elab-
orate by the inclusion of a uniformly conducting
thin surface shell (radius a) surrounding the inner
conductor and dielectric and the extension is
straightforward (see Table I).

Analytic solutions have so far only been obtained
when the conductivity is of the special form 22. A
method of solving eq. 18 for a more general conduc-
tivity distribution is to divide the sphere into con-
centric thick shells each of different conductivity, the
conductivity within any one shell being constant.
This has the advantage that within each shell the
analytic solution 27 is known apart from, in general,
two.constants, and these are determined by the con-
ditions at the boundaries of the shell. It is possible
to solve these boundary equations to yield the solu-
tion in each layer, but even for two or three layers
the solutions are cumbersome. The equations can be
solved numerically however and Banks (1969) gives
an elegant matrix method of solution.

The solutions that I have so far described mainly

m=2 (26)

solution
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find their applications in model fitting. That is, some
quantity is determined by measurement at the surface
of the earth, and this same quantity is calculated from
the solution for given distributions o(p). When the ob-
served and calculated values agree, it is possible that
the model o(p) may resemble some of the features of
the real earth. One such response measure frequently
used in global studies is the ratio of internal to ex-
ternal parts (i,,/e,,) in a given spherical harmonic in
the expression for the inducing field 13. Taking the
case of a periodic inducing field, this response mea-
sure may be expressed in terms of the amplitude ratio
and phase difference of these internal and external
parts.

Instead of deriving these quantities from the solu-
tion for a given o(p), Eckhardt (1963) adopted a new
approach and determined the differential equation
that this ratio i, /e, (= V,,) satisfies. For a periodic
inducing field of angular frequency w eqgs. 20 and 21
applied at the surface of any subsphere of radius p
enable ¥V, (p) to be written:

. [ p(dR,/dp) —nR, }
"~ n+1Lp(dR,/dp) + (n + DR,

Now make the substitution Z,, = (1/R,}(dR,/dp) so
that:

(28)

_ 1 e
Z"—P[n*(n+1)Vn} 29

This substitution also reduces eq. 18 to Riccati’s equa-
tion, whence ¥, satisfies:

Wa__epore [Vn —n/(n+1)}2 -

do n(2n+1)

2r¥1

Vn
where k2(p) = —ua2iwo(p). (30)

Eckhardt then considers the solution characteristics
for V,, from eq. 30, and in one case, determines an
analytic solution for ¥, which yields a conductivity
distribution. This conductivity distribution is of the
form o = K/r2, where K is constant and does not form
a new solution, having been previously considered by
Lahiri and Price (1939). The interesting equation for
V,,, however, forms the basis of the now celebrated
paper by Bailey (1970). Writing the linear dependence
of i,, on e,, in the most general form:

in= [ Kny(en(t =17 (31

— oo
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where K, (7) is the impulse response of the earth to a
given harmonic mode, Bailey exploits the fact that
K, () must be causal at all radii (that is K,,(7) =0
for 7 < 0) to determine a non-linear partial integro-
differential equation for ®, which is related to ¥,

by:
@, =p*l [V, —n/n+1] (32)

Bailey then proves that under certain conditions a
knowledge of ®,, for all w at some p (e.g. the surface

of the earth) determines the conductivity uniquely

as a function of p. Although it is not possible to ob-
tain such a knowledge of @, , the work does show that
in principle it is possible to determine the radial conduc-
tivity distribution from surface measurements. A
method of performing the inversion procedure is given.

An alternative form of the inversion procedure is
formulated by Jady (1974). Instead of determining
conductivities between fixed concentric boundaries,
Jady uses a variational technique to determine the
boundary and conductivity (g, 0y) in a model con-
sisting of a perfectly conducting inner sphere radius
pg, surrounded by a thick shell of uniform conductiv-
ity 0. The analytic solution for such a model with
a fixed boundary is easily determined, but the virtue
of Jady’s approach is to determine the boundary as
part of the solution (an inverse problem) rather than
solve the direct problem for a number of different
boundary positions (a model-fitting problem).

A response measure much used in local problems
of electromagnetic induction is the magnetotelluric
relation £, /Hw (or —Ew/He). Srivastava (1966)
examines this relation in the case of a spherical earth
for: (i) the Lahiri-Price conductivity distribution;
and for (ii) a model divided into thick concentric
spherical shells each with a different conductivity.

