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This paper is a review of techniques of processing magnetic variation data from the point of view of their effec-
tiveness in determining the parameters that describe a particular electromagnetic induction problem. Among the
factors that influence the choice of data-processing technique are: (1) the relative importance of induction by vertical
and horizontal magnetic field variations, and (2) the relative importance of local induction in the conductivity anomaly
as compared with its influence on the flow of worldwide current systems.

The response of an anomaly can be calculated by transfer-function methods, and presented in the form of frequency-
dependent induction vectors or ellipses. The usefulness of internal/external field separation procedures is limited by
the problems involved in estimating the spatial behaviour of the normal variation fields.

1. Introduction

The objective of a sequence of data-processing opera-
tions applied to a given situation should be to present
the information in such a way as to narrow down to a
minimum the range of models which need to be con-
sidered in the interpretation. The interpretation of a
geomagnetic deep-sounding experiment inevitably in-
volves the use of modelling techniques, whether the
model is physical or numerical, and the smaller the
number of parameters, and the narrower the limits on
those that it is essential we specify, the better.

The parameters that have to be specified in electro-
magnetic induction problems can be divided into two
groups — those relating to the conductivity anomaly
itself, and those that relate to the external inducing
field.

1.1. The conductivity anomaly

1.1.1. The lateral extent of the conductor can be
estimated from the spatial behaviour of the anomalous
internal magnetic variation fields. If sufficient data are
available, the fields can be separated into internal and
external parts, and the normal internal field removed.
Alternatively, one of the so-called “transfer function”
methods can be used, which rely on persistent correla-
tions between magnetic field components to detect
the presence of anomalous internal currents. From the

resulting pattern of anomalous fields, it should be pos-
sible to form an idea of how realistic an interpretation
of the anomaly is likely to be if a two-dimensional model
is used.

1.1.2. The depth and/or thickness of the conductor
is very often one of the parameters that we wish to
determine. It is usually assumed that the frequency
response of the anomaly provides the best test of the
correctness of the selected model, although the horizon-
tal scale of the anomaly will also influence the choice.
The frequency response is calculated in the form:

Q (=B, (N /B, () )

By, (f) is an anomalous internal field component at
frequency £, and B, (f) = By, (f) + B, (f) is the total
normal field — the sum of the normal internal and ex-
ternal parts. By, (f) and B, (f) need not be the same
component of the magnetic field; often the most diag-
nostic response is the ratio Z, (f)/H,, (f) where Z and
H are the vertical and horizontal components respec-
tively.

1.1.3. The conductivity of the anomalous body is
similarly estimated by comparing the observed response
Q (f) with that computed for theoretical models.

1.1.4. The conductivity of the “normal” region sur-
rounding the anomaly is often taken to be zero in cases
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where local induction is assumed. In theory, it should
be known from the long-period data and the solutions
obtained for the global conductivity distribution, but
in practice the conductivity at shallow depths (up to
400 km) is not resolved by the longer period variations.

1.2. The inducing field

1.2.1. The distribution of the currents producing
the external field variations can be specified, or alter-
natively the spatial behaviour of the normal magnetic
field variations over the earth’s surface: B, (f).
Another approach is to determine the variation of the
response Q (f) with the direction of the inducing field,
either by calculating the induction ellipse from the
transfer functions, or by determining the instantaneous
response to a particular external field configuration by
performing an internal/external separation at a given
instant of time. The chief problem in establishing the
nature of B, (f) is that measurements can only be
made over a limited area, and only those fields whose
spatial wavelength is less than the horizontal extent
of the array of instruments can be separated.

1.2.2. Do we need to consider induction only by
the vertical component of the field, or by the hori-
zontal component, or both? This decision may affect
the choice of approach to the processing and presenta-
tion of the data. For instance, users of transfer-func-
tion methods often assume that Z, is small, and that
induction is by some horizontal component of the
field.

1.2.3. We must also decide whether the anomalous
fields are the result of local induction in an isolated
conducting body, or whether they are caused by the
channelling through a local conductor of a worldwide
current system induced elsewhere, €.g., in the oceans.

