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This reviewof analyticsolutionsis divided into two parts.Thefirst part reviewselectromagneticinduction in

radially symmetricdistributions of conductivity,andis appropriateto thestudy of global problems.In thesecond
part,local problemsof a specificnatureareconsidered,themodelbeinga half-spaceconductorwith at leastone
lateraldiscontinuityseparatingregionsof differentuniform conductivities.In someproblems,an approximate
surface-boundarycondition is used,andit is shownthat theaccuracyof thesolutionshasyet to be determined
satisfactorily.

1. Introduction denceof thesolution on anyone parameter,and

theinvestigationcanneverbeexhaustive.For some

Is it worth determininganalyticsolutionsto elec- applications,analyticsolutionshaveto be evaluated
tromagneticinductionproblems?The model conduc- numericallyandthis usually reducesto theevaluation
tivities that canbeconsideredareexceedinglysimple of specialfunctionsor theuseof well-known tech-
andbearlittle relation to thereal earth.Themathe- niquesof numericalintegration.In suchcasesquanti-

matical difficulties encounteredareoftengreat,and tativeestimatesof theerrorsinvolved in theapproxi-
when solutionsaredeterminedtheyareusually ex- mationscan be given. Further,theboundarycondi-
pressedasspecialfunctions,asinfinite seriesor in tions at infinity play an important part in determin-
closedform -for exampleasintegral transforms.For ing the form of analyticsolutions,but in directnu-
analysingthesolutions,or for comparisonwith mea- mericalintegrationsonly a limited regionof theprob-
surementsin a givensituation,thesesolutionshave lem canbe consideredandtheboundaryconditions
to be evaluatedapproximatelyby numericalmeth- will necessarilybe approximate.It is important there-
ods.Indeed,for someclosedform solutions,evennu- fore to checknumericalsolutionsagainstanalytic so-

mericalevaluationis not possible.Why notbe con- lutions,wherethe latterare availablefor simpleprob-
tent,then,with solutionsobtainedby direct numeri- lems,beforemore complexsituationsare investigated.
cal integrationof the relevantdifferential equations? Finally,however,it shouldbe rememberedthat these

Forthe mathematician,part of theanswermust “exact” solutionsrelate to the mathematicalproblem
surelylie in theeleganceof analyticsolutions.How- underinvestigation,andthe differentialequationsand
everthe main reasonfor searchingfor suchsolutions boundaryconditionswill themselvesonly be an approx-
is that,oncefound, theycharacterisetheproblemin imationto the physicalsituation.
termsof its parameters.The dependenceof thesolu- This review hasto be strictly limited in length
tion on thevariousparameterscanthenbe investiga- andin material,andis supposedto complementthe
ted, andspecialcasesmay arisewhensuitablelimiting review paperspresentedat thefirst Workshopon
valuesare considered.Whenonly numericalsolutions ElectromagneticInductionheld in Edinburghin
are availablefor prescribedparameters,a greatdealof 1972.At thatmeeting,a reviewof inductionin a
computationis usually requiredto infer the depen- plane-layeredearthwaspresentedby Weaver(1973),
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anda reviewof inductionin thin sheetswasgiven by Usingeqs. l—-4, E andH are found to satisfy:
Ashour (1973).The problemsconsideredin these

curlcurl~=—paE+ l/pgradp curlE (7)
reviewshave featuresassociatedwith both global
andlocal problemsof electromagneticinduction. It and
seemsreasonable,however,to divide this present

curl curlH= —jiaH+ 1/agrada ~ curlH (8)
review into two more or lessdistinct sections.In
“global problems”I shall considersphericalmodels wheredotsdenotedifferentiationwith respectto time.
with radially symmetricconductivity distributions, The conductivitya variesthroughoutthe earth,and
and in local problemsI shallconcentrateon semi- makeseq.8 difficult to dealwith. However,thereare
infinite half-spacemodelswith lateralinhomogene- reasonsfor assumingthat p is constant,andwith this
ities in conductivity. The short preliminarysection assumption,eq.7 takesthe more amenableform:
containsthebasicelectromagneticinductionequa-

curlcurlE=—paE (9)
tions in thequasi-staticapproximation.The notation
is consistentin this review and may not be the same and the magneticfield canbe obtainedvia eq. 1. Eq.9
asin theoriginal articles, is thereforeto be solvedin the conductingpart of the

earth.
In any non-conductingregion,eqs.2 and 4 imply:

2. Basicequations
H=—grad~2 (10)

In thequasi-staticinductionapproximation, where~2is a scalarpoint function (the magnetic
Maxwell’s equationstakethe form: scalarpotential)andthen eqs.3 and 5 imply:

curlE=—aB/at (1) V2&2=0 (11)

and Acrossanyboundarymarking a discontinuityin
a,the field equations1 and2 imply thecontinuity of

curl H = / (2) (1) the tangentialcomponentof E; (2) thetangential
whereE andHarethe electricandmagneticfield componentof H; and(3) thenormal componentof B.
intensitiesrespectively,B is the magneticinduction, The abovestatementof theelectromagneticinduc-
Jisthe currentdensityand t is time. The constitu- tion problemfollows Price (1967).An alternative
tive equationsare: form canbe obtainedby notingthat eq. 5 implies the

B = pH (3) existenceof a magneticvectorpotentialA, where:
BcurlA (12)

and
/ = aE (45 This form of theanalysisis describedby Lahiri and

‘- ‘ Price(1939)and Chapmanand Bartels(1940).

where a and p are theconductivityandpermeability
respectively.