For (i) the solutions 26 provide the magnetotelluric
relation explicitly, while for (ii) eq. 27 and the bound-
ary conditions at each interface determine a recurrence
relation. Srivastava shows that for realistic conductivi-
ties and periods of magnetic variations up to one day,
the curveture of the earth may be neglected and the
magnetotelluric relations are as derived for a plane-
layered earth.

Schmucker (1970) has also considered induction in
a sphere composed of concentric shells of different
uniform conductivities and by using relations between
spherical Bessel functions (eq. 27) and their derivatives

(required for expressions of the magnetic field) has
derived a much simplified form of Srivastava’s re-
currence relation for a function G(r) which involves
the ratio of certain of the spherical Bessel functions.
The application of this recurrence formula provides
the surface value G(a) and simple formulae then give
the ratios of internal to external parts for the tan-
gential and radial field components, as well as

the magneto-telluric relations. Schmucker also gives
a concise formulation for the attenuation of the
magnetic field with depth, and also some approxi-
mations to the function G(r) which are useful in
numerical calculations.

4. Local problems

The discussion in this section will be confined to
“half-space” models of the earth, in which the conduc-
tivity changes laterally. In a cartesian coordinate sys-
tem (x, v, z), with the z-axis vertically down, the con-
ductor occupies the region z > 0, and the inhomogene-
ity is confined to a limited portion (or plane) of the
conductor. This gives the problem its local character.
However the total magnetic field is often of global
dimensions, and hence over the local region of in-
terest may sometimes be considered uniform. Care
must then be exercised in the formulation of such
a problem (Price, 1950, 1964).

Much of the literature is concerned with model-
ling lateral inhomogeneities in conductivity by appro-
priate two-dimensional conductors. In principle,
two approaches can be made. In the first, boundaries
within the conductor separate regions of different,
but uniform, conductivities. Maxwell’s equations
must be solved in each region, and the appropriate
continuity conditions have to be satisfied at each
boundary. In the second, the conductivity is speci-
fied as a continuously variable function of the
spatial coordinates. I shall concentrate on the former
approach.

For two-dimensional problems, let all quantities
be independent of the x coordinate, and let all field
quantities vary in time as exp(icwt). Then, with 8/dx
=0 and u = uy, Maxwell’s equations 1 and 2 in com-
ponent form become:

OE, |3y — 9E, [0z = —icougH, (33)
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oE, [0z = —iwpgH, (34)
OE, [0y = iwugH, (35)
0H, /3y — aHy/az = oFE, (36)
O0H,/dz = oF), 37
—3H, /oy = oF, (38)

where E = (E,, Ey, E,))and H=(H,, Hy,, H,).

The equations conveniently separate into two dis-
tinct cases, since eqs. 34,35 and 36 involve only £,
H, and H, whereas egs. 33, 37 and 38 involve only
F Vs E,and H,:

(1) The first case is that of E polarisation (the
electric field being parallel to any discontinuity in o)
and may be specified by E = (£, 0,0) and H = (0, Hy,
H). The solution may be determined through the
scalar F that satisfies Helmholtz equation:

V2E =in’E (39)
subject to the appropriate boundary conditions, where
n? = Hgow and V2 is the two-dimensional Laplacian
operator in y and z. H may then be obtained from
egs. 34 and 35.

(2) The second case, H polarisation, is specified by
H=(H, 0,0)and E=(0, Ey, E,). The scalar H satis-
fying:

V2H =in?H (40)
now determines the problem and £ is obtained from
eqs. 37 and 38.

The two cases are not as similar as they might at
first appear, an important difference arising from the
boundary condition on the surface z = 0. For H polar-
isation egs. 37 and 38 show that in the non-con-
ducting region H is independent of y and z. Hence H
is uniform throughout z = 0. As H is continuous across
the surface, the boundary condition on eq. 40 is H =
constant on z = 0, irrespective of the conductivity in

z > 0. For E polarisation, no such simplification occurs.

The earliest study seems to be that of D’Erceville
and Kunetz (1962) who considered the H polarisa-
tion case for two models. (See Table II for diagrams
of the models considered in this section.) In both
models a horizontal layer 0 <z < d, composed of
two media of different uniform conductivities g4
and o0, in contact along the vertical plane y = 0, over-
lies a semi-infinite half-space z >d. In one model the
half-space is perfectly conducting, in the other, non-

B.A. HOBBS

TABLEII

Investigations of electromagnetic induction in non-uniform
half-space conductors (two-dimensional problems)

Investigator Model Polarisation
O'Ercevitle
and H
Kunetz
(1962
Rankin
(1962 H
Weaver E*
{ 1963) "
EQC
Treumann
(1970 b)
E"
Hvozdara
11968 )
Geyer H,E®
(1970}
Weaver
and e
Thomson £
(1972
Hvozdara *
(1969 ) HOE

For E polarisation, * denotes a zero’th-order approximation,
** denotes a first-order approximation.

conducting and as d = < both models tend to the
same configuration. The boundary conditions at the
vertical interface y = O are that H and the tangential
component of E are continuous.

