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The processing of magnetotelluric data involves concepts from electromagnetic theory, time series analysis and
Ji_xieax systems theory for reducing natural electric and magnetic field variations recorded at the earth’s surface to forms
suitable for studying the electrical properties of the earth’s interior.

The electromagnetic field relations lead to either a scalar transfer impedance which couples an electric component
to an orthogonal magnetic component at the surface of a plane-layered earth, or a tensor transfer impedance which
couples each electric component to both magnetic components in the vicinity of a lateral inhomogeneity.

A number of time series spectral analysis methods can be used for estimating the complex spectral coefficients of
the various field quantities. These in turn are used for estimating the nature of the transfer function or tensor impedance.
For two dimensional situations, the tensot impedance can be rotated to determine the principal directions of the electrical

structure.

_In general for real data, estimates of the apparent resistivity are more stable when calculated from the tensor
elements rather than from simple orthogonal field ratios (Cagniard estimates), even when the fields are measured in

the principal coordinates.

1. Introduction

1.1. Background

The magnetotelluric method involves determining
the electrical properties of the earth’s interior through
the analysis of natural magnetic and telluric (electric)
field variations at its surface. Basic concepts from elec-
tromagnetic theo:y coalesced into a practical geo-
physical tool through the work of Price- (1950) in
England, Rikitake (1946), Kato and Kikuchi (1950)
in Japan, Tikhonov (1950) in Russia and Cagniard
(1953) in France.

The following discussion concentrates on only one
aspect of the magnetotelluric method, data processing.
We do not consider the manner in which data are
acquired and the problems of designing suitable mag-
netotelluric experiments, nor do we consider the
interpretation of magnetotelluric data in terms of the
electrical or geological properties of the earth.

Specifically, our intention is to review current
methods by which raw data are processed to a form
suitable for interpretation, without suggesting ways
in which it can be interpreted.

1.2. The magnetotelluric field relations

Cagniard (1953) and Keller and Frischknecht
(1966) provide excellent introductions to the theory
of magnetotelluric fields over a plane-layered earth,
which essentially is an out-growth of concepts from
the theory of the propagation of electromagnetic
plane waves in alossy medium that is linear, homogene-
ous and isotropic. In such a medium an electromag-
netic wave propagates so that the electric and mag-
netic fields vectors are orthogonal, and so that the
ratio of electric: to magnetic field intensity is a
characteristic measure of the electromagnetic
properties of the medium often called the charac-
teristic impedance.

For a coordinate system at the earth’s surface,
with the axes aligned having x-north, y-east and
z-down we have, for plane waves generated by
sources in the ionosphere:

E
Z=g 6]
y
where Z is the characteristic impedance, E, is the
electric field intensity (north) in mV/km and H,, is
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the magnetic field intensity (east) in y (10~5Qe). In
eq. 1 as well as in the following discussion capital
letters signify frequency-domain representations,
whereas lower case letters signify time-domain re-
presentations of the field quantities.

If indeed the earth is homogeneous and isotropic,
then the true resistivity of the earth is related to the
characteristic impedance through the relation:

E
p=02T|Z=02T|
Hy
where p is the resistivity in £2-m and T is the period
in sec.

In the case of a horizontally layered earth (or
one-dimensional earth), eq. 2 becomes an apparent

resistivity:

E,
P, =0.2
Hy

which is frequency-dependent. For example, if the
earth consisted of two layers, the finite depth of
penetration of the fields would cause eq. 3 to be
asymptotic to the resistivity of layer 1 at short periods
and asymptotic to the resistivity of layer 2 at long
periods.

0]

2
3

Moreover, because of the symmetry of the problem,

estimates of the characteristic impedance for either
ahomogeneous or alayered earth do not depend on
rotation of the measuring axes in the horizontal plane,
so that the north and east electric components are
related to the orthogonal magnetic components
through the linear equations:

Ex—ZHy andEy—~ZH (€]

X

Each of these equations is a statement of the con-
dition that at a particular period an electric field
component is linearly related to its orthogonal mag-
netic field component through a single-valued complex
scalar transfer function. This is a direct analog from
simple filter theory. The output signal of a filter (£.)
is linearly related to the input signal (H ) multlphed
by the frequency response of the filter (Z)

The relation (eq. 3) was formulated for the first time
by Cagniard (1953) and as a result is known as the
Cagniard relation. The conditions under which eq. 3
is valid are called the Cagniard conditions. They are
that the incident electromagnetic fields are plane
waves at the earth’s surface and that the earth con-
sists of parallel plane layers.

In regions where the earth has a more complicated
structure than simple plane layers, the coupling
between electric and magnetic fields is more com-
plicated. As an example, electric fields may be
strongly distortéd near a lateral inhomogeneity
whereas magnetic fields may be relatively undistorted.
The electric field is then locally polarized at some
angle other than 90° to the regional magnetic field.
At each point in the vicinity of the lateral discon-
tinuity, this results in a linear coupling of each elec-
tric field component to a combination of both mag-
netic field components of the form:

Ex=aHx+bHy %)

where @ and b are called coupling coefficients which,
as might be expected, depend on position, coordinate
direction, period and the geometry and electrical
properties of the lateral inhomogeneity.
Defining an impedance tensor in the following
way:
Z . Z

zZ=| > ¥ 0)

Zyx Zy}’

we can generalize eq. 5 to a relation of the form
= [Z] - H or:

E,=Z H +Z H andE,=Z H +Z H (1)

xyy x yYyy

However, for a strictly two-dimensional geometry,
‘Maxwell’s equations separate into two modes
(Cantwell, 1960; Kovtun, 1961; Bostick and Smith,
1962). In one mode, E-parallel to strike depends
only on H-perpendicular to strike, and in the other
mode, E-perpendicular to strike depends only on
H-parallel to strike.