In this paper, I shall first discuss those points that
influence the choice of data-processing technique, and
then go on to consider methods of determining the
frequency response of an anomaly. The determination
of Q (f) involves the separation of B;, (f) from the
observed field, and two approaches to this problem
have been used. The transfer-function method is gener-
ally applied to the results of surveys using only a small
number of instruments. The second approach, involving
the separation of the fields into parts of internal and

external origin by the use of surface integral formulae,
requires simultaneous measurements by a large number
of magnetometers. The two techniques should not, how-
ever, be regarded as mutually exclusive.

2. Induction by vertical and horizontal field variations

Three principal arguments have been advanced in
favour of induction by either vertical or horizontal field
variations:

(a) Above a horizontally stratified conductor, Z,
should be zero or very small when the spatial wave-
length of the external field is large (e.g., Everett and
Hyndman, 1967).

(b) Regions of anomalous conductivity are likely to
have horizontal dimensions substantially greater than
their vertical dimensions. Induction in sheet-like bodies
by vertical field variations should be much more effec-
tive than induction by the horizontal component
(Bullard and Parker, 1971).

(c) The observed high correlations of Z and some
horizontal component at anomalous mid-latitude sta-
tions indicates induction by the horizontal field
(Hyndman and Cochrane, 1972).

2.1. The relative importance of normal horizontal and
vertical field variations

Price (1950) showed that, for induction in a half-
space of uniform conductivity by a spatially uniform
external field:

Z,=2,+Z,=0 03]
i.e., the field of the internal currents cancels the ex-
ternal field variations. The horizontal field, 6n the
other hand, is enhanced by the field of the igternal
currents.

From this result it appears that the existence of
normal vertical field variations requires non-uniform
external fields, and the question arises of how rapidly
the importance of Z increases as the wavelength of
the external field decreases. As a measure of the rela-
tive importance of Z, and H,, we can take:

W, = 142 ()] A gy () ®

where A5 (f) and Ay, (f) are the coefficients for the
term of order / in a spherical harmonic expansion of
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Fig. 1. Relative amplitude of normal vertical and horizontal
field variations plotted as a function of frequency for differ-
ent spherical harmonics of the external field.

the vertical and horizontal magnetic variation fields

at frequency f. In Fig. 1, |W,(f)l is plotted as a func-
tion of frequency for different spherical harmonic
orders. The conductivity model is one based on the
long-period data, and its principal feature is a steep
rise in conductivity from 10~2 to 2 2~ 1.m~! concen-
trated in the depth range 500—700 km (Banks, 1972).
Its usefulness for predicting the response at the higher
frequencies is limited by the inability of the long-period
variations to resolve the conductivity of the top

400 km. Fig. 1 shows that, for periods less than an
hour, |W;| = 1 for I greater than 6 or 7, corresponding
to wavelengths of 7000 km or less. In the vicinity of
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Fig.2. The amplitude of vertical and horizontal field variations
at a frequency of 5.5¢ day ™! plotted against geomagnetic dip
latitude.

the auroral or equatorial electrojets, external fields
with wavelengths of less than 5000 km are quite possi-
ble. In middle latitudes, the source wavelength may be
10,000 km or more. The amplitude of vertical field
variations shows a rapid increase at geomagnetic dip
latitudes of 50—55° (Fig.2), presumably where the non-
uniform fields of the electrojets become important. It
appears that Z | may be larger than A at high and very
low magnetic latitudes, while H, is dominant elsewhere.

2.2. Anomaly dimensions

If the problem we are dealing with is one of induc-
tion in an isolated conducting body, the ratio of the
horizontal dimension to the thickness of the body is of
critical importance in determining the effectiveness of
induction by Z,, and H,. Bullard and Parker (1971)
show that for induction in a disc of radius a, thickness
h and conductivity o, by a uniform vertical field B of
frequency f, the relative importance of the induced and
inducing fields is given by: ’

7, = B1/By ~ muyo fah/2 @

(g =47 - 107 henry .m~1)

When the inducing field is horizontal, the relevant
parameter for induction in a slab of width 24 and thick-
ness A is:

Yy = BI/BO ~ ﬂpoofh2/2 5)

If the vertical and horizontal variation fields have the
same amplitude, the effectiveness of induction by Z
as compared with H is given by the ratio:

v/, =a/h ()

Provided that Z /H, is greater than h/a, induction in
an isolated conducting body should be dominantly by
the vertical field, even allowing for its smaller ampli-
tude.