Displacementcurrentshavebeenneglectedin eq. 3. Global problems
2 underthe assumptionthat,for mostgeomagnetic
applications,therate of variationof the fieldsis In consideringpropertiesof theearthasa whole,
sufficiently small. Eq. 1 implies that: it is convenientto takea sphericalpolarcoordinate

divB= 0 (5) system(r, 9, p) with origin at theearth’s centre.In
the non-conductingregionoutsidethe earth,the

andeq.2 that: magneticscalarpotential f2 satisfiesLaplace’sequa-

div/ = 0 (6) tion I land the appropriatesolution is:

Eq. 6is true only within theapproximationthat has = a~I~[en(t)(~-)°+i~(t)(~)’~’JS
0 (13)

neglecteddisplacementcurrents. n0 a a
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wherea is theradiusof theearthandS,~is a surface eq.9 but this is takento be constantthroughoutthe
harmonicof degreen satisfying: earth,andusuallyequalto thevaluein freespace,~

1 a / as \ a~s The conductivity a(r, 0, p), in theseglobal problems,
— (sin 0 —fl J + —fl + n(n + I )S = 0 representssomesmoothedfunction of thecoordinates

sin ~ ~ / sin~0a 2 . .

I4~ andit is arguedthat in therealeartha is likely to vary
‘~ ‘ more with r thanwith eitherof 0 or ~. The approxi-

The termsinvolving e~(t)representthe field of ex- mationa = a(r) then makesthe equationsmanageable.
ternalorigin sothat thecoefficientsmaybe regarded Two casesof inductionarise,one whenthe temporal
as knownfunctionsof time. The termsinvolving i~(t) partof the inducing field is periodic, and the other
representthefield arising from within the earth,and whenit is aperiodic.Table I givesa summaryof the
thecoefficientshaveto be determinedfor a given sphericallysymmetricmodelsthathavebeeninvesti-
modela. The internalpart hasbeeninterpretedas gated,togetherwith the inducingfields that havebeen
arising from inductionby theexternalpart sincethe considered.The methodof solutionis similar for each
paperof Schuster(1889).However,thecausalnature casein Table I, andit sufficesto indicatethe form of
of this relationshipseemsnot to havebeenexploited theanalysiswith referenceto thework of Lahiri and
until very recently(Bailey, 1970). Price(1939)and Price (1967),The otherexamples

On accountof the linearity of Maxwell’s equations, citedare thenspecialcases.
the termscomprisingthe inducing field may becon- Considera sphericalconductorradiusqa conduc-
sideredseparately,the equationssolvedfor thecorre- tivity a(r), surroundedby a dielectricshell of thick-
spondinginducedpart,andthen thetotal solution ness(1 — q)a. Let thenormalisedradiusin the con-
determinedby superposition.Accordingly,thesolution ductorbep = r/qa. Thenoutsidetheconductor,the
of eq.9 correspondingto a typical harmonicin the magneticscalarpotential~2may,from eq. 13,be ex-
inducing field is requiredfor variousmodel conduc- pressedasthesumof sphericalharmonicsof the
tivities a(r, 0, ~).The permeabilityp also appearsin form:

TABLE I

Investigationsof electromagneticinduction in sphericallysymmetricdistributionsof conductivity

Investigator Type Model Inducingfield Modelparameters

radius conductivity permeability

Lamb,1883 sphere qa k periodic k, q

Chapmanand sphere(i) qa k p periodic k, q, p
Whitehead,1923 sphere+ qa k

thin shell(ii) a K p periodic k, q, i.z, K

Price, 1930 sphere qa k p~ aperiodic,axially k, q
symmetric

Price, 1931 sphere qa k p aperiodic k, q, p

chapmanand sphere qa k p periodicand k, q, p
Bartels,1940 aperiodic
(useful review)

Lahiri and sphere(i) qa k(r/qai
m p periodicand k, q, m

Price 1939 formulaefor aperiodic
P0

sphere+ qa k(r/qaYm P0 periodicand k, q, m, K
thin shell (ii) a K P0 aperiodic

K, k, q, a, p, p~andmareconstants.
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= a[e,~(t)(qp)’1+ i~(t)(qp)~1 IS~ (15) thetwo boundaryconditions20 and21 are sufficient
to determineuniquely theremainingconstantfrom

In theconductingregion,the electric field may eq. 18 togetherwith in. (Any further sphericaldis-
be expressedin termsof toroidal andpoloidalvector continuitybetween0 and 1 resultsin two more
fields,and theseareof the form curl ‘T!r andcurl curl constantsandanothertwo boundaryconditions.)
4r respectively(Morseand Feshbach,1953).‘P and~ Whatremainsis to find solutionsto eq. 18 for
arescalarfunctionsof (r, 0, ~).The poloidalelectric prescribedconductivitydistributionsa(p), andit is
field hasno magneticfield outsidetheconductorand becauseof the complexity of this equationthat only
cannotbe excitedby anyexternalinducingfield. verysimpledistributionsof a canbe dealtwith ana-
It doesnotthereforeenterinto the inductionproblem. lytically.
Substitutingthe toroidalsolutioninto eq.9, theequa- The simplestapproachseemsto be to replace
tion for ‘I’ is obtainedas: a/at by a parameterp,and solve eq.18 as an ordinary

V2’I’ — pa(r)’I’ = 0 (16) differentialequationfor Rn(P, p). Periodic inducing
fields may thenbe consideredby writing p = iw

Correspondingto the surfaceharmonicsSn in eq. (wherew, theangularfrequency,is real) and aperiod-
15 a separationof variablesin eq.16 showsthat there ic fields by interpretingthesolutionsin termsof
are solutionsof the form: known resultsin the operationalcalculus(Lahiri

= aR,~(t,p)Sn(0,~p) (17) andPrice, 1939).An alternativemethod for aperiod-
ic fields is affordedby determiningthe free current

whereR
0satisfies: systemsthat canexist in thegiven sphere.The bound-

_~_(2~~)= [n(n + 1) + pa
2p2a(p)a/at]R~ (18) aryconditionscanthen be satisfiedby a particularso-

ap ‘° ap lution of eq. 18 for the given inducing field, together
with the appropriatesumof thesefree currentsystems.