In this case, the tensor decouples into two modes
represented by:

! 1 15 4
E, =nyH;, andEy =Z;xHx ®
where the prime indicates that the measuring axes
(X, Y) are aligned parallel and perpendicular to the
strike of the two-dimensional, lateral inhomogeneity.
This special orientation (x', y') is called the principal
coordinate system and Z;cy and Z;,x are called the
principal impedance values.

For arbitrary orientations of the measuring axes
away from the principal directions one finds, as
might be expected a linear coupling of each electric
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component to both magnetic components expressed
by the tensor formulation in eq. 7.

Rotating the new measuring coordinates away from
the principal directions through an angle measured in
the clockwise sense looking down, the new tensor
elements expressed in terms of the principal values
(Zy>Z,y) and the rotation angle 6 are:

Z. =(ny +Zyx) sin 26/2

- e i 2
ny —ny—(ny FZyx) sin“ 9
5 €
Zyx=Zyx——(ny +Zyx) sin“6

z,,=—(Z,, +Z, )sin26/2

From inspection of these tensor elements several
properties appear obvious:

Z,=-2, (10)
and:
ny - Zyx = constant (1)

at all rotation angles. During rotation through 180°,
the off-diagonal elements (Z,,, Z,,) each go through
one maximum and one minimum. The diagonal ele-
ments (Z,.,., Zyy) each go through two minima. For a
purely two-dimensional situation the diagonal elements

go through zero every time the rotating coordinate system

passes through a principal direction.

The values of the off-diagonal tensor elements
Z, y» Z;, ») in the principal coordinates are used for
estimating the principal resistivity values (o}, P} ),
one of which is maximum and the other minimum.

2. Data processing
2.1. Spectral analysis of time series

Since the interpretation of magnetotelluric data is
usually done in the frequency domain, spectral analysis

of the raw data is an important aspect of data processing.

This involves creating a time series xj, by sampling a
signal x(?), at equal intervals of time At, fromj =1 to
N, where T = (N — 1) At is the duration of the signal.
One intuitively feels that for the sampled data to
represent the original signal adequately, the signal
should be smooth over the sampling interval, Az. In a
more rigorous sense, an absolute requirement is that
the signal to be sampled should have negligible spectral

energy at periods shorter than twice the sampling
interval (or at frequencies above the Nyquist fre-
quency (1/2A%)).

There are a number of techniques for transforming
the time series into spectral information in the fre-
quency domain. Although in principle, all of these
methods are equivalent, since they result in the Fourier
components of the record, in practice there are im-
portant differences that depend on the character of
the signal and the underlying assumptions regarding
the nature of the data. Clearly, physical insight should
override a strict mathematical application of any of
these methods.

2.1.1. Fourier harmonic analysis

The fundamental assumption in Fourier harmonic
analysis is that the time series of length T is cyclic.
or periodic with fundamental period T, such that
x(t) = x(t + T;y). This assumption places strict con-
straints on the spacing between harmonics as well as
implying that the record section can be optimally
approximated over its length Ty by a finite number
of harmonics. This can be seen in the following way.
Over an interval of time (—T/2, T/2) a function
x(?) can be expressed as the sum of a Fourier series:

k=+oco 2
x()= 2 X eﬂ“"ot,wo = (12a)
k=—o 0
where X, is given by:
Ty
1 2 —ikwot
Xk"'"]? fT x(H)e dt (12b)
40
7

The amplitude spectral lines X are spaced at in-
tervals k/T along the frequency axis, which are har-
monics of the record length Ty. Since we have required
that the signal x(¥) be band-limited to frequenciesless
than the folding-frequency (1/2A¢), and since T =
=(N — 1) At, the maximum harmonic is k., = (V—1)/2.
However, in eq. 12a, since we allow both positive and
negative harmonics, as well as a term for k = 0, the
total number of harmonics needed is NV, the same as
our number of data points.

The Fast-Fourier Transform (F.F.T.) is simply a
high speed algorithm for calculating the N complex
Fourier harmonic coefficients (Cooley and Tukey,
1965; Bergland, 1969), and for large time series it pro-
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Fig. 1. Magnetoteluric field components from two magnetic substorms. The dashed lines represent new time series synthesized from
first five harmonics of original time series. Data from southwest Iceland (Thingvellir).

vides a major saving in computer cost and time com-
pared with using conventional techniques. However,
no few information is obtained from the F.F.T.—just
cheaper information. On the other hand, if one does not
want the entire spectrum but only a few closely spaced
spectral estimates in a particular frequency band, the
F.F.T. may actually be more expensive to run.

Whichever scheme one chooses to use for calculating
the harmonic coefficients, the point is that the synthesis
of a new time series from these NV harmonics precisely
equals x(7) at the intervals t = (j— 1) At; j=1, N.

On the other hand, the synthesis of only a few
harmonics rather than all N harmonics still approximates
the original time series in the least-squares sense but
does not look like x(¢) in detail. In fact, we can use the
first few harmonics to obtain a smooth version of the
actual time series as shown in Fig. 1 where we have
synthesized a new set of time series using the first
five harmonics for each of the original components
shown. In this way we can study the behavior of long-
period phenomena, which might otherwise be buried
in noise.

