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The methods of global geomagnetic sounding and the results obtained by these techniques are examined. The
principles and limitations of modelling methods, exact inversion methods, and heuristic (Backus-Gilbert) methods
are discussed. The evolution of our picture of the earth’s overall radial electrical conductivity distribution with
successive improvements in data and mathematical techniques is described. The prospects for improving this pic-

ture are also discussed.

1. Introduction

It isnow about 80 years since the electrical conduc-
tivity of the earth was first studied. In 1883 Lamb math-
ematically formulated the problem of electromagnet-
ic induction in a spherical earth by external magnetic
field variations. Using this theory, Schuster (1889) de-
duced from magnetic variation data that the earth act-
ed like a conducting body. Since then both the meth-
ods and results of geomagnetic deep sounding have im-
proved considerably. This article will discuss them in
the context of the earth as a whole and its overall ra-
dial conductivity distribution.

The central equation of geomagnetic deep sounding
is the induction equation:

V2 A=iwps(NA

Here A is the magnetic vector potential, w the angular
frequency, o the conductivity and s the permeability.
There are excellent physical reasons (Tozer, 1959) for
supposing u to be very close to g in the deep earth, so
that the conductivity is the only variable coefficient

in the above equation. Only poloidal fields are invol-
ved in induction processes; this restricts A to the form:
(Lahiri and Price, 1939):

A=rXvy
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inside the earth, where ¢ also satisfies the induction
equation. Y can be expanded as a sum over spherical
harmonics:
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where £ (r) satisfies the radial induction equation:
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Outside the earth, the field can be expressed as the gra-
dient of a potential W, which can also be expanded in
spherical harmonics:
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Here a is the radius of the earth, €])’is the amplitude of
the external inducing field in a particular spherical har-
monic and i}’ the amplitude of the corresponding inter-
nal induced field. The solutions and their radial deriva-
tives above and below the surface of the earth must be
fitted smoothly together The resulting ratio of the
induced amplitude 7' to the inducing field amplitude
em is S (w), the geomagnetic response of the earth

in the sphencal harmonic mode PJ*. It is a function of
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frequency and depends of course on the conductivity
distribution.

The central problem of geomagnetic deep sounding
is to obtain the radial conductivity distribution from
information about one of more of the S,’," (w). This
is the subject of this paper. It will start by discussing
the modelling method, which was the first to be ap-
plied, and then go on to the more sophisticated meth-
ods that have recently been developed.

2. Modelling methods

Modelling consists simply of guessing a conductiv-
ity distribution and comparing the calculated respon-
se of this model to the actual data. This carries no
guarantee that the final answer will be unique, but
has the advantage that the direct problem is fairly
easy to solve. Before the advent of the electronic com-
puter, even the modelling method was rather restricted
in scope. Conductivity estimates had to be based on
data which were easily obtained and on models which
could be solved analytically. The useful data were
therefore restricted to large and well defined magnet-
ic variations, such as the quiet daily variation (Sq) and
its harmonics, or-magnetic storm variations (Dg). The
S, -variations have as their source two current loops in
the day-lit hemisphere of the ionosphere, and therefore
have a fundamental period of a day. The spatial distri-
bution is such that the variation is dominated by the
spherical harmonic P,','“1 at the n-th multiple of the
daily frequency, up to about n = 4. The storm time
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Fig. 1. Lahiri-Price (1939) models of upper-mantle conduc-
tivity.

variations are generated by an equatorial ring current,
and are well described by the P spherical harmonic
alone. The periods seen in typical storms are of the
order of days.

In 1919 Chapman fitted a uniform sphere model
to Sq- data. For a best fitting model he obtained a
uniform sphere of radius 0.96 earth radii and a con-
ductivity of 0.036 mho/m. In 1930, after Price (1930,
1931) had developed the theory of electromagnetic
induction in the earth to cope with aperiodic varia-
tions, he and Chapman fitted a uniform sphere mod-
¢l to storm time variations. These contain compo-
nents with periods several times longer than §; and
therefore penetrate more deeply. They found a ra-
dius of 0.94 R, and a conductivity of 0.44 mho/m,
more than ten times Chapman’s earlier result, This
was the first indication that the earth’s conductivity
rises rapidly with depth.