The maximum plausible value for the thickness of
an isolated conductivity anomaly is 500 — 600 km,
i.e., the depth of the conductivity “step”. In any anom-
aly whose lateral dimensions are more than a few thou-
sand km, induction by the vertical component of the
field must be the more important. In practice, the value
of h is likely to be a good deal less than 500 km; in
the oceans it is only 5 km, and the worldwide current
system in the oceans must be induced by the vertical
component.
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A major difficulty in explaining a magnetic variation
anomaly in terms of local induction by H,, is the prob-
lem of the location of the return currents. The mag-
netic effects of the currents induced in an isolated sheet-
like conductor will almost cancel at the earth’s surface.
Hyndman and Cochrane (1972) suggest that the retumn
currents may actually flow at depths of several hun-
dred km. It has generally been assumed in the past
that highly conducting regions at or near the surface
are effectively insulated from the deep conducting
mantle. Hyndman and Cochrane suggest that regions
where connections exist may play an important part
in controlling the flow of the internal currents. How-
ever, by allowing the return currents to flow elsewhere,
we are moving towards a global approach to the induc-
tion problem, and leaving behind the concept of an
isolated conducting body.

2.3. Observed correlations of Z and H

Hyndman and Cochrane (1972) argue that the
large correlations observed at middle latitudes betweer
Z and some horizontal component of the field must
indicate induction of Z,, by H,. Their argument rests
on the assumption that Hia/H is much less than one,
while it is quite probable that Z;,/Z should be of order
one.

We can see this by writing:

Z()=Z.(N)+Nz(f)
H(f)=H.(f) + Ny (f)

where Z_ (f) correlates perfectly with H (f), while
Ny (f) and N (f) are the uncorrelated parts of the
records. The Z/H coherence is:

S

Q)

2 =SZch | SHeHc ®)
ZH Sz Sum

where S,z is the power spectrum of Z, etc.
SZCZJSZZ and SH(‘I{C/SHH cannot be determined in-
dividually, but it must be true that:

S S
ZcZc 2 HcHe .
BELCBN TR (9)
Szz = T Syy

It is quite possible to observe Z/H correlations as high
as 0.8 at anomalous stations (H here is the horizontal
component in such a direction as to maximise R%H),
which implies that S;.7./Sz7 and Sp.g/Syy are both

greater than 0.8, If this result is accounted for in terms
of induction by Z, then Z_= Z , is the inducing field,
and H, = H,,, assuming there to be no normal Z,,/H,,
correlation. The implication is that H/H =~ 0.9, which
seems unlikely in view of the apparent uniformity of H
at mid-latitudes. Induction by H, on the other hand,
would require Z = Z;, to be induced by H; = H,. The
consequence, that Z,/Z ~ 0.9, seems to be acceptable
to most workers.

2.4, Conclusions

The outcome of the theoretical arguments in sections
2.1 and 2.2 appears to be that for isolated conductivity
anomalies of almost any plausible dimensions, the ver-
tical component will be much the most effective in in-
ducing currents, in spite of the relatively small ampli-
tude of normal vertical field variations. When the anom-
aly with which we are dealing is a feature on a global
scale, then it is probably better dealt with in the con-
text of the global induction problem.

The experimental observations discussed in section
2.3 might appear at first sight to contradict the theore-
tical findings. However, they probably indicate that
the majority of magnetic variation anomalies are not
the result of local induction, but are instead caused by
the channelling of a worldwide current system through
local conducting bodies. If this is the case, the argu:
ments about the effectiveness of induction by Z and
H are irrelevant. For reasons discussed in section 3.5,
such perturbations of the induced current flow can be
expected to give rise to the observed Z/H correlations.

3. Transfer functions and their presentation

The “transfer function” method for the detection
and separation of anomalous internal fields from mag-
netic variation data arose largely from the work of
Parkinson (1959) and Wiese (1962). A more formal
approach was developed by Schmucker (1964),

Everett and Hyndman (1967), and Filloux (1967), and
described in detail by Schmucker (1970). Cochrane and
Hyndman (1970) and Edwards et al. (1971) have intro-
duced other ways of presenting the transfer functions.