In Fig.2 we show the projection of the disturbance
vectors of substorm 2 in Fig. 1 on to the horizontal

plane. Electric field polarizations are shown in the top
circle of each set and magnetic field polarizations are
shown in the bottom circle. The raw data are shown,
as well as the new time series discussed above, which
was synthesized from the first five harmonics of the
original series. We also show the band-pass filtered
data to be discussed in a later section. The vertical
axis in all plots represents a direction 57° east of the
geomagnetic meridian.

Although the raw data show a confused polarization
caused by dominant short-period signals, particularly
on the electric channels, the long-period data clearly
show orthogonally polarized events for the electric
and magnetic fields, respectively.

We have obtained Cagniard estimates at these long
periods by substituting into eq. 3 the electric and
magnetic field amplitudes for components measured
along the major axis of the respective polarization
ellipse. Apparent resistivities obtained in this way
for the two events shown in Fig. 1 are given in Table
L. The agreement between the two substorms appears to
be substantially improved when the raw data dre linearly
detrended before calculating the Fourier coefficients.
However, the first harmonic, in particular, seems to
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Fig. 2. Polarization plots obtained by projecting the tips of disturbance vectors of substorm 2 onto horizontal plane. Electric field
polarizations are shown in the top circles, magnetic field polarizations are shown in the bottom circles. Left to right are the raw
data, the new time series synthesized from first 5 Fourier harmonic coefficients, the time series band-pass filtered at 10,000 sec

with a selectivity of 0.2

TABLE 1

Cagniard apparent resistivities from Fourier coefficients of
components along major axes of polarization ellipses

Harmoric  Substorm 1 Substorm 2
Number

Period Py Period p,

(sec) (£2-m) (sec) (S2-m)
1 33600 18* (24) 36500 38* (60)
2 16800 45 (30) 18300 52 (37
3 11200 57 (68) 12200 49 (59
4 8400 40 (15) 9100 43 (46)
5 6700 43 (3%5) 7300 42 (34)

Site: Thingvellir (S.W. Iceland). Raw data were linearly de-
trended, Brackets denote estimates for data not detrended.

* First harmonic will be extremely sensitive to detrending

function and is not used in final interpretation

be extremely sensitive to the detrending function
chosen, and does not lead to consistent apparent re-
sistivities between two sets of data.

2.1.2. Fourier transient analysis
Although the harmonic analysis discussed above

. precisely represents the original time series over the

record length Ty, providing NV coefficients are used,
a question which is sometimes important is what
happens outside of the range T. Is the signal indeed
cyclic with fundamental period T, as assumed in
harmonic analysis, is it stationary in the statistical
sense, or is it a transient?

In the case of a magnetic substorm, for example,
we know we are dealing with a transient phenomenon.
Itis not periodic, and unless our record includes many
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days of continuous record, it is not stationary. To re-
present adequately our time series over all time (not
only over the record length T;) we not only need
spectral estimates at discrete multiples of the funda-
mental frequency, but at all frequencies in between,
so that we have a continuous spectrum which can be
calculated from the Fourier transform pair:

(1) =5 [ x@)e do
o (13

X(w)=f x(®) e~ iwt gy

- 00

The reason that we were permitted to calculate
Fourier harmonic coefficients for essentially transient
phenomena, as we did in section 2.1.1 for the two mag-
netic substorms, is that the harmonic coefficients
precisely equal the transient coefficients calculated from
eq. 13 except for a scaling factor that cancels when
field ratios are taken, as in calculating impedance val-
ues. However, unlike the spectrum of a periodic signal,
which consists of a series of spectral peaks along the
frequency axis at intervals of 1/T}, the spectrum of a
transient function is a continuum of energy.

Fourier transient analysis has useful features in some
cases. For example, at very long periods one might want
to average spectral components over a finite band-width
but find harmonics from the F.F.T. too widely spaced
to have similar characteristics for averaging. If upon
close inspection the signal is a transient phenomenon
and essentially zero outside the range t =0 to t =T,
the Foutier coefficients at arbitrary and convenient
intervals can be averaged over the band-width desired,
providing only that the spectrum is smooth enough for
the average to be meaningful.

2.1.3. Power spectral analysis

The term power spectral analysis usually refers to an
algorithm that uses the Fourier transform of the auto-
correlation or cross-correlation function in the time
domain (Blackman and Tukey, 1959; Jenkins and Watts,
1968). Interest in this methiod grew out of statistical
communication theory developed in the late 1940’s and
early 50’s. Applications of statistical communication
theory to geophysics were strongly influenced by the
activity of the M.I.T. Geophysical Analysis Group in the

mid-1950’s. By the early 1960’s these methods were
being routinely applied to the processing of magneto-
telluric data (Cantwell, 1960; Bostick and Smith,
1962; Vozoff et al., 1963; Srivastava et al., 1963;
Madden, 1964).

The application of power spectral techniques to
magnetotelluric data has generally been done under
the assumption that the time series were stationary
random processes, although this characteristic was
seldom tested. Jenkins (1961) observes that there
appear to be three types of time series which arise in
practice: (1) “those which exhibit stationary properties
over fairly long periods . . . ;(2) “those which are
reasonably stationary if examined over a sufficiently
short period . . . ”’; and (3) “‘those for which the sta-
tionary assumptions are manifestly untrue.” The
latter category emphasizes the caution an investigator
must display in applying criteria from theoretical
statistics to real time-series data.