As noted above, in the non-conductor, for H polar-
isation, the magnetic field is uniform. In each con-
ducting region in the layer, the magnetic field is
assumed to be composed of an undisturbed field cal-
culated as if that region were of infinite horizontal ex-
tent, together with a disturbance field arising from
the discontinuity at y = 0. The undisturbed field in
each region satisfies a one-dimensional diffusion
equation (from eq. 40) and hence is known to with-
in two constants. These two constants are determined
by the boundary conditions on z =0 and z =d.
D’Erceville and Kunetz then expand the disturbance
fields as Fourier sine series in z, the coefficients ap-
propriate to each region being determined from the
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two boundary conditions on y = 0. Explicit formulae
are given for the Fourier coefficients for the two cases
under consideration, and also for the magnetotelluric
relation E), /H for the limit d — .

The model was extended by Rankin (1962) to
enable the effect of a dike to be considered. In the
layer of thickness d in his model, the region —//2 <y
< 1/2 has conductivity oy, the infinitely extending
regions on either side have conductivity 0,. The same
method as above is employed, the general solution
for H in each region being written as the solution for
a plane layer together with a disturbance term, the
appropriate quantities again being expressed as
Fourier sine series. For each sine term, the disturbance
fields require one coefficient in y < -I/2, one in y >
1/2 and 2 in —1/2 <y <{/2. These four coefficient are
determined by the two boundary conditions on the
two vertical discontinuities at y = £//2.

The first attempt at discussing both H and E polar-
isation for a single model was made by Weaver (1963).
His model was the limiting form of those of D’Erceville
and Kunetz and so consisted of two quarter spaces in
contact along the vertical plane y = 0. As noted by
D’Erceville and Kunetz, for H polarisation the limit-
ing case can be treated by replacing the Fourier sine
series by Fourier sine transforms, Weaver defines the
Fourier sine transform of a function ®(z) by:

&) =v2/r f d(z) sin £zdz 1)
0

and transforms eq. 40, with the use of the boundary
conditions on z = 0 and as z = oo, to:

32Hay? = (82 + 2)H — AN (42)

where 4 is the constant value of H on z = 0. Integra-
tion of eq. 42 with respect to y yields ﬁl and ﬁ2 in
each region, apart from some function, say f£).
Hj and H, are obtained by applying the inverse trans-
form to the solution, and finally the unknown func-
tion f{§) is determined from the boundary condition
that the tangential component of E is continuous.
The solutions for H; and H, are expressed in terms
of Fourier sine integrals and as required are the limit-
ing form of the solutions of D’Erceville and Kunetz
asd —> o,

Weaver then discusses the E polarisation case,

first making some assumptions about conditions at
the boundary z = 0. He considered the reflection

of plane waves normally incident on a uniformly con-
ducting half-space, and concluded that the horizon-
tal component of the magnetic field at the surface is
independent of conductivity and frequency. Using
eq. 34, Weaver’s boundary condition is:

0E 8z = 0E,/dz = constant onz=0 (43)

Also continuity of the magnetic field and tangential
electric field on y = 0 requires:

E1=E2 OI'ly:O (44)
OE| [y = 0E, /0y ony=0 (435)

The above relations are sufficient to determine the
electric and magnetic fields within the conductor and
these may be obtained by using the same method as
for H polarisation, except that Fourier cosine trans-
forms are used in place of Fourier sine transforms.
However the field in z <0 was not analysed, and
more recent investigations (e.g., Jones and Price, 1970)
have shown that condition 43, implying that H, is
constant on z = 0, is not appropriate. It transpires
that Weaver’s solution for £ and H in the conductor
can be used to generate an approximate solution in
z <0, and hence an approximation to the fields on
the surface. In its present form however, the solution
is not satisfactory. This situation, that of taking H,
constant on z = 0 for E polarisation, occurs elsewhere
in the literature so that for these “solutions”, Hy and
the magnetotelluric relation £/H,, are not satisfactori
ly determined. Such analyses are marked with a single
asterisk in Table II.