Thus the electricfield in theconductoris: Fora uniform sphere,this methodis usedin Lamb

E curl [aRn(t, p)S~(O,p)r] (19) (1883),Price (1930)and Chapmanand Bartels(1940).
The most generalconductivitydistribution so far

= aR
0(t,p)r A gradSfl consideredanalytically(Lahiri and Price, 1939) is:

The solutionin the dielectricandin theconductor ~() = kp—m (22)
hasnow to be matchedat theboundaryp 1, and
the continuity conditionsare satisfiedif: wherek andm arerealconstantsandk > 0. With

m > 0 distribution 22 representsan increaseof con-
R~(t 1) = p0 [— q° de~+ q (20) ductivity with depth.The simpler caseof a uniform-

n + 1 dt n dt ly conductingsphereis obtainedby taking m = 0.
and With the distribution22,eq. 18 becomes:

de n—i d (2~’1~ [n(n + 1) + ~
2p_m+2]Rn (23)

[~{PRn(t~P)}] _p[qn ~1+q di
p=l a; ‘

(21) where

Eq. 20 makesboththe tangentialcomponentof E, ~2 = pakp (24)
and the normal componentof B continuousandeq.21
ensuresthecontinuity of thetangentialcomponentof

Form ~ 2, thesubstitutions:
H.

The problemis now reducedto the determination i 2~ 1 —m/2
z= p ,

ofR~(t,p) andhencein(t). Therearein general two R~= i~ Wn rn —21 (25)
linearly independentsolutionsof eq.18, so thatR~ = 2n + 1
will be arbitrary to within two constants.However, rn — 2 I
only onesolutionwill be analyticat the origin, so reduceeq. 18 to theBesselequationof orderv whilst for
that if theconductoroccupiestheregion 0 ~ p ( 1, rn = 2, eq.18 is homogeneouslinear. Accordingly,in
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the threecasesrn <2, rn 2 andrn >2, the solutions find their applicationsin modelfitting. That is, some
of eq.18 for Rn regularat p = 0 are: quantityis determinedby measurementat the surface

rn rn <2 rn = 2 rn >2 of the earth,and thissamequantityis calculatedfrom
(26) thesolution for givendistributionsa(p). Whenthe ob-

solution p—il
0(z) P_2+S p~K0(z) servedandcalculatedvaluesagree,it is possiblethat

whereI~)andK~are themodified (or hyperbolic)Bessel themodel a(p)may resemblesomeof the featuresof
functionsof the 1st and2nd kinds,respectively(Morse thereal earth.Onesuchresponsemeasurefrequently
andFeshbach,1953),of order v ands= [n(n + 1) + usedin global studiesis theratio of internal to ex-
+ + ~2] ~.In thecaseof a uniformly conductingthick ternalparts(i~/e~)in a givensphericalharmonicin
shell,with rn = 0 in distribution 22, it is convenientto theexpressionfor the inducing field 13. Taking the
write ~2 = 2, and thenthe generalsolution of eq.18 caseof a periodicinducing field, this responsemea-
is: suremaybe expressedin termsof theamplitude ratio

andphasedifferenceof theseinternalandexternal
Rn rzAj~(~p)+Bn~(~p) (27) parts.

where‘n andn~aresphericalBesselfunctionsof the Insteadof derivingthesequantitiesfrom the solu-
1st and 2nd kinds, respectively(MorseandFeshbach, tion for a givena(p), Eckhardt(1963)adopteda new
1953).A andB are arbitraryconstantsandfor a com- approachand determinedthe differential equation
plete sphere(includingthe origin) B = 0, leadingto that this ratio in/en ( Vn) satisfies.Fora periodic
the sameregularsolutionas above, inducingfield of angularfrequencyw eqs.20 and21

This completesthe formal solution,and theelectric appliedat thesurfaceof anysubsphereof radiusp
andmagneticfields togetherwith the inducedcurrent enableVn(p) to be written:
distribution canall be obtainedfrom the aboveequa- n r P(~n/dP)— nR~ 1

tions.The interpretationof thesesolutionsfor period- V,, =~~~Lp(1JJ~/dp) + (n + l)f~ j (28)
ic andaperiodicinducingfields andmany asymptotic
formulaeusefulfor computationaregivenby Lahiri Now makethesubstitutionZ~= (1/R~)(dR0/dp)so

and Price (1939).The casern = 0 is well documented that:
by ChapmanandBartels(1940). 1 [~2 + (n + l)

2V1
The abovetypeof modelcanbemademore elab- Zn = ~[ n — (n + l)V ] (29)

orateby the inclusionof a uniformly conducting ~1
thin surfaceshell(radiusa) surroundingthe inner This substitutionalso reduceseq.18 to Riccati’sequa-
conductoranddielectricand theextensionis tion, whenceV,~satisfies:
straightforward(seeTable I). dV k2 ‘~ + 1~~ 12 2 + 1

Analytic solutionshavesofar only beenobtained ~ — l~ [v~— n/(n + 1)] — “ V,~
whentheconductivityis of thespecialform 22.A n,,~~ 30
methodof solvingeq. 18 for a moregeneralconduc- wherek2(p)= —pa2iwa(p).
tivity distributionis to divide the sphereinto con- Eckhardtthenconsidersthe solution characteristics
centric thick shellseachof different conductivity, the for V,~from eq.30,and in one case,determinesan
conductivitywithin any one shell beingconstant. analyticsolutionfor Vn whichyields a conductivity
This has theadvantagethat within eachshellthe distribution.Thisconductivity distributionis of the
analyticsolution 27 is knownapartfrom, in general, form a K/r2, whereK is constantanddoesnot form
two-constants,andthesearedeterminedby the con- a newsolution,having beenpreviouslyconsideredby
ditionsat theboundariesof the shell.. It is possible Lahiri andPrice (1939).The interestingequationfor
to solvetheseboundaryequationsto yield the solu- V,~,however,forms thebasisof thenow celebrated
tion in eachlayer,butevenfor two or threelayers paperby Bailey (1970).Writing the lineardependence
the solutionsarecumbersome.The equationscanbe of i,~on e~in themostgeneralform:
solved numericallyhoweverand Banks (1969)gives
an elegantmatrix methodof solution. i = C K (r)e (t — r)dr (31)