However, the fact that certain time series are more
like transient phenomena than stationary phenomena
does not preclude their power-spectral analysis (or
more precisely, energy-spectral analysis). Correlation
functions and their Fourier transforms are well-defined
for transient phenomena (Lee, 1963), so that it is
difficult to understand an apparent preoccupation in
the literature with applying the stationary-time series
analysis approach of Blackman and Tukey (1959) to
what very often are transient signals. Alternative ap-
proaches are possible, if not required.

The cross-correlation function of two transient
signals, x(¢) and y(?), is defined as:

Py @M= [ x@®y(+n)dt (142)

which has the Fourier transform (called the cross-en-
ergy density spectrum):

P (=] p,, (e dr (14b)
By writing y (¢ + 7) in eq. 14a as a Fourier transform:

Yo+ = [ V(@) do

—o0
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and changing the order of integration, eq. 14a becomes:

ny(T)"'% f Y(w)[f x(t) wt dt] ewT do

—3 — oo

or:

Pyy ™ =§!7? f X* (w) Y(w) &“7 dw

(1)

where the star (*) denotes the complex conjugate.
Taking the Fourier transform of eq. 15 and comparing
it with eq. 14b, we see that:

ny (W)=X*(w) Y(w) (16)

which relates the cross-energy density spectrum of two
transient signals to the product of the Fourier transform
coefficients of the individual signals.

If, on the other hand, we are indeed dealing with
stationary random processes then the cross-correlation
function is defined as:

T/2
1
p. . (r)=lim — x(@y@+1)de (172)
i T>co T fT/Z

where the Fourier transform of eq. 17a is just the cross-
power spectrum:

P, (w)= f Py, (e 1“7 dr (17b)

The discrete sample representations of equation set
(14) and of equation set (17) ate significantly different’
for most applications and one should tailor the analysis

technique to the physical process occurring. For example,

equation set (17) may be useful for investigation broad-
band day-time micropulsation data whereas equation set
(14) is a more meaningful way to investigate transient
substorm phenomena.

2.1.4. Band-pass filtering

Each of the three techniques above, harmonic
analysis, fransient analysis and power spectral analysis,
provides spectral information on the entire record sec-
tion that is to say each Fourier coefficient is aleast-
squares approximation to the entire length of the data
Ty. In a sense there are average spectral components.

It is not all clear that this is always the most effective
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way to investigate a time series, in particular, if upon
inspection of the record it appears that certain fre-
quency components are impulsive in origin and not
continuous down the record. By calculating a spectral
component for the entire record we average short
signal bursts with long periods of quiescence. Even
though there is no signal during the quiescent periods,
we still effectively integrate any noise contribution
into our Fourier coefficient, thus degrading the
significance of the spectral estimate.

The motivation for using digital band-pass filter
techniques is to incorporate into the analysis spectral
estimates as a function of time, selecting sections of
record that have high signal levels and rejecting sec-
tions that have low signal levels. Present applications
of this technique developed from contemporaneous,
though apparently independent, work of Swift (1967),
Morrison et al. (1968), and Hermance and Garland
(1968).

There are three popular algorithms for calculating
digital band-pass filtered data. They are:

(1) Convolution between the input time series and
a filter impulse response.

(2) Recursive techniques using properties of the
z-transform.

(3) Using the Fast Fourier Transform to transform
the time series into the frequency domain, then
multiplying by a complex filter response and trans-
forming the product back to the time domain.

The last of these techniques, although practical
because of the high speed of the F.F.T.-algorithm, has
not found wide use in the magnetotelluric literature
and will not be discussed in detail. We shall concentrate
on the first two techniques.

Convolution filtering is an algorithm based on the
convolution integral:

y@®= f” h(@t-nx(r)dr (18)

where x(?) is the original time series, 2(¢) is the impulse
response function of the filter function and y (7) is the
output of the filtering operation. To illustrate an
application of this method, the frequency response of
a typical filter is shown in Fig. 3. The response function
is:

H(w)= e~ (W) /s? 4 o~ (wrwe)?s?

(19)
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Fig. 3. The frequency response function used in our particular
convolution-filter. The center frequency is 1 radian/sec and
the selectivity is 0.2.

where the center frequency (wg) is 1 radian/sec and
the selectivity (s) is 0.2 wq. The response of the filter
is unity at the center period.

The Fourier transform of eq. 19 is the impulse
response shown in Fig.4, which is an example of the
technique applied to magnetic substorm data from
the standard observatory at College, Alaska. We show
the disturbed z-field, the impulse response function,
which is convolved with the original time series, and
the resultant time series, which is the output of our
band-pass filter.

The correlation between the raw input series and
the output filtered series is quite obvious. The output
is not only smoothed, but it is band-limited. We have
eliminated the high-frequency fluctuations as well as
long-period trends. As another example, we have
band-passed both substorm 1 and substorm 2 (Fig. 1)
at a period of 104 sec and a selectivity of 0.2. The
projection of the band-passed magnetotelluric distur-
bance vectors for substorm 2 on to the horizontal
plane is shown in Fig.2 along with data discussed in
section 2.1.1. There is a strong orthogonal polarization
of the electric and magnetic field ellipses.