3.1. A theoretical approach

We assume that there exists a linear relationship
between the Fourier transforms of the anomalous
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internal fields and the normal field components, meas-
ured at some point:

Z (N =Wy (NX, N+ Wy (NY (N + Wz, (NZ (f)

Ya(N=Wyx(NX, () + Wyy (NY, () + Wy, (NZ, (N

X, () = Wyx (NX, (1) + Wy (NY, (N + Wy, (NZ, ()
10

Although this formulation allows for variations in the
direction of the inducing field, it does not allow for
the effect of changes in the wavelength (A) of the ex-
ternal field. Strictly speaking, the transfer functions
(the matrix of W’s) should be functions of A as well as
of f. This difficulty apart, the W’s should characterize
the anomalous conductivity structure in the vicinity
of the station. Zy, Y,,, X;,, Z,, Y, X, have to be
determined from the observational data. If this can be
done, the W’s can be estimated by calculating suitable
cross-spectra.

Provided the normal fields are known, the anom-.
alous fields can be calculated from:

Z,(N=2()-2Z,(f)etc. (11)

which leads to the set of equations:
ZN=Wzx NX, N+ Wzy NY, (N +
1+ W (N Z,() (12)

etc.

The problem is reduced to that of estimating the nor-
mal field components X (), ¥ (), and Z, (f) at
the point of observation. If simultaneous records are
available from a station not affected by the anomaly,
one that can be classed as “normal”, the normal fields
at the anomalous station can be approximated by the
total observed fields at the normal station. Such an
assumption can only be used if the normal field is
effectively uniform over the distance separating the
anomalous and normal stations.

3.2. Criteria for choosing normal stations

A practical definition of a normal station is that it
should be one situated above a horizontally stratified
conductivity structure, and sufficiently distant from
any lateral discontinuities as to be unaffected by
the associated anomalous internal currents. A more

satisfying definition would involve the specification of
the horizontally stratified conductivity structure as
being itself normal, but the practical use of such a def-
inition would require measurements on a global scale.

The response at a normal station, as defined above,
will be independent of the direction of the normal
horizontal variation field, and the vertical field will not
show any persistent correlation with either X or Y
(X and Y can be, as usual, geographic north and east
components, or geomagnetic north and east compo-
nents, i.e., H and D). In other words, when the spectral
estimates are averaged over sufficient quantities of data,
the coherence between any pair of the components X,
Y, and Z should be zero.

However, if the coherence is not zero, it is not neces-
sarily an indication of the presence of persistent internal
currents; it can equally well be the result of persistent
external currents. The observed magnetic field variations
at a particular point can be considered to be the sum of
contributions from a series of linearly independent cur-
rent systems. When the relative amplitude of the contri-
butions from these sources changes from one record
to another, the effect is to cause the phase difference
¢zx (f) between Z and X (for instance) to vary in a
random manner between records. Consequently, when
averages are taken over a sufficient number of differ-
ent disturbances, we expect to find that the cross-
spectrum of Z (¢) and X (¢) averages to zero, and
RZ, (f)=0.

If, on the other hand, the relative positions and con-
figurations of the ionospheric currents remain unchanged
from one record to another, the measured coherence
will not be zero. Magnetic variations caused by persis-
tent electrojets, by the S q current system, by the ring
current, and by persistent internal currents, will show
a significant coherence between the field components.

In passing, it is pethaps worth noting that the coher-
ence of a particular component of the field, determined
between different stations, can be used to map the
position of internal currents. The interstation coherence
of the vertical component should fall off most gradually
in a direction parallel to the strike of any anomalous
internal current concentration, and most-rapidly in a
direction at right angles to it.

3.3. Calculation of transfer functions in practice

The set of equations (12) is not often used in prac-
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tice. This is due in part to the very real problems in-
volved in finding a station that satisfies the criteria
outlined in section 3.2, and which is operating simul-
taneously with the variometers deployed around the
anomaly. .

Instead, some further simplifying assumptions are
introduced:

(1) That Z_ is small compared with Z, and the terms
Wzz, Wyz, Wxz can be ignored.

(2) That there is no correlation of Z with X or Y.

(3) That X, and Y, can be replaced by X and Y,
respectively, i.e., that X, /X and Y}, /Y are small.

The validity of these assumptions has already been
discussed in sections 2.1 — 2.3 and 3.2; they are prob-
ably quite safe in'middle latitudes. If they are accept-
able, we can replace X and Y, by X and Y, and re-
duce the status of the term involving W, (f) to that
of a small uncorrelated “error”. This approach has the
attraction that the transfer functions W,y (f) and
Wzy (f) can be estimated from the three components
of the field recorded at a single station. The very much
simplified equation becomes:

Z@A)=ADXN+BNY ) +e() (13)

where € (/) is a residual part of Z (f) that does not
correlate with X or Y — presumably Z, and instrumen-
tal noise. The remaining transfer functions involved in
the other two equations can not be estimated by a
single-station method of this kind.