The solutionsthat I haveso far describedmainly ~ n fi
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whereKn(T) is the impulseresponseof the earthto a (requiredfor expressionsof themagneticfield) has
givenharmonicmode,Bailey exploits the factthat deriveda muchsimplified form of Srivastava’sre-
Kn(T) mustbe causalat all radii (that is Kn(r) = 0 currencerelation for a function G(r) which involves
for r <0) to determinea non-linearpartial integro- the ratio of certainof thesphericalBesselfunctions.
differentialequationfor ‘n which is relatedto Vn The applicationof this recurrenceformulaprovides
by: the surfacevalueG(a) and simpleformulae thengive

the ratios of internal to externalpartsfor the tan-2n+li~’ —ntn+11 (32~
— p ~ ‘ ‘ gential and radialfield components,aswell as

Bailey thenprovesthatundercertainconditionsa the magneto-telluricrelations.Schmuckeralso gives
knowledgeof tJ~for all w at somep (e.g. thesurface a conciseformulation for the attenuationof the
of theearth)determinestheconductivity uniquely magneticfield with depth,andalso someapproxi-
asa function of p. Althoughit is not possibleto ob- mationsto thefunction G(r) which areuseful in
tam sucha knowledgeof ‘n’ thework doesshow that numericalcalculations.
in principle it is possibleto determinethe radial conduc-
tivity distribution from surfacemeasurements.A
methodof performingthe inversionprocedureis given. 4. Local problems

An alternativeform of the inversionprocedureis
formulatedby Jady(1974). Insteadof determining The discussionin this sectionwill beconfinedto
conductivitiesbetweenfixed concentricboundaries, “half-space”modelsof theearth,in which theconduc-
Jadyusesa variationaltechniqueto determinethe tivity changeslaterally. In a cartesiancoordinatesys-
boundaryandconductivity(p

0,a0) in a modelcon- tem(x, y, z),with thez-axisverticallydown, thecon-
sisting of a perfectlyconductinginnersphereradius ductoroccupiesthe regionz >0, andthe inhomogene-
p0, surroundedby a thick shell of uniform conductiv- ity is confinedto a limited portion(or plane)of the
ity 00. The analyticsolutionfor sucha model with conductor.Thisgives theproblemits local character.
a fixed boundaryis easilydetermined,but thevirtue Howeverthe totalmagneticfield is oftenof global
of Jady’sapproachis to determinetheboundaryas dimensions,andhenceover the local regionof in-
partof the solution(an inverseproblem)ratherthan terestmaysometimesbe considereduniform. Care
solve the directproblemfor a numberof different must thenbe exercisedin the formulation of such
boundarypositions(amodel-fittingproblem). a problem(Price,1950,1964).

A responsemeasuremuchusedin local problems Much of the literatureis concernedwith model-
of electromagneticinductionis the magnetotelluric ling lateralinhomogeneitiesin conductivity by appro-
relationE0/H~(or —E5,/H0). Srivastava(1966) priatetwo-dimensionalconductors.In principle,
examinesthis relationin the caseof a sphericalearth two approachescanbe made.In thefirst, boundaries
for: (i) the Lahiri-Price conductivitydistribution; within theconductorseparateregionsof different,
andfor (ii) a model divided into thick concentric but uniform, conductivities.Maxwell’s equations
sphericalshellseachwith a differentconductivity, mustbe solved in eachregion, and theappropriate
For(i) the solutions26 providethe magnetotelluric continuity conditionshave to be satisfiedat each
relationexplicitly, while for (ii) eq.27 andthebound- boundary.In thesecond,theconductivityis speci-
ary conditionsat eachinterfacedeterminea recurrence fled as a continuouslyvariablefunction of the
relation. Srivastavashowsthat for realisticconductivi- spatial coordinates.I shallconcentrateon the former
ties andperiodsof magneticvariationsup to oneday, approach.
the curvetureof the earthmay be neglectedandthe Fortwo-dimensionalproblems,let all quantities
magnetotelluricrelationsareas derivedfor a plane- beindependentof thex coordinate,andlet all field
layeredearth. quantitiesvaryin time asexp(iwt). Then,with a/ax

Schmucker(1970)hasalsoconsideredinduction in 0 andp= p0, Maxwell’s equations1 and2 in corn-
a spherecomposedof concentricshellsof different ponentform become:
uniform conductivitiesandby using relationsbetween
sphericalBesselfunctions(eq.27) andtheir derivatives aE~!ay— aE~Iaz= —iwpoH~ (33)
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aE~/az= _iwu
0H~ (34) TABLE II

aE /a = iwp H (35~l Investigationsof electromagneticinduction in non-uniformx Y ~ Z / half-spaceconductors(two-dimensionalproblems)
aH~/ay— aH /az = aE~ (36)

Investigator t.Iodel Polarisahon

aH~/az= aE~ (37)