In 1939, Lahiri and Price obtained analytic solu-
tions for a model whose conductivity varied as an ar-
bitrary power of the radius. They fitted a five-param-
eter model to both S, - and D -variations. The result
is shown in Fig.1. The conductivity varies as an arbi-
trary inverse power of radius below some arbitrary
depth. Above that it is zero except for a thin surface
conducting layer. This surface layer was not intro-
duced by them as part of the initial model; they could
not fit the data without.it.

The two curves marked d and e in the figure are
the extremes of the range of distributions that gave a
reasonable fit to the data. Again, the major conlusion
that was drawn from this was that the conductivity
rises quite rapidly, apparently around 700 km depth.
Between the surface and 700 km, the condiictivity is
very low. The surface layer seems to represent the
oceans, although the limited resolution available in a
five-parameter model prevents this interpretation from
being conclusive. The integrated conductivity of this
layer in model d, for example, is the same as that of a
uniform ocean covering the entire earth to a depth of
about 0.5 km. Although there is considerably more
sea water on the actual earth than this, it is broken up
by the land masses, and one might reasonably expect
this to reduce the inductive effect to that found by
Lahiri and Price.

This oceanic effect needs further comment. The
oceans constitute a large deviation from the lateral
homogeneity required by the earth models. Chapman
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and Whitehead pointed out in 1923 that they would
have significant effects on variations as rapid as the
Sq- variation. Schmucker (1970) has recently sum-
marized the evidence that Sq is indeed affected by
the oceans and local anomalies in the upper mantle.
In a global analysis, one hopes that these effects will
average out, but clearly this is not a very satisfactory
way of doing things.

So far only the conductivity determinations made
by studying induction by external fields have been dis-
cussed. None of these is able to say anything about
the conductivity very deep in the mantle. Estimates
of the very deep conductivity have been based on the
secular variation of the main geomagnetic field. The
secular variation is presumed to originate in the earth’s
core; what we see of it at the earth’s surface is deter-
mined by the filtering properties of the mantle. The
conducting mantle attenuates the rapid variations
more than the slow ones, and the spectrum of the sec-
ular variation at the earth’s surface can be expected
to cut off above some maximum frequency. This fre-
quency is observed to be about 0.25 cycles/year
(Currie, 1968). A number of investigators (Runcorn,

1955; McDonald, 1957; Yukutake, 1959, 1965; Roches-

ter, 1960; Smylie, 1965) have shown that a conduc-

tivity of 100 mho/m in the lower mantle (plus or mi-
nus half an order of magnitude) will account for this.
This approach is, of course, based on the assumption
that the observed cutoff frequency is not an intrinsic
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Fig.2. Estimates of mantle conductivity (R=Rikitake, 1950;
M = Price-McDonald, 1957; Y= Yukutake, 1959).

property of the secular variation source. McDonald
(1957) combined his secular variation result for the
lower mantle with the Lahiri-Price estimates for the
upper mantle to produce a well known composite mod-
el of the entire mantle. This is the curve marked M
in Fig.2. Also shown are two other curves obtained
about the same time. The curve marked R is due to
Rikitake (1950, 1966) who used as data several dif-
ferent effects, such as S, , D, magnetic bays and so-
lar flare effects. Curve Y is due to Yukutake (1959)
and is based on his study of the secular variation.
This is a brief outline of the state of global geo-
magnetic souding up to about a decade ago. After
this time modelling methods improved enormously,
mainly because of the application of electronic com-
puters. There was no longer any need to restrict mod-
els to analytically solvable profiles, and computer-
ized time-series analysis made available a larger
range of data. An advance along these lines was made
in 1963 by Eckhardt et al. In their paper they dis-
cussed the shorthcomings of the previously used
short-period data, S in particular. They pointed out
the discrepancies between various determinations of
the S, response and that the spatial structure of S,
was not as simple as it was assumed to be. Using time-
series analysis, they went on to study geomagnetic
variations of longer periods. They found a number of
strong peaks in their spectra, in particular the semi-
annual line and the harmonics of the 27-day solar
period. The spatial distribution of these excitations
was adequately described by the single spherical
harmonic P{ . The horizontal field was in fact fitted
to better than 5% at the five stations used in their
analysis for the 9.8- and 13.5-day periods. This was
consistent with the variations having as:their source
fluctuations in the equatorial ring current. Having
concluded that these longer periods could be used
for more reliable tests of conductivity models be-
cause of their simple spatial structure, they tested
a number of models against their data. The data
fitted the Price-McDonald model (Fig.2) quite well,
significantly better than some of the alternatives
such as the very sharply rising e-distribution-of Lahiri
and Price (Fig.1). They concludeéd that no revision
of the Price-McDonald model was necessary to fit
their data. They also found that even the 6-month
period data were insensitive to depths greater than
1,000 km.
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Fig.3. Mantle conductivity models of McDonald (1957) and
Banks (1969) after Banks.