3.4. Estimation of the transfer functions using cross-
spectra

A (f) and B (f) are estimated by minimizing the
residual power S, (f) = (€ (f) €" (f) with respect to
A and B (Schmucker, 1970; Everett and Hyndman,
1967; Cochrane and Hyndman, 1970). A simple calcu-
lation supplies the following formulae for 4 and B:

4= SzxSyy —SzySyx
SxxSyy — SyxSvx

*
_Szv8xx — SzxSyx
SxxSyy — SyxSvx

where Sz is the cross spectrum of Z (£) and X (¢) etc.,
and the asterisk indicates the complex conjugate. An

14

B

inherent assumption in this calculation is that
e (NX * (f) = 0; in other words it is assumed that
Z, NX* (N =0.

The cross-spectra can be estimated either by calcu-
lating the Fourier transforms of individual disturbances,
and then taking a suitable average over transfer estimates
obtained from different stretches of data, or by comput-
ing the power and cross-spectra for a complex disturbed
record such as that of a magnetic storm. In either case,
there must be sufficient power at the frequency of inter-
est for the spectral estimates to be meaningful.

3.5. The significance of the observed relations

The equation Z_(f) =4 (f) X (f) + B ()Y (f) de-
fines a “preferred plane” along which magnetic field
variations of frequency f tend to occur. Parkinson
(1959, 1962) studied preferred planes by a graphical
method, and indicated the direction of the plane by
plotting the horizontal component of a unit vector
orthogonal to the plane. The “Parkinson vector” de-
fined in this way points towards anomalous internal
concentrations of current.

Parkinson’s method did not allow him to study
phase differences between field components. In gen-
eral A (f) and B (f) are complex, and many authors
calculate both real and imaginary induction vectors
at each frequency. The length of the real vector is:

Gy = [(Re (4))* + Re (B)?]7 (15)
with an azimuth:
0 g = arctg (Re (B) /Re (4)) (16)

and similar expressions are used to calculate the mag-
nitude and direction of the imaginary vector. As de-
fined in this way, the vector lies in the preferred plane,
and points away from internal currents. Some authors
(e.g., Edwards et al., 1971) then change the azimuth by
180°, so that its direction is the same as that of the
Parkinson vector.

It is generally agreed that the vectors so defined
point to anomalous concentrations of the internal cur-
rent. Many workers would further argue that the exis-
tence of the correlations between Z and X and Y must
indicate that the anomalous internal current is “in-
duced” by the horizontal component with which Z
shows maximum correlation, i.e., the component in
the direction 6. I think that this argument is prob-
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ductor

Fig. 3. Geometry of a two-dimensional conductivity anomaly.

ably correct, but that.we have to be a little careful in
defining what we mean by the word “induced” in
this context.

Jones and Price (1970) have investigated the per-
turbation of the internal current flow and the asso-
ciated electromagnetic fields produced by a two-di-
mensional conductor boundary or structure such as
that shown in Fig. 3. They show that the equations
can be split into two groups dealing with two sets of
field components. In the H-polarization case, the cur-
rent flow is perpendicular to the boundary, and the
field components are Ep, Hj, and E,, (E,, is the electric
field component perpendicular to the lfoundary, H,;
is the magnetic field component parallel to the bound-
ary, and E, is the vertical electric field). Jones and
Price show that, in this mode, the magnetic field at
the earth’s surface is unaffected by the conductor
boundary. If the external field is essentially uniform,
there:will be no contribution to the vertical field
variations from the H-polarization fields.