—aH~/ay= aE~ (38) DErcevifle - z~O -

and 01 11P2.T H

whereE(Ex,Ey,Ez)andH(Hx,Hy,Hz). Kunetz z-d,,,,..;;,,,

Theequationsconvenientlyseparateintotwo dis- zO

tinct cases,sinceeqs.34,35and 36 involve only E~, 1962) z~d;,-~i:.J~-y,~ H

Hy andH~whereaseqs.33,37 and38 involve only ________ 0 Or =

E~,E~andH~: Weaver z=0 ~ H

(1) The first caseis that of E polarisation(the 1963 1

electric field beingparallelto any discontinuityin a) 0’O

and maybe specifiedby E (E, 0,0) andH=(0,H~, 1 2 6

He). The solution may be determinedthroughthe Treonrarn O~O

scalarE that satisfiesHelmholtzequation: 15 0 b) O~Joo~ E

V
2E = ii~2E (39) ______ _____

Hvozdorosubjectto theappropriateboundaryconditions,where 1966) ti-it ti-0 H E
= p

0awandV
2 is thetwo-dimensionalLaplacian ~sy~

operatormy and z.Hmay thenbeobtainedfrom Weaver .Lzretvrrert

eqs. 34 and35. Thon E”

(2) The secondcase,H polarisation,is specifiedby (1972

H (H, 0,0) andE= (0,E~,E~).The scalarHsatis- Hvozdora ti ~ H E

fying: :°i:~:--

v2H = i~2H (40) For Epolarisation,* denotesa zero’th-orderapproximation,

now determinestheproblemand E is obtainedfrom ** denotesa first-orderapproximation.

eqs.37 and 38.
The two casesare notassimilaras they might at conductingandasd —~ 00 bothmodelstend to the

first appear,an importantdifferencearisingfrom the sameconfiguration.The boundaryconditionsat the
boundaryconditionon thesurfacez =0. ForH polar- vertical interfacey = 0 are thatH and the tangential
isationeqs.37 and 38 showthat in the non-con- componentof E arecontinuous.
ductingregionH is independentof y and z. HenceH As notedabove,in thenon-conductor,forH polar-
is uniform throughoutz = 0. As H is continuousacross isation,the magneticfield is uniform. In eachcon-
thesurface,theboundaryconditionon eq.40 isH = ductingregion in the layer,the magneticfield is
constanton z= 0, irrespectiveof the conductivityin assumedto be composedof an undisturbedfield cal-
z>0. ForE polarisation,no suchsimplificationoccurs. culatedasif that regionwereof infinite horizontalcx-

The earlieststudyseemsto be that of D’Erceville tent,togetherwith a disturbancefield arising from
and Kunetz(1962)who consideredtheH polarisa- the discontinuityaty = 0. The undisturbedfield in
tion casefor two models.(SeeTable II for diagrams eachregionsatisfiesa one-dimensionaldiffusion
of the modelsconsideredin this section.)In both equation(from eq.40) and henceis known to with-
modelsa horizontallayer0 <z <d, composedof in two constants.Thesetwo constantsare determined
two media of differentuniform conductivities01 by theboundaryconditionson z= 0 andz=d.

and a
2 in contactalongtheverticalplaney= 0, over- D’Erceville andKunetzthen expandthedisturbance

liesa semi-infinite half-spacez> d. In onemodelthe fields as Fouriersine seriesin z, thecoefficientsap-
half-spaceis perfectlyconducting,in theother, non- propriateto eachregionbeingdeterminedfrom the
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two boundaryconditionsony = 0. Explicit formulae first makingsomeassumptionsaboutconditionsat
are given for theFouriercoefficientsfor thetwo cases the boundaryz = 0. He consideredthe reflection
underconsideration,andalso for themagnetotelluric of planewavesnormally incident on a uniformly con-
relationE /H for the limit d —~o°. ductinghalf-space,andconcludedthat thehorizon-

The m~delwas extendedby Rankin(1962)to tal componentof themagneticfield atthe surfaceis
enablethe effectof a dike to be considered.In the independentof conductivityandfrequency.Using
layerof thicknessdin his model, theregion —1/2<y eq. 34, Weaver’sboundarycondition is:
<1/2 hasconductivity 01, theinfinitely extending a~’1/az = aE2/az = constant on z = 0 (43)
regionson eitherside haveconductivity a2.The same
methodasaboveis employed,thegeneralsolution .Also continuity of the magneticfield and tangential
for H in eachregionbeingwritten asthesolution for electric field on y = 0 requires:
a planelayertogetherwith a disturbanceterm,the
appropriatequantitiesagainbeingexpressedas = E2 ony = 0 (44)
Fourier sine series.Foreachsine term, the disturbance aE1/ay=aE2/ay ony°0 (45)
fields requireone coefficientmy < —1/2, one mv >
1/2 and 2 in —1/2<y <1/2. Thesefour coefficientare The aboverelationsare sufficientto determinethe
determinedby the two boundaryconditionson the electricand magneticfields within the conductorand
two verticaldiscontinuitiesat)’ = ±1/2. thesemay be obtainedby usingthe samemethodas

The first attemptat discussingbothH andE polar- for H polarisation,exceptthat Fourier cosinetrans-
isationfor a singlemodelwas madeby Weaver(1963). forms areusedin placeof Fourier sine transforms.
His model wasthe limiting form of those of D’Erceville Howeverthefield in z <0 wasnotanalysed,and
andKunetzandsoconsistedof two quarterspacesin more recentinvestigations(e.g.,JonesandPrice, 1970)
contactalongthe verticalplaney = 0. As notedby haveshownthat condition43, implying thatH~is
D’Erceville andKunetz,for H polarisationthe limit- constanton z = 0, is not appropriate.It transpires
ingcase canbe treatedby replacingthe Fourier sine that Weaver’ssolutionfor E andH in theconductor
seriesby Fouriersine transforms.Weaverdefinesthe canbe usedto generatean approximatesolutionin
Fouriersine transformof a function 1(z) by: z <0, andhencean approximationto the fields on

the surface.In its presentform however,thesolution
= is notsatisfactory.This situation,thatof takingH