By considering the problem of plane waves inci-
dent on non-uniform conductors, Mann (1970) has
derived a successive approximation scheme whereby
the solutions, in the conducting and non-conducting
regions, are expressed as power series in a certain
parameter 8. This parameter is the ratio of the skin
depth of the conductor to the wavelength of the in-
ducing field. The method is proposed as a simpler and
more accurate alternative to the Leontovich bound-
ary conditions for radiation fields, which only deter-
mine the solution to 0(62). Using this new method,
provided the equations can be solved at each stage,
the solution can be determined to any accuracy in 8.
In Mann’s method, a starting approximation is ob-
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tained by considering the half-space to be perfectly
conducting. For a given incident wave, the solution
for the electric and magnetic fields in z <0, E0 and
HO, may then be obtained analytically. The affix n
denotes the nth approximation. In the region z >0,
where the resistivity is zero, the magnetic and electric
fields E0 and HY vanish. This completes the zero’th
approximation, and from it the magnetic field as

z > 0— may be determined. The model conductivity
(finite) is now assumed, and consequently the tan-
gential component of the magnetic field is continuous
across the boundary z = 0. Using this tangential com-
ponent as the boundary condition on z = O+, the first
correction terms £} and H! may be determined in

the conductor. At the surface z = 0, the first correc-
tion term to the electric field is continuous, and so
provides the boundary value enabling £ 1 to be deter-
mined in the non-conductor. From E1, the correspond-
ing magnetic field H! can be found and now the first
approximation to the electric field EY+ E1, and to
the magnetic field, HO + H1, is known everywhere.
The next approximation commences with the bound-
ary value provided by H! and so the successive approxi-
mation scheme is defined. The method is convergent
provided the far field of the term of 0(1) in the non-
conducting region is not affected by the finite conduc-
tivity.

As an example, Mann (1970) considers the case of a
plane wave (E polarised) incident on a half-space com-
posed of two quarter spaces of different uniform con-
ductivities in contact in a vertical plane. The zero’th
approximation generates the boundary condition that
the tangential component of the magnetic field is
constant along the boundary z = 0. In this form the
problem is that considered by Weaver (1963), and
hence E! and H! are determined for z > 0. Using the
boundary value of E1, Mann gives the solution for
Ein z <0 in integral form. In this context, Weaver’s
solution is seen as the first approximation within the
conductor, but the zero’th approximation in z <0.

Weaver and Thomson (1972) show that Mann’s
perturbation method for incident electromagnetic
waves can be used to solve problems of electromagnetic
induction and they interpret the perturbation param-
eter as the ratio of the skin depth to a *““characteristic
length” representative of the region under consider-
ation. Their model is again the half-space divided by a
vertical discontinuity at y = 0 into two regions of
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different uniform conductivities. As an inducing field
they consider that due to a periodic line current, of
magnitude / exp(iwt) at y = 0, z = —h (E polarisation).
In the zero’th approximation, the conductivity is
assumed infinite, hence the induced field in z <0

may be determined simply by image methods. The sum
of these induced terms with the original source terms
provides the zero’th approximation £9, H® in z < 0.
The horizontal component of the magnetic field is
found to be:

HO = 4t — y 2 - hz)
YD DR )
Inside each quarter space, now taken to have finite con-
ductivity, the electric field E satisfies Helmholtz equa-
tion with the boundary condition, from eqs. 34 and 46:
( OE. ) _ 4wk
0z /=g ;2?,;12

(46)

(47)

Using Fourier cosine transforms the solution for £
is obtained, the result being somewhat complicated. The
value of this expression on the boundary, £1(y, 0),
being continuous at z = 0, provides the boundary con-
dition for E1 in the region z < 0. Since in this region
E1 satisfies Laplace’s equation, it is given by Poisson’s
integral for the half plane:

o 1
fyo=—2 [ L&D (48)

Y (E-y)2t22

Weaver and Thomson manage to determine E1(y,z)
from eq. 48 and this, together with its derivative with
respect to z gives the first approximation to the electric
and magnetic fields everywhere. It seems most unlikely
that the equations could be solved analytically to
yield higher-order terms.

Numerical calculations are made of the electric
field and the vertical and horizontal components of
the magnetic field at z = 0 and these are plotted for
four conductivity contrasts 0,/0; representative of
most problems of geophysical interest. Over the dis-
continuity the variation in H and E is quite marked
and increases with increasing conductivity contrast.
The accuracy of the solutions obtained using Mann’s
scheme may be examined to some extent by taking
0y = 05 and comparing El(y, 0) from eq. 48 to the
exact solution for a uniform half-space. The error in
eq. 48 is then found to be O(5/4) where § is the skin



ANALYTICAL SOLUTIONS TO ELECTROMAGNETIC INDUCTION IN THE EARTH 259

depth. When A4 = 108, numerical calculations indicate
that eq. 48 is correct to within 10% at y = 28, the
accuracy improving as y increases.