Amplitudes of the filtered data projected on to
the major axis of the respective polarization ellipse
in Fig.2 were substituted into eq. 3 to estimate the
Cagniard apparent resistivities. The results are sum-
marized in Table II for both substorms using three

VERTICAL DISTURBANCE FIELD, 20 NOV 71 COLLEGE

ORIGINAL TIME SERIES
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Fig.4. Example of convolution-filter applied to magnetic
substorm data. From top to bottom, we show the raw dis-
turbed Z-field, the impulse response function, and the filtered
Z-field.

peak amplitude vatues for each substorm. The apparent
resistivities in Table II agree remarkably well with the
estimates from the Fourier transform given in Table I.

The second type of filter we intend to discuss is the
digital recursive filter. This class of filtering techniques
is simply the application of a high-speed algorithm
which relies on special properties of the z-transform
of sampled time series. An underlying assumption is
that the time series is discrete and periodic in time
(with period Tp) and the frequency spectrum is discrete
and periodic in frequency (with period of twice the
folding frequency). The theory of the z-transform is
given by Jury (1964), where an introduction to digital
recursive filtering is given by Shanks (1967).

TABLE II
Cagniard apparent resistivities from amplitudes of band-pass
filtered data along the major axes of polarization ellipses

Amplitude -Substorm 1 Substorm 2
number
bq Pg
(Q2-m) (Q-m)
1 34 43
2 41 45
3 48 46

Site: Thingvellir (S.W. Iceland). Center period = 10,000 sec.
Selectivity = 0.2.
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Fig. 5. Application of digital recursive filters to electric field data from Iceland. At center-left we show the z-plane representation
of the particular response. At center-right we show the impulse response representation of the same filter. Raw data are shown in

the top trace, filtered data in the bottom trace.

In Fig. 5 we illustrate the z-plane characteristics of
a filter function that we have found particularly useful,
as well as the result of operating on raw electric field
data. The z-transform of the filter function consists of
two poles symmetric about the origin and two zeros as
shown. The displacement of each pole off the unit circle
is a measure of the seélectivity of the filter response.
The recursive operation of the filter function on the
raw data generates the filtered output series.

The primary advantage of digital recursive filters
is the greater speed of the algorithm since the output
of a recursive filter is exactly what one would get from
a convolution type filter. This is stressed in Fig. 5 by
sketching the impulse response of the same filter used
in the recursive operation. The dashed arrowsbetween
the raw and filtered data attempt to draw attention
to phases in the raw data that correlate with phases
in the filtered data. The use of digital recursive filtersin
preference to convolution type filters at long périods, has
decreased the cost of a computer run from $25. U.S.
to $2.US.

RAW DATA

I 100 MV/KM

£ * 10 ’ * ]

TIME, HOURS
Fig.6. Magnetotelluric components along geographic coordi-
nates from magnetic substorm recorded in north-central
Iceland (Sudurdrhraun). Long-period phases in the beginning
of record correlate well between components.
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Fig. 7. Magnetotelluric components from magnetic substorm
of Fig. 6 band-pass filtered at 200-sec period with selectivity
0.1. Correlation of events between orthogonal magnetotelluric
pairs (E,, Hy ot E,, H,) isremarkably clear.

An important application of digital filters is to
clean up data for visual inspection of quality and cor-
relation. In Fig. 6 we show a five-component set of
magnetotelluric records about 15 hours long from
North-Central Iceland. The recordings are shown in
geographic coordinates. From bottom to top we have
Electric-north, Electric-east, Magnetic-north, Magnetic-
east and Magnetic-vertical down.

It is fairly clear that long-period events correlate
on this record. Whereas bursts of signal seen on the
electric components having periods of the order of
200 sec near the beginning of the substorm and in its
later phases are not clearly correlated with magnetic
activity. By band-pass filtering the data at the period
of interest, or 200 sec, these correlations are very
clear as shown in Fig.7.

Not only do the bursts correlate between ortho-
gonal electric and magnetic fields as they should, but
the envelopes on orthogonal components are remark-
ably similar, while the envelopes on parallel electric
and magnetic components are grossly dissimilar.

2.2. Estimating the tensor elements

Having described in the last section various methods
for converting time series into spectral amplitude in-
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formation, we now turn to methods for estimating the
tensor elements of eq. 6 from spectral amplitudes of the
magnetotelluric field components.

2.2.1. Estimates from two independent record sets
Cantwell (1960) proposed a method for estimating
the tensor elements by taking the Fourier transform of
two independent sets of records of e, e, , and hy.
Denoting these data sets by I and II respectively, the
electric field component in the x-direction, as an example,
can be written in terms of its spectral estimate from both
data sets as:

I _ 1
E ~zxxHx+zxyH;

11 11 11 (20)
Ex =ZxxHx +nyHy

The two simultaneous equations in expression (20) can be
solved for Z, and Z, . Ina:similar manner, another set
of equations can be solved for Z,,, and Z y-

Bostick and Smith (1962) proposed an alternative
approach in which the Fourier transforms in (20) were
replaced by auto-power and cross-power spectra using
the Blackman and Tukey (1959) approach. A formulation
equivalent to Bostick and Smith’s might be written as:

I,}lxex =ZxxP}1xhx +nyP}1xhy (21)
I = 1 1
P}lxex _Zxxp}lxhx +ny.P}’xhy

where from data set I for example, the cross-spectra be-
tween the time series h,(f) and e,.(¢) is:

= —iwT
szex ‘_[,, phxex (e dr

providing the cross-correlation function is defined as:

I 1 e | PPN |
Phe, (1)=1;I:” 7—'];'/2 hL(Oel (¢ +7) dt

The set of equations (21) can be solved for the tensor
elements Z,, and Z,,, and a similar set of equations
can be solved for Z,,, and Z,,,.