=~ f ~(z) sin ~zdz (41) constanton z = 0 for E polarisation,occurselsew~re
U in theliteratureso that for these“solutions”, Hy and

andtransformseq. 40, with theuseof theboundary themagnetotelluricrelationE/H~are notsatisfactori’
conditionson z= 0 andasz —* 00 to: ly determined.Such analysesaremarkedwith a single

asteriskin Table II.
a

2H/ay2 = (~2+ j~2)~j— A~/~7~ (42) By consideringtheproblemof planewavesinci-
dent on non-uniformconductors,Mann(1970)has

whereA is theconstantvalue of Hon z 0. Integra- deriveda successiveapproximationschemewhereby
tion of eq.42 with respecttoy yieldsH

1 andH2 in thesolutions,in theconductingandnon-conducting
eachregion,apartfrom somefunction, sayfl~). regions,areexpressedaspowerseriesin a certain
H1 andH2 areobtainedby applyingthe inversetrans- parameter& This parameteris the ratio of the skin
form to thesolution,andfinally theunknownfunc- depthof theconductorto thewavelengthof the in-
tionfl~)is determinedfrom theboundarycondition ducing field. The methodis proposedasa simpler and
that thetangentialcomponentof E is continuous, more accuratealternativeto theLeontovichbound-

The solutionsfor H1 andH2 areexpressedin terms ary conditionsfor radiationfields, which only deter-
of Fourier sineintegralsandasrequiredarethelimit- mine thesolution to 0(62). Using this newmethod,
ing form of thesolutionsof D’Erceville andKunetz providedtheequationscanbesolvedat eachstage,
asd -+ Qo. thesolutioncan be determinedto anyaccuracyin 6.

Weaverthen discussestheE polarisationcase, In Mann’s method,a startingapproximationis oh-
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tamedby consideringthehalf-spaceto be perfectly differentuniform conductivities.As an inducing field
conducting.For a given incident wave,the solution they considerthat due to a periodic line current,of
for the electricand magneticfields in z <0, E0 and magnitudeI exp(iwt)at y = 0, z= —h (E polarisation).
H0, maythenbe obtainedanalytically. The affix n In the zero’th approximation,theconductivityis
denotesthenth approximation.In the regionz >0, assumedinfinite, hencethe inducedfield in z <0
wheretheresistivity is zero,themagneticandelectric maybe determinedsimply by imagemethods.The sum
fields E0 andH0 vanish.This completesthezero’th of theseinducedtermswith theoriginal sourceterms
approximation,and from it themagneticfield as providesthe zero’thapproximationE0, ~0 in z <0.
z —~ 0— maybe determined.The modelconductivity The horizontalcomponentof themagneticfield is
(finite) is now assumed,andconsequentlythe tan- found to be:
gential componentof the magneticfield is continuous 41h(z2— y2 — h2)
acrosstheboundaryz = 0. Usingthis tangentialcorn- 110 = (46)
ponentasthe boundaryconditionon z= 0+, the first Y ~2 + (z — h)21~2 + (z + h)2]
correctiontermsE1 and H1 maybe determinedin Inside eachquarterspace,now takento havefinite con-
the conductor.At the surfacez = 0, the first correc- ductivity, the electric field EsatisfiesHelmholtzequa-
tion term to the electricfield is continuous,andso tion with the boundarycondition,from eqs.34 and 46:
providestheboundaryvalueenablingE1 to be deter-
minedin thenon-conductor.FromE1, the correspond- / aE~ 4iwlh
ing magneticfield H1 canbe found andnow thefirst ~ ~)Z0 ~2 +h2 (47)
approximationto theelectric field E0 + E1, andto

Using Fouriercosinetransformsthesolution forE
the magneticfield, ~ + H1, is known everywhere, is obtained,theresult beingsomewhatcomplicated.The
The next approximationcommenceswith the bound-

valueof this expressionon the boundary,E1(y,0),
aryvalueprovidedby H1 and so thesuccessiveapproxi- beingcontinuousat z= 0, providestheboundarycon-mationschemeis defined.The methodis convergent dition forE1 in the regionz <0. Since in this region

providedthe far field of the termof 0(1) in thenon- E1 satisfiesLaplace’sequation,it is givenby Poisson’s
conductingregion is notaffectedby the finite conduc- integral for the half plane:
tivity.

As an example,Mann(1970)considersthecaseof a E1~z) Z = Eke, 0)
d~ (48)

planewave(E polarised)incident on a half-spacecorn- ‘ = ~ (~ ~)2 + z2
posedof two quarterspacesof different uniform con-
ductivitiesin contactin a verticalplane.The zero’th Weaverand Thomsonmanageto determineE1 (y,z)
approximationgeneratestheboundaryconditionthat from eq.48 and this, togetherwith its derivativewith
thetangentialcomponentof themagneticfield is respectto z givesthefirst approximationto the electric
constantalongthe boundaryz = 0. In this form the andmagneticfields everywhere.It seemsmostunlikely
problemis thatconsideredby Weaver(1963),and that the equationscould be solvedanalyticallyto
henceE1 and H1 are determinedfor z> 0. Usingthe yield higher-orderterms.
boundaryvalueof E1,Mann givesthesolution for Numericalcalculationsare madeof the electric
E in z <0 in integralform. In this context,Weaver’s field and theverticalandhorizontalcomponentsof
solution is seenasthe first approximationwithin the themagneticfield at z= 0 and theseareplottedfor
conductor,butthe zero’th approximationin z <0. four conductivitycontrastsa

2/a1representativeof
WeaverandThomson(1972)showthat Mann’s most problemsof geophysicalinterest.Overthe dis-

perturbationmethodfor incident electromagnetic continuitythevariationin H andE is quitemarked
wavescanbe usedto solve problemsof electromagnetic andincreaseswith increasingconductivitycontrast.
induction andthey interpretthe perturbationparam- The accuracyof the solutionsobtainedusingMann’s
eteras the ratio of the skindepthto a “characteristic schememay be examinedto someextentby taking
length” representativeof theregionunderconsider- = 02 andcomparingE