A paper by Banks (1969) carried the same approach
considerably further. In estimating the response of the
earth, Banks used not only the well defined peaks in the
geomagnetic spectrum, but also the continuum between
them. He also found that the single spherical harmonic
Pf described the variations quite well. He then obtain-
ed an estimate of the response of the earth in the P?
mode over the entire range of frequencies from 0.01
to 0.25 cycles/day. Banks went on to fit a multilayered
model to this response data, and produced a conductiv-
ity estimate that is shown in Fig.3. Also shown in the
figure are upper and lower limits. He obtained these
limits by varying each layer in the model individually
until the computed response disagreed with the data.
Because this does not allow for the cancellation of the
effects of simultaneous variations of several layers,
it is not a rigorous way of obtaining the true error lim-
its, but it does roughly indicate the sensitivity of the
model to changes. Below 1,000 km, the true error lim-
its are probably much larger than he has indicated.
The.major difference between his curve and the Price-
McDonald model (also shown in Fig. 3), which had
been confirmed by Eckhardt et al., is that the steep
rise takes place at 400 km depth in his model rather
than 700 km. This difference is outside Banks’ error
limits. Whether this is a serious discrepancy depends
on the spatial resolution of the estimates as well as
the errors, and the modelling methods do not really

tell us much about either of these. It is probably not
serious; Banks (1972) has done a further analysis of
his data and finds the depth of the rise to be much clo-
ser to the 700 km originally suggested by Lahiri and
Price (1939).

3. Exact inverse methods

Modelling is often a laborious way of obtaining a
solution. What is worse, it does not tell us if other
dissimilar models also fit the data well. Direct proce-
dures for calculating the conductivity from the data,
if they can be found, assure us by their very existence
that the solutions so obtained are unique. Such inverse
methods, as they are called, have been developed re-
cently along two lines, which I shall call exact and
heuristic. It is the exact methods which define the con-
ditions for uniqueness, and these will be described first.

The first significant result for exact inversion theo-
ry was obtained several decades ago in connection with
a purely mathematical problem. In the equation:

2
vy
dx

which, like the induction equation, is of Sturm-Liouv
ville type, the eigenvalues for any particular set of ho-
mogeneous boundary conditions can be calculated if
the function V' (x) is known. This procedure can be re-
versed. In 1945 Borg showed that knowledge of the
two eigenvalue sets of the equation corresponding to
two sets of homogeneous boundary conditions was
sufficient to determine ¥'(x) uniquely. Borg’s proof
of this fact did not, however, give an actual method
for doing this. This result is relevant to the inverse
induction problem because the induction equation
can be put in the above form by appropriate substitu-
tions (Weidelt, 1970) and the response function, if
known over all frequencies in a particular spherical
harmonic, can be shown to determine the required
eigenvalue sets (Bailey, 1970). This uniqueness proper-
ty of the geomagnetic sounding problem was stated
explicitly by Tichonov in 1965, although again an ac-
tual inversion procedure was not available.

Because Schroedinger’s equation for scattering
from a central potential can'be reduced to the above
form, where V(x) is the potential, there was strong
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motivation in quantum mechanics to find a procedure
for calculating the potential function from scattering
data. This was done in 1951 by Gel’fand and Levitan.
Their method involves reducing the problem to that
of solving a linear integral equation, which, even if it
needs to be solved numerically, can be solved exactly.