Grillot (1973) has developed a third variation of this
approach by first band-pass filtering each magnetotelluric
time series e, (?), ey 0, h (D, hy (?) using recursive filters
having selectivities on the order of 0.1. Horizontal
polarizations of the magnetic field are plotted for different
events or bursts of signal. Two events are selected having
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different polarizations and a Fourier transform of each
component is calculated at the center period of the
filter over four cycles of the event. These Fourier
coefficients are substituted into eq. 20 to determine
the tensor elements.

2.2.2. Estimates from N independent record sets
Sims et al. (1971) describe a procedure for op-
timizing the estimate of a tensor element if one is
provided with a large number of independent record
sets. They define the best estimate of Z,, and Z,,,,
in a way that minimizes the mean of the squared
differences between the measured electric field com-
ponent, Ef1°%, and the electric field predicted from
the magnetic field components through the relation:
EP=z H +Z H,
where the subscript j denotes the j-th data set. The
difference between the measured and predicted elec-
tric field is E°* — E g"d Multiplying this quantity
by its complex conjugate and averaging over N record
sets we obtain:

.pLa(E -Z H.

wxHyj = ZxyHy))
(E* Z;‘XH;‘] Z;yH;]) (22)

where each component is the Fourier coefficient of
the measured time series. The values Z,, and Z,,,
that minimize eq. 22 can be determined by first set-
ting the derivative of { with respect to the real and
imaginary parts of Z, . to zero which leads to:

*
]_Z) E HY, =Z, Z} H 2 Z) ' HyhY
(23a)
Then by setting the derivative of { with respect to
the real and imaginary parts of Zx to zero we obtain:
EE Z ?HX} J’I+Zx ’EIH)’] yi

(23b)

The two relations (23a, b) can be solved as simultaneous
_equations to yield the tensor elements Z,.,. and ny. A
relation similar to eq. 22 can be formulated to give

Z x and Z vy by minimizing the mean of the squared
dlfferences between E meam .and E Pfed

2.2.3. Estimates using cross-correlation analysis of
single record sets
In Fig. 8 we show a model in which two independent
stationary random input signals, x(#) and x,(¢), are
coupled through two linear systems characterized by
the impulse response functions A () and h,(2), re-
spectively, to produce a third signal y (¢) such that:

Y= [ h@x -1y dr+ [ hy()x,(t-ndr

(24)

Tick (1963) describes a method for determining the
characteristics of the linear systems, k;(¢) and 25(?).
This, of course, is precisely the time-domain analog of
determining the tensor elements which couple two
magnetic components to each electric component.

By writing eq. 24 at the lag time (¢ +5) instead of
t, and cross-correlating with x(¢) we obtain:

T/2

Hm%f

T-w = T/2

xl(t)y(t+s) de =

T/s

1
= x. () h.(Dx,(t+s—71)drde
T Jos 1 _fm 1%

=lim

T—boo

7/2
+ hm 'lj: f x, (t)f hy (7)x, (t+s—1)d7dt
T/2 Lo (25)
Inverting the order of integration we can integrate
over ¢ and express eq. 25 in terms of cross-correlation
functions of the form of eq. 17a. In this way eq. 25
becomes:

Peyy®= [ mOps 6= s

+ f hy(p,, . (s~ 1)d7 (26)
or, in the frequency domain:

P (@) =H, @P, ; @ +HP, . @)

27
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%, (1) ——= h
INDEPENDENT
STATIONARY LINEAR SYSTEMS (4]
RANDOM (TIME INVARIANT) Y
INPUT SIGNALS
Xg (h) ——— hy ()

Fig. 8. Time-domain model of two independent signals x, ()
and x, (f), combining through two linear systems 4, () and
h, (1), to produce a third signal y (7). -

where the cross-powers are defined in eq. 17b and
Hj (w) and H,(w) are the Fourier transforms of the
impulse response functions. In a similar way, x,(?)
can be cross-correlated with eq. 24 at the lag-time
(t + s) leading to:

P, (@) =H ()P, , (&) +H) ()P, . ()(28)

Eq. 27 and 28 represent two simultaneous equations
which can be solved to yield H,(w) and H,(w), pro-
viding the determinant:

lexl le"z (29)
szxl Px,,x,

is non-zero. This condition is met if x(¢) and x,(?)
are independent and randomly correlated.

Madden and Nelson (1964) were the first workers
to apply a variation of this technique to estimating the
tensor impedance elements. They formulated equations
similar to eq. 27 and eq. 28 in terms of the smoothed
auto-power and cross-power spectra.

More recently other workers have suggested simu-
lating the smoothed auto-power and cross-power spec-
tral density estimates in eq. 28 by averaging a number
of Fourier harmonics over a discrete band of frequencies
(Sims and Bostick, 1969; Vozoff, 1972). In this case,
tensor elements can be determined from simultaneous
equations of the form:

K ExHE > = Zyy < HyeHE>+2Zyy <H,H$>
(30)
< ExH} > = Zyx < HyH} >+ Zxy <HyH} >

where the brackets denote frequency-band averages
of terms like relation (16) as approximations to
smoothed power spectral estimates from relations
like (17b) for a finite lag. The two terms Z,, and Z,,,,

are, in a sense, average estimates of the tensor elements
over the smoothing band-width.