1(y, 0) from eq.48 to the
ation.Their modelis againthehalf-spacedivided by a exactsolutionfor a uniform half-space.The error in
verticaldiscontinuityaty = 0 into two regionsof eq.48 is thenfoundto be 0(6/h)where6 is theskin
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depth.Whenh = 106, numericalcalculationsindicate Helmholtz equation40,written in cylindrical coordi-
that eq.48 is correctto within 10%aty = 26, the nates,maybe solvedusinga Green’sfunction for
accuracyimprovingasy increases, eachwedgespace.However,the integrandscannotbe

Thecaseof a uniform inducing field is treatedby matchedat ~ = a to directly yield the requiredcoeffi-
taking the limiting form of the solutionas h -~ oo, cientsasthe radial dependenceis in the form of a
and E, H~,andH, are again plottedon z = 0 for the Besselfunctionwith differentargumentson either
sameconductivitycontrasts.Foroneof thesecon- side of the discontinuity.Insteadtheboundarycondi-
trasts,02 = 1001,calculationsarealso madeof the tion on ~= a, togetherwith thesurfaceconditionof
electricandmagneticfields at variousheightsabove a constanttangentialmagneticfield, resultsin a set of
the surfacez = 0. In this way, the solutionis directly four simultaneoussingularintegralequations.The
comparedto the work of JonesandPrice (1970)who Lebedev-Kontorovichtransformenablesthe problem
are developingnumericalmethodsfor dealingwith to be solvedanalytically,but the expressionsdo not
this, andothermorecomplicatedmodels,and who readilylend themselvesto numericalevaluation.The
use theboundaryconditionthat the magneticfield problemis simpler for an infinite conductivitycon-
is uniform at a certainheight abovethe surface.The trast,and Geyergivesthesolution for the case02 ~ 00~

resultsfor themagneticfield are notcompatible, and also numericalmethodsof evaluatingthe resulting
however,andWeaverand Thomsonsuggestthat the integrals.Hvozdara’sresultsare similar, butonly the
Jones-Priceboundaryconditionhasnotbeenapplied magnitudeof thesolutionsis evaluated.
sufficiently far from thediscontinuity.Theysuggest Using thesamemethod,Hvozdara(1968)and
a more suitableheightat which the perturbationfield Geyer(1972)investigatetheE polarisationcase,and
shouldbe negligible.Jones(1972)hasreformulated againuse theconditionthat thetangentialmagnetic
the numericalmethod,andhascalculatedthepertur- field is constantalongthe surface~ = 0, ~= or. The
bation field due to thediscontinuityat variousheights solution for the electric field and vertical component
abovethe surface.He finds the perturbationfield to be of the magneticfield, in the light of Mann’s paper,
smallat the increasedheight suggestedby Weaverand are seento be thefirst approximation,butthe
Thomson,in accordancewith their valuesthere,but horizontalmagneticfield at thesurfaceremainsasthe
it is not immediatelyobviouswhetherthe solutionat (constant)zero’th approximation.The solutionsare
the surfacez = 0 hasremainedthesameasin Jones againevaluatednumericallyfor an infinite conductivi-
and Price(1970)or is in closeragreementwith Weaver ty contrast.
and Thomson. An alternativerepresentationof the solutionof

In this caseof a uniform inducing field, it is not the equationsgoverningelectromagneticinduction
entirely clearhow theaccuracyof theanalyticsolu- in thick sheetsandhalf-spacesis given by Treumann
tion is to beinferred,sincethe“characteristiclength” (1970a).He concentrateson theE polarisationcase
canno longerbe takenas the(infinite) height of the and in cartesiancoordinateshisbasic,two-dimensional,
line current.Perhapsa characteristiclength is thehori- model consistsof a sheetof thicknessd in which
zontalextentover which theanomalousfield due to the regionsof different uniform conductivitiesaresepa-
discontinuity falls to 1/eof its valueat the discontinu- ratedby verticalboundariesy = constant.In z> d
ity. The resultsof JonesandPrice andof Weaverand theconductivity is zero.Within eachregionof uni-
Thomsonmaywell agreeto this sortof accuracy. form conductivityEsatisfiesHelmholtzequation

Extendingtherange of models,Hvozdara(1968) andso Green’stheoremcan be usedto relateE (any-
and Geyer(1972)consideredH andE polasisationfor where)in the conductorin termsof thenormal deny-
a half-spacewheretwo different conductivitieswere ative of Eon all the boundarysurfaces.Thus:
separatedby a slopingplaneinterface.In Hvozdara’s cc aE
model,oneof the conductivitiesis infinite. Employ- E — jj ~ “k ~t~’o (49)
ing cylindrical coordinates(r, 0,z) with thez-axis S0
parallelto theplaneof the interface,the surfaceof wheren0 denotesthecoordinatenormal to the sun-
theconductoris definedby 0 = 0 and0 = or, andthe faceS0,and~k is Green’sfunction of thesecond
interfaceby 0 =a for somea. ForH polarisation, kind satisfyingthe inhomogeneousHelmholtzequa-
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tion. Treumannexpands~k as a seriesof eigenfunc- tion, thefields canbe expressedasseriesof Bessel
tions,notingthat in thecaseof verticalboundaries functionsand therequiredcoefficientsdetermined
a finite numberof coefficientshaveto bedetermined by continuity conditionsat r = a andon thesurface
for eacheigenfunction,whereasfor an inclined bound- 0 = 0, or. Again forE polanisation,a constantmagnet-
anyan infinite systemof equationshasto be solved. ic field is assumedat theboundary.
Solutionsfor F~aregiven for thecaseof 1, andfor Othertwo-dimensionalproblemsof a local nature
2, verticaldiscontinuitiesin the thick layer. include theresponseof a conductingcylinderburied in