It took two decades for this technique to diffuse
from quantum mechanics to geophysics. In 1970 Wei-
delt applied it to the geomagnetic sounding problem.
At the same time Bailey (1970) developed indepen-
dently another exact inversion method which reduces
the problem to that of solving a first order non-linear
integro-differential equation. Both methods necessari-
ly invoke the same mathematical properties of the
geomagnetic response function, but use them to re-
duce the problem to different simpler problems. Both
methods arrive:at the same result: that if the electro-
magnetic response of the earth is known at all frequen-
cies, in any spherical harmonic mode, then only one
radial conductivity distribution is possible. The latter
method will be described first, since it makes the de-
pendence of the conductivity distribution on the fre-
quency dependence of the geomagnetic response
clear in physical terms.

The response functions S} (f)(where fis the fre-
quency) of the earth in a particular spherical har-
monic P is defined as the ratio of internal generated
field amplitude &' (f) to the external generating field
amplitude e’ (f). That is:

iy =8 (Neq ()

Fourier transformation of this equation back to the
time domain yields a convolution, namely:

m®= [ Kn@ENG-1dr

K "1” (r), the impulse response, is the Fourier transform
of ST (f); 17" and E}}" are the Fourier transforms of

i and e, respectively. Clearly K" () must be zero
for negative 7; the internally generated field cannot
depend on future values of the external source field.
This requirement of causality can be translated into

a set of integral constraints on S,'," {w), namely:

o uImSH(u) du
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These are the well known Kramers-Kronig dispersion
relations, and the geomagnetic response function must
satisfy them.

The geomagnetic response function is normally de-
fined for the earth as a Whole. It can also be defined
for any concentric subsphere of the earth. Eckhardt
(1963) made this the basis of a method of directly
calculating the response function of the earth for any
conductivity distribution. The response function
Sn* (r, w) of the subsphere of radius 7 obeys the equa-
tion:

BSmng)_iwuoro(r)(n+l) [Sm n ]2

or  n(2n+1) n" p+

S;” is zero at the centre of the earth. Therefore, given
the conductivity o(r), this equation can be integrated
from the centre to the surface of the earth to deter-
mine the surface response function. Conversely, if
S is known at the surface, it can be calculated at
any depth by integrating this equation downwards
rather than upwards. The result we obtain depends
of course an what conductivity distribution we choose.
If we do this, it turns out that only one conductivity
distribution will preserve the causality, as defined by
the Kramers-Kronig relations, of S ;” at all radii; this
is the correct conductivity distribution.

It is easy to see how an inverse method may be
built on this. Given the response function at some
radius (initially the surface) we determine the local
conductivity which will preserve the causality if
we integrate Eckhardt’s equation downwards a very
small distance dr. This conductivity can be shown
to be:

_1n(2n +1)?
O g rEmr)

Re[f{S,’,”(w,r)—;’—:—l-}z dw:; -1

0
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Fig. 4. Smoothing of staircase model by exact inversion
method.

We calculate the response function at the new radius
r — dr and begin the process again. Repeated itera-
tion recovers the conductivity profile down to any
depth we please.

The Gel’fand-Levitan method as applied by Wei-
delt does not work in this way. It is necessarily
based, however, on the same mathematical proper-
ties of the response function that correspond to
the physical principle of causality. As the details
are complicated, only the mechanics of the process
will be described. Since the Gel’fand-Levitan method
was originally applied to Schroedinger’s equation,
Weidelt begins by substituting new variables in the
induction equation to arrive at Schroedinger’s equa-
tion. From the response function, he derives a new
function R. He also defines a function A from which
the conductivity can easily be derived. The two are
related by the equation:

X
AEy)=R@x+y)+ [ AEDR@+y)de
=y
This is easily solved for 4 and thus the conductivity.
The reduction of the problem to this equation is the
core of the Gel’fand-Levitan method.
As both Weidelt and Bailey have found, these exact
methods do not perform as well as modelling methods
when given realistically noisy and truncated data. The

Fig. 5. Comparison of modelling (Vozoff and Ellis, 1966 ;;
dashed line) and exact inversion method (Weidelt, 1970;
solid line).
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Fig. 6. Effect of finite depth penetration: exact inversion
method applied to uniform sphere data.

modelling method allows the modeller to use outside
knowledge in setting up his models, and, more impor-
tant, to treat suspicious looking data with a pinch of
salt. Exact methods attempt an exact reconstruction
of the conductivity from the given data; if this data
are in error, no such conductivity profile may exist.
Fig. 4 and 5 show one of the characteristics of
the exact methods, their tendency to give the smooth-
est