A schematic of an algorithm that we have found use-
ful for frequency-band averaging is shown in Fig.9. The
raw data are first band-pass filtered at the frequency of
interest. The filtered data are then replotted both as a
set of time series as well as a set of horizontal polariza-
tion diagrams for the electric and magnetic components.
A visual inspection of these plots can be checked quali-
tatively for correlation between the magnetotelluric
components and for independence between the data
sets.

Examples of this technique applied to the two
substorms in Fig. ! are shown in Fig. 10 and 11 where

RAW DATA

DIGITAL BAND-PASS FILTER

$=02
1
v K
PLOT FILTERED PLOT-EBH
| MORIZONTAL POI ARIZATIONS |
[ J
X

VISUAL CHECK
FOR
INDEPENDENT SAMPLES

v

CALCUWLATE

5-COMPLEX
FOURIER COEFFICIENTS

09w to lle

l

FORM
CROSS-POWER PRODUCTS
AND - AVERAGE OVER

5 COEFFICIENTS

I}

CALCULATE
TENSOR ELEMENTS
FOR MEASURING
COORDINATES

l

ROTATE
TENSOR ELEMENTS
AND DETERMINE ANGLE FOR
MINIMUM DIAGONAL ELEMENTS

FREQUENCY BAND-AVERAGING

Fig. 9. Schematic of an algorithm for estimating tensor ele-
ments using frequency-band averaging.
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SUBSTORM: |
SO 11| TS ——
ELECTMC FIELD Jv. 15 MV/KM

Fig. 10. Band-pass filtered data from substorm 1 (Fig. 1), the polarization plots to the right are for the electric field (top) and for
the magnetic field (bottom) to the same scale as the time series.

SUBSTORM 2
Ex
ELECTRIC FIiELD I S MV/KM
Ey _M,MV\/\I\AWV\/\/\/VVMN\AAMWM
60 MIN.
]
Hy MWV\/\/\N\/V\/V\/W\/\/WWN\/\AM——«
MAGNETIC FIELD I 13y
Hy —-W«/\/V\/J\NVVV\/\/\/\WN——«M

Fig. 11..Band-pass filtered data from substorm 2 (Fig. 1) drawn with the same convention as Fig. 10. Events between orthogonal
magnetotelluric pairs (£, Hy and Ey, H,) correlate well. The polarization plots demonstrate a strong linear correlation between
E,, Ey and H,, Hy.

the raw data have been convolution filtered at dinate system defined in section 1.3, which is done by
1000-sec period using the frequency response in Fig.3. rotating the tensor elements and determining the angle
Five complex coefficients are determined for each mag- that minimizes the diagonal elements. This technique
netotelluric component at equally spaced frequencies is discussed with two contrasting examples in the next
within the band + 10% of the center frequency. Cross- section.

power products of the coefficients are formed at each
frequency and the five complex cross-power coefficients 2.3, Determining the principal directions
are averaged together as shown in eq. 30. One may '

solve these two equations for Z,, and Z,,. A similar In section 1.2 it was pointed out that during a

set of equations can be set up and solved for Z,,, and coordinate rotation, the tensor elements Z,,,. and

Zyy. Zyy in eq. 9 go through minima each time the ro-
Having calculated the tensor elements for our tating coordinate system (x, y) passes through a prin-

measuring coordinate system, the last step in the al- cipal direction (either x’ or y'). Bostick and Smith

gorithm of Fig.9 is to determine the principal coor- (1962) applied this feature by actually plotting the
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tensor elements as a function of rotation angle, se-
lecting the angles at which the diagonal elements are
minimum as the principal directions.

As an example, we show in Fig. 12, the rotation of
tensor elements calculated from substorm 1 (Fig. 10)
using the algorithm for frequency-band averaging
described in section 2.2.3. The rotation of the tensor
elements behaves properly as there are two minimain
|Z; 1| and one minimum in |Z ,|.

On the other hand, tensor elements calculated from
substorm 2 do not rotate properly as shown in Fig.13,
since | Z; ;| goes through only one minimum while
rotating through 180°. We might well be suspicious of

tensor estimates from substorm 2 since the polarization

plot in Fig. 11 suggests a linear correlation between the
two electric field components, as well as between the
two magnetic field components, which implies that the
two magnetic field components are not independent

as required for solving equation set (30). The polariza-

tion plots of substorm 1 in Fig. 10 show a more random

0.6
AMPLITUDE OF TENSOR ELEMENTS

To 2 1000 sec.
oS5 STORM —|
@
04}
03
i)
02

ol 'ZIII

1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 6O 180
ROTATION ANGLE, DEGREES

Fig.12. Amplitudes of tensor elements calculated from sub-
storm 1 as functions of rotation angle. Two minima are
appatent in Z,, (or Z,,) and one minimum is apparent in
2y, (o1 Zyy).
correlation between the field components; hence this
data set provides more reliable estimates of the tensor
elements.

Clearly, one must exercise caution not only in
using frequency-band averaging techniques to esti-
mate the tensor elements, but in using any of the

techniques outlined in section 2.2 since they all require

independent samples of the magnetotelluric field com-
ponents. One does well, therefore, to investigate
carefully the nature of the data at each stage in its
processing.

2.4. Comparison between Cagniard estimates and
tensor estimates

In our final example, we contrast apparent re-
sistivity estimates from the Cagniard relation eq. 3
with estimates from the principal values of the ten-
sor impedance eq. 7.