Outsidetheconductor,E satisfiesLaplace’sequa- materialof zero conductivity,and possiblyunderlain
tion and thuscontainspartsof external(inducing) by a semi-infinite conductor.For circularandelliptic
and internal (induced)origin. The problemis solved cylindersa review is givenby Rikitake(1966).
oncethe inducedfield is given as a function of the It seemsto methat themajor point requiring
induéing field. However,Treumannshowsthat the clarificationin someof the abovepapersis the deter-
boundaryconditionon y = 0 determinesa singular minationof theaccuracyof solutionsusingMann’s
integralequation,which on regulanisationin the approximationscheme.Forthe inductionproblem,
limit d -~ 0o and whenthereis only a discontinuity whereone is probablylimited to obtainingthe first
aty = 0, reducesto a quasi-linearFredhoimintegral approximationeverywhere,only WeaverandThomson

equationwhich hasnot yet beensolved analytically. seemto havediscussedquestionsof accuracy,and
Fora thick plate(d finite), the regulanisation then only for thecaseof inductionby a line current.

would resultin a systemof quasi-linearFredholm Forinductionby a uniform field, severalworkershave
integralequationswhosekernalscannotbe given in producedsolutions“to first order”, without specify-
closed form. It is clear that theE polanisationprob- ingthe accuracy,and thesesolutionsaremarked
lem is notsimple, andin a further paper,Treumann with two asterisksin Table II.
(1970b)constructsan approximatesolution for the
field componentsat the surfacez= 0, usinga meth-
od by Weidelt(1968).Theproceduredetermines 5. Conclusion
the samesolution asMann’s(1970)perturbation
scheme,althoughthesolution forHy is only specified Dealingwith global problemsfirst, thedetermination
on z =0. Treuman~determinesthe first approxima- of analyticsolutionsdescribingtheinductionof elec-
tionsH~andH~at the surfacefor a uniform inducing tric currentsin radially symmetricdistnibutioiis of
field, ahdWeidelthasshownthat in the limit d -~ 00, conductivity of prescribedform seemsto haveended
for a discontinuityaty = 0, theresulting expressions with Lahini andPrice(1939).Now, numericalmethods
for thesesurfacefields areidentical to thoseof maybe usedto computesolutionsfor practicallyany
WeaverandThomson(1972). conductivitydistribution.It is generallyconcluded

Numericalcalculationsare madefor a uniform that the conductivity increaseswith depthin the
field for varioussheetthicknessesd andfor two con- earth’smantle,butthe rateof increaseis not well
ductivity contrasts02/01. Calculationsare alsomade determined.It might be of someinterestto solve
for a dike model(similar to that of Rankin(1962)). the inductionproblemfor a modelwhereone of
Only thesurfacevaluesof H~ andH

2 are presented theparametersis thegradientof the conductivity
anddiscussed,althoughE couldhavebeenobtained with respectto depth.However,evenin the simple
directly from eq.49. This methodextendsthe type modelof a linearincreaseof conductivitywith
of modelsthat canbe consideredin the difficult F depth,thedifferential equationsseemto be pro-
polanisationcase. hibitive.

The modelsreviewedin this sectionall havesur- Forlocal problems,thesituationis perhapsmore
face discontinuitiesin conductivity.One further open.No analyticsolutionsforE polanisationhave
problemof this natureis consideredby Hvozdara yet beendetermined,and I haveindicatedthat I
(1969). In cylindrical coordinates(r, 0, z) thehalf- think the accuracyof someapproximatesolutions
spacehasconductivity 01 in 0 <r <a, andconduc- shouldbe determinedquantitatively.An alternative
tivity a2 in r > a, for somea. For H andE polanisa- approachto theproblemsinvolving discontinuous
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distributionsof conductivity maybe to consider Hvozdana, M., 1969.Geophys.Inst. Slovak Acad.Sci., 1: 40.

the model asthe limit of somecontinuouslyvariable Jady,R.J.,1974. Geophys.J., 36: 399.
Jones,F.W., 1972.Geophys.J., 30: 211.

conductivity distribution.Forexample,if the induc- Jones,F.W. andPrice,A.T., 1970.Geophys.J., 20: 317.
tion equationcould be solvedfor the distribution Lahini, B.N. andPrice,A.T., 1939.Phios.Trans.R. Soc.

= ~ [cry+ (02 — 01) arctanicy] where 01, 02 andk London, Ser. A, 237: 509

are constants,thenthelimiting modelk —~ 00 would Lamb,H., 1883. Philos.Trans. R.Soc.London,Ser. A, 174:

be thatof two quarterspacesof conductivity 01 and 519.
Mann,J.E., 1970. Appl. Sci. Res.,22: 113.

02. The equationsseemto be too difficult for this Morse, P.M. andFeshbach,H., 1953.Methodsof Theoretical
distribution,buttheremaybe otherdistributions Physics. McGraw-Hill, New York, N.Y., 1978 pp.

for which theequationscanbesolved andwhich Price,A.T., 1930.Proc.LondonMath. Soc., (2), 31: 217.

reduceto the samelimit. Suchsolutionswould be of Price, A.T., 1931.Proc. London Math. Soc.,(2), 33: 233.

greatvaluein their own right, andwould also provide Price,A.T., 1950. Q. J. Mech. Appl. Math.,3: 385.
Price,A.T., 1964.J. Geomagn.Geoelectr.,15: 241.

cluesasto the accuracyof the solutionsfor more com- Price, AT., 1967. In: S. MatsushitaandW.M. Campbell (Edi-

plicatedmodels. tors), Physicsof GeomagneticPhenomena,AcademicPress,
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