In the E-polarization case, the current flow is par-
alle! to the boundary, and the field components in-
volved are £}, Hp, and Z. The current flow can be
split into two parts: the normal horizontal current
sheets, and a current which represents the perturbation
of the normal currents by the conductor. The normal
current sheets produce a magnetic field at the earth’s
surface that cancels the external vertical field varia-.
tions. The only contribution to the vertical compo-
nent comes from the anomalous internal current flow
associated with E}, which is itself a perturbation of
the main internal current flow parallel to the conduc-
tor boundary. The vertical field variations must there-
fore correlate with the component of the normal cur-
rent flow parallel to the boundary, which on a global

scale is induced by Hp. It follows that there should be
a linear relationship between Z and Hy:

Z(N)=G(NHH,() an

By writing H), (F)=X(f)sina+ Y (f) cos a, we can
show that this equation is equivalent to eq.13 provided
that:

tg 6 =B ()4 (f) (18)
and: |G (f)I2= (14 ()12 + B (N)I?) 19

(0 is the azimuth of H, rather than the strike of the
conductor) which is in agreement with the way the in-
duction vectors are calculated. We conclude that the
observed correlation of Z and H), can be interpreted as
indicating that the vertical field variations are largely
produced by anomalous internal currents that are per-
turbations by a conductor boundary of normal cur-
rents induced on a worldwide scale by H,.

3.6. Induction ellipses

Very often, G (f) has a phase close to zero, and in
such cases the separate calculation of real and imagi-
nary vectors is a satisfactory way of presenting the
transfer functions. However, when G (f) has a sub-
stantial phase, it is probably preferable to compute an
induction ellipse, as described by Everett and Hyndman
(1967). They point out that A (f), B (f) can be

/ \} /(- Nairobi

| —oGgr=05

100 km

Fig. 4. Real induction vectors at 50-minutes period for sta-
tions around the East African Rift Valley.
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Fig. 5. Magnitudes of real (GR) and imaginary (Gp) induction
vectors at Kabianga, plotted against frequency.

represented by an ellipse, and the azimuth of the
major axis (6., ) relative to the X-direction is calculated
by maximizing the expression:

Z,(0)Z;(8)=(A cos 6 +Bsin 0) (4" cos 6 + B*sin 6)
(20)

with respect to 8. Z_ (8) is the correlated vertical field
associated with a horizontal variation of unit amplitude
and zero phase at azimuth §. 8, is given by the equa-
tion:

_AB*-A'B
8= o (1)
el e .eR4
. 9
N Y E— Y S— Y SV
w- oa o 000 e
..g...oooooo""..:.o’..a. 0.3.. 0. ..0-
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Fig. 6. Azimuths of real (6 g) and imaginary (6}) induction
vectors.
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Fig. 7. Azimuth of the major axis of the induction ellipse at
Kabianga.

The ellipticity of the ellipse is a measure of how far
the two-dimensional assumption is justified. In a true
two-dimensional case, the ellipse should degenerate
into a straight line perpendicular to the strike of

the conductor. Horizontal magnetic variations can be
resolved into components along the major and minor
axes of the ellipse and we can determine the Z/Hp
phase along the major axis. The phase along the minor
axis will differ by 90°.

As an example of the different approaches to the
presentation of the transfer functions 4 (f) and B (f),
I have calculated induction vectors and the induction
ellipse for a station in Kenya, just west of the Rift
Valley. In Fig.4, real induction vectors have been
plotted for a period of 50 minutes. Their direction
has been reversed, so that they point towards the

06l
Q4r o .... °® .'. ‘e e *
R . . . e .
. . .
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Frequency (¢ min)
Fig.8. Lengths of the major and minor axes of the induction
ellipse (solid circles = major axis, open circles = minor axis).
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anomalous currents. They clearly indicate a concen-
tration of current flowing along the Rift. In Fig.5, the
magnitudes of the real and imaginary vectors are
plotted as functions of frequency. For this station,

G is very small, indicating that the anomalous vertical
field is almost in phase with H,. The azimuth of the

real vector (6 g) is very consistent; the imaginary vector

shows a considerable scatter (Fig.6). The induction
ellipse does not throw a lot of extra light on the situa-
tion in this case, because the phase of G is small. Fig.7
shows the azimuth of the major axis of the induction
ellipse; it coincides almost exactly with 6. In Fig.8,
the lengths of the major and minor axes of the ellipse
are plotted. For periods down to 8 minutes, the ellip-
ticity is large, indicating a close approximation to a
two-dimensional situation.