The magnetotelluric components recorded during
the substorm in Fig.6 were band-pass filtered using
recursive digital filters with a selectivity of 0.1 at a
period of 150 sec. Following the method of Grillot
(1973), complex Fourier coefficients were calculated
for a number of events selected by inspecting the
filtered record section. Each event was four periods
or 600 sec long and the entire record was more than
54,000 sec long. Apparent resistivities calculated
from the complex Fourier coefficients of each event
are given in the left hand columns of . Table III where
the subscript on the apparent resistivity denotes the

sense of the electric field component. The Cagniard

07
AMPLITUDE OF TENSOR ELEMENTS
06 - To * 1000 sec.
STORM - 2
os | 12,
04
L]
03|
2
o2 v
~ 0.
1 1 1 1 1 1

e I
4] 20 40 60 80 100 120 140 160 180
. ROTATION ANGLE, DEGREES

Fig. 13. Amplitudes of tensor elements calculated from sub-
storm 2 as functions of rotation angle. The elements do not
properly rotate, as there is only one minimum in Z , do
not two as required.

estimates display a relatively broad range of scatter
with a standard deviation of approximately 50% of
the mean.

The same complex Fourier coefficients that were
used to make the Cagniard estimates were used to
determine the tensor elements by solving equations
of the form (20) for the event-pairs given in Table
I11. The tensor elements were rotated to an angle
that minimized the diagonal terms, and the apparent
resistivities calculated from the principal impedance
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TABLE I

363

Comparison of apparent resistivities calculated from the simple Cagniard relation and from off-diagonal elements of rotated

impedance tensor.

Cagniard estimates Rotated tensor impedance estimates
Event p. P Event Pxy Pyx Rotation angle
no. (S)'Cz-m) (S}"L-m) pairs (§2-m) (Q-m) (east of North)
5 41 12 5,6 38 18 -5°
6 42 13 6,12 48 21 —-15°
7 44 13 7,5 35 18 -10°
8 46 10 8,7 36 21 -10°
11 26 31 11,6 34 19 -5°
12 35 48 12,5 48 19 -15°
13 102 32 13,11 46 16 +15°
14 90 36 14,11 46 18 +15°
15 _14 34 15,11 43 17 +10°
(o)) = 56 (o)) =25 (pyy) =42 (pyy) =19 ©)y==-2°
s.):l. =25 s.}(ll. =13 s.c{ =54 s.(Ji) =18 sd. 7 12°

Site: Sudurarhraun (N. Central Iceland). Period: 150 seconds. Analysis techniques: Complex Fourier coefficients calculated for

individual events on filtered record. Coordinates: Geographic.

values (Z, or Z,,,) are given in the right hand
columns of Table III along with the rotation angle.

In comparison with the Cagniard estimates, the
rotated tensor impedance estimates clearly separate
into two modes with principal resistivities of approx-
imately 20 and 40 Q2-m. The standard deviation is now
approximately 10% of the mean, a significant im-
provement over the range of Cagniard estimates.

A further observation is that by inspecting the
column of rotation angles in Table III, it appears that
the principal coordinate system is more or less aligned
along the same direction as the measuring axes, which
were along geographic coordinates. This implies, for
this particular example, that if the earth was indeed
strictly two-dimensional then the Cagniard estimates
based on field quantities measured in geographic
coordinates would separate into maximum and
minimum values which were essentially the same as the
estimates based on the principal tensor elements. Close
inspection of the average Cagniard resistivities in the
left-hand columns of Table III does seem to show a
tendency which, in retrospect, appears to reflect the
tensor estimates in the right-hand columns. However,
Px does not precisely equal pxy, and moreover px

shows a great deal more scatter than the scatter in py.
This is due to the fact that when calculating px, one
uses the electric field component E, which, from eq.7,
is in a sense contaminated by a contribution from the
parallel magnetic field component H, through the
coupling term Zy,. Although this term is small, it
nevertheless is not zero, and leads to instabilities in the
Cagniard estimates whenever the magnetic field is
strongly polarized parallel to the coordinate along
which the electric field is measured.

Therefore, it appears that apparent resistivities
estimated from the rotated tensor elements should be
significantly more stable than estimates from the field
ratios themselves (the Cagniard estimate), even when
the measured field components are known to lie along
the principal coordinates.

3. Conclusion

Determining the nature of the transfer function
coupling the telluric and magnetic variation fields is the
fundamental problem in the processing of magneto-
telluric data. In general this transfer function has a
tensor character and one is faced with the problem of
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obtaining reliable estimates of tensor elements which
are stable from data set to data set, and which vary
smoothly with frequency. A number of techniques have
been described for transforming time series into the
frequency domain. These involve: (1) Fourier harmonic
analysis; (2) Fourier transient analysis; (3) power
spectral analysis; (4) band-pass filtering.

Moreover a variety of methods are available for
manipulating multiple electromagnetic time series to
provide estimates of the tensor impedance elements -
themselves. These are: (1) estimates from two
independent record sets; (2) estimates from N
independent record sets; (3) estimates using cross-
correlation analysis of single record sets.

It has been our impression in using all of these
methods that there are strengths and weaknesses in
each of them. By the same token, none of the methods
is inherently superior to the others. We, ourselves, have
tended to discourage “routine” data processing and are
more in favor of closely inspecting the data at all stages
of the analysis. We place much greater reliance on our
results if a number of data processing techniques lead
to the same answer. As implied earlier, we feel that
considering the empirical nature of magnetotelluric
data processing, there is no substitute for having a great
deal of physical insight into the nature of the particular
data being used.
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