The case of a uniform inducing field is treated by
taking the limiting form of the solution as & - o,
and E, Hy and H, are again plotted on z = 0 for the
same conductivity contrasts. For one of these con-
trasts, 0, = 1004, calculations are also made of the
electric and magnetic fields at various heights above
the surface z = 0. In this way, the solution is directly
compared to the work of Jones and Price (1970) who
are developing numerical methods for dealing with
this, and other more complicated models, and who
use the boundary condition that the magnetic field
is uniform at a certain height above the surface. The
results for the magnetic field are not compatible,
however, and Weaver and Thomson suggest that the
Jones-Price boundary condition has not been applied
sufficiently far from the discontinuity. They suggest
a more suitable height at which the perturbation field
should be negligible. Jones (1972) has reformulated
the numerical method, and has calculated the pertur-
bation field due to the discontinuity at various heights
above the surface. He finds the perturbation field to be
small at the increased height suggested by Weaver and
Thomson, in accordance with their vatues there, but
it is not immediately obvious whether the solution at
the surface z = 0 has remained the same as in Jones
and Price (1970) or is in closer agreement with Weaver
and Thomson.

In this case of a uniform inducing field, it is not
entirely clear how the accuracy of the analytic solu-
tion is to be inferred, since the “characteristic length”
can no longer be taken as the (infinite) height of the
line current. Perhaps a characteristic length is the hori-

zontal extent over which the anomalous field due to the

discontinuity falls to 1/e of its value at the discontinu-
ity. The results of Jones and Price and of Weaver and
Thomson may well agree to this sort of accuracy.
Extending the range of models, Hvozdara (1968)
and Geyer (1972) considered H and E polarisation for
a half-space where two different conductivities were
separated by a sloping plane interface. In Hvozdara’s
model, one of the conductivities is infinite. Employ-
ing cylindrical coordinates (r, ¢, z) with the z-axis
parallel to the plane of the interface, the surface of
the conductor is defined by ¢ = 0 and ¢ = 7, and the
interface by ¢ = a for some «. For H polarisation,

Helmholtz equation 40, written in cylindrical coordi-
nates, may be solved using a Green’s function for
each wedge space. However, the integrands cannot be
matched at ¢ = « to directly yield the required coeffi-
cients as the radial dependence is in the form of a
Bessel function with different arguments on either
side of the discontinuity. Instead the boundary condi-
tion on ¢ = «, together with the surface condition of
a constant tangential magnetic field, results in a set of
four simultaneous singular integral equations. The
Lebedev-Kontorovich transform enables the problem
to be solved analytically, but the expressions do not
readily lend themselves to numerical evaluation. The
problem is simpler for an infinite conductivity con-
trast, and Geyer gives the solution for the case g, = oo,
and also numerical methods of evaluating the resulting
integrals. Hvozdara’s results are similar, but only the
magnitude of the solutions is evaluated.

Using the same method, Hvozdara (1968) and
Geyer (1972) investigate the E polarisation case, and
again use the condition that the tangential magnetic
field is constant along the surface ¢ =0, ¢ = 7. The
solution for the electric field and vertical component
of the magnetic field, in the light of Mann’s paper,
are seen to be the first approximation, but the
horizontal magnetic field at the surface remains as the
(constant) zero’th approximation. The solutions are
again evaluated numerically for an infinite conductivi-
ty contrast.

An alternative representation of the solution of
the equations governing electromagnetic induction
in thick sheets and half-spaces is given by Treumann
(1970a). He concentrates on the E polarisation case
and in cartesian coordinates his basic, two-dimensional,
model consists of a sheet of thickness d in which
regions of different uniform conductivities are sepa-
rated by vertical boundaries y = constant. In z > d
the conductivity is zero. Within each region of uni-
form conductivity F satisfies Helmholtz equation
and so Green’s theorem can be used to relate £ (any-
where) in the conductor in terms of the normal deriv-
ative of £ on all the boundary surfaces. Thus:

E= f{ %’%deso (49)
]

where n denotes the coordinate normal to the sur-
face Sy, and Iy is Green’s function of the second
kind satisfying the inhomogeneous Helmholtz equa-
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tion. Treumann expands Iy, as a series of eigenfunc-
tions, noting that in the case of vertical boundaries

a finite number of coefficients have to be determined
for each eigenfunction, whereas for an inclined bound-
ary an infinite system of equations has to be solved.
Solutions for I';, are given for the case of 1, and for

2, vertical discontinuities in the thick layer.