4. Separation of fields into internal and external parts

The formal separation of magnetic variation fields
into parts of internal and external origin has not often
been attempted, except for some work on two-dimen-
sional problems (e.g., Siebert and Kertz, 1957), and
the array studies by Reitzel et al. (1970), Porath et al.
(1970), etc. It is only since the design of a relatively
inexpensive variometer by Gough and Reitzel (1967)
that it has been possible to deploy large two-dimen-
sional arrays of instruments, and to consider the sepa-
ration of three dimensional fields. What follows is
largely by way of comment on the problems that
Gough, Reitzel, Porath, and their co-workers have ex-
perienced in attempting to separate magnetic variation
fields.

4.1. Surface integral formulae

The separation formulae that Porath et al. (1970)
use are:

" (X,Y)=21(Z,~Z)\,=

P e=x ) X G+ -yl) Y (x,)
N dx dy

[—x0)? + -1

I @Zy)=2n (Y -Y)|y =

0-y9) Z (x,y)

—ffw 2 7 @2
~ [(x_xo) +(y_y0) 12

I (ZX) =21 (X,~ X)), =

(x-x0) Z (x.7)

— “ dy
‘_f ;[ [(x—-xo)2 + (y—yo)zlg

and, of course:

(Ze + Zi)|0 =Z (xO’yO)
et ¥lo =¥ (xg,7,) 23)

(X, + Xy =X (x4, %)

(x> ¥,) is the point at which separation is being at-
tempted.

The procedure employed by Porath et al. (1970) is:

(a) To draw, by interpolation, contour maps of
field components at a single instant of time, or maps
of Fourier amplitudes at a particular frequency, calcu-
lated from the same stretch of data at each station.
(In the latter case, two maps have to be drawn for each
component, for the cosine and sine transforms.)

(b) The maps of the horizontal components are
adjusted to meet the condition that the vertical compo-
nent of the curl of the magnetic field is zero:

ox oY
dy ox

29

This can be done by drawing the contours of X and Y
in a suitable way on the same map, or by relaxing the
residuals of the line integrals of the magnetic field eval-
uated around grid squares (Price and Wilkins, 1963).

(c) A “‘summation window” is chosen, over which
the surface integrals are evaluated around each separa-
tion point. For the separation to be possible at points
near the edges of the array, the contour maps have to
be extrapolated outside the array.

4.2. The problem of the “normal’ variation fields

The surface integrals (eq.22) should be evaluated
over an infinite domain about the separation point
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(xg, yg)- In practice, they can only be evaluated over
the area of the summation window (domain D), with

the consequence that only those fields can be separated

whose scale-lengths are less than the dimensions of D.
The normal variation fields, with scale-lengths greater
than D, have to be removed either before or after eval-
uation of the integrals.

Removal of the normal fields B, before separation
should leave zero fields outside the area of the anom-
aly. Problems arise in estimating the spatial behaviour
of B, across the array, especially if the array does not
cover the whole of the anomaly. The experience of
groups working with arrays seems to be that simple
graphical methods of interpolating the normal field
are as effective as any. More use could perhaps be
made of data from standard magnetic observatories,
particularly in areas such as Europe with a relatively
dense network, although many observatories may
themselves be affected by localized anomalous internal
fields. :
The alternative is to evaluate the surface integrals
first, and remove the normal fields afterwards. The
consequences of this procedure can be seen if we con-
sider the effects on the separation of, for example, the
Y-component. What we would like to be able to deter-
mine is:

(Y, ~Y)=~1"(Z,) (25)
whereas what is computed is:
wm(Y, ~Y)=—1P(Z,y) (26)

The infinite domain over which the integral in eq.25
is evaluated can be split up into two parts: D, and the
remainder. By doing this, it is possible to show that:

Y=Y, +Y 2+ (Z,y)4n 7
oY =Y +8Y, (28)
Also: Y _=(1-f) Y, (29)

In other words, the internal field that can be separated
from the array of observations contains a fraction

of the inseparable normal field. The value of § depends
on D (Z_,y), i.e., on the spatial behaviour of Z,. If

B is known, a proper separation is possible, since:

Y, =Y /(1-f) , (30)

and: Y, =Y, —BY (31

can then be determined. For instance, if the normal
vertical field has zero east—west gradient across the
array, I (Z_, y)= 0,and $=0.5.

It is not clear that any real advantage is gained by
postponing the estimation of the behaviour of the nor-
mal fields to this stage. Nor is it obvious that an inter-
nal/external field separation subject to these uncer-
tainties gives better estimates of the anomaly response
than those derived by the approach described in sec-
tion 3.
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