Outside the conductor, F satisfies Laplace’s equa-
tion and thus contains parts of external (inducing)
and internal (induced) origin. The problem is solved
once the induced field is given as a function of the
inducing field. However, Treumann shows that the
boundary condition on y = 0 determines a singular
integral equation, which on regularisation in the
limit d > e and when there is only a discontinuity
aty =0, reduces to a quasi-linear Fredholm integral
equation which has not yet been solved analytically.

For a thick plate (d finite), the regularisation
would result in a system of quasi-linear Fredholm
integral equations whose kernals cannot be given in
closed form. It is clear that the £ polarisation prob-
lem is not simple, and in a further paper, Treumann
(1970b) constructs an approximate solution for the
field components at the surface z = 0, using a meth-
od by Weidelt (1968). The procedure determines
the same solution as Mann’s (1970) perturbation
scheme, although the solution for Hy is only specified
on z = 0. Treumanp determines the first approxima-
tions Hyl, and HZ1 at the surface for a uniform inducing
field, and Weidelt has shown that in the limit d = oo,
for a discontinuity at y = 0, the resulting expressions
for these surface fields are identical to those of
Weaver and Thomson (1972).

Numerical calculations are made for a uniform
field for various sheet thicknesses d and for two con-
ductivity contrasts 0,/0,. Calculations are also made
for a dike model (similar to that of Rankin (1962)).
Only the surface values of H, and H, are presented
and discussed, although £ could have been obtained
directly from eq. 49. This method extends the type
of models that can be considered in the difficult £
polarisation case.

The models reviewed in this section all have sur-
face discontinuities in conductivity. One further
problem of this nature is considered by Hvozdara
(1969). In cylindrical coordinates (r, ¢, z) the half-
space has conductivity o; in 0 <r <4, and conduc-
tivity o, in r > a, for some a. For H and E polarisa-
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tion, the fields can be expressed as series of Bessel
functions and the required coefficients determined
by continuity conditions at # = ¢ and on the surface
¢ =0, 7. Again for E polarisation, a constant magnet-
ic field is assumed at the boundary.

Other two-dimensional problems of a local nature
include the response of a conducting cylinder buried in
material of zero conductivity, and possibly underlain
by a semi-infinite conductor. For circular and elliptic
cylinders a review is given by Rikitake (1966).

It seems to me that the major point requiring
clarification in some of the above papers is the deter-
mination of the accuracy of solutions using Mann’s
approximation scheme. For the induction problem,
where one is probably limited to obtaining the first
approximation everywhere, only Weaver and Thomson
seem to have discussed questions of accuracy, and
then only for the case of induction by a line current.
For induction by a uniform field, several workers have
produced solutions “to first order”, without specify-
ing the accuracy, and these solutions are marked
with two asterisks in Table II.

5. Conclusion

Dealing with global problems first, the determination
of analytic solutions describing the induction of elec-
tric currents in radially symmetric distributions of
conductivity of prescribed form seems to have ended
with Lahiri and Price (1939). Now, numerical methods
may be used to compute solutions for practically any
conductivity distribution. It is generally concluded
that the conductivity increases with depth in the
earth’s mantle, but the rate of increase is not well
determined. It might be of some interest to solve
the induction problem for a model where one of
the parameters is the gradient of the conductivity
with respect to depth. However, even in the simple
model of a linear increase of conductivity with
depth, the differential equations seem to be pro-
hibitive.

For local problems, the situation is perhaps more
open. No analytic solutions for E polarisation have
yet been determined, and I have indicated that I
think the accuracy of some approximate solutions
should be determined quantitatively. An alternative
approach to the problems involving discontinuous
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distributions of conductivity may be to consider

the model as the limit of some continuously variable
conductivity distribution. For example, if the induc-
tion equation could be solved for the distribution

o =% [o, *+ (05 — 0y) arctan ky] where 0, 05 and k
are constants, then the limiting model ¥ — ¢° would
be that of two quarter spaces of conductivity o; and
05. The equations seem to be too difficult for this
distribution, but there may be other distributions

for which the equations can be solved and which
reduce to the same limit. Such solutions would be of
great value in their own right, and would also provide
clues as to the accuracy of the solutions for more com-
plicated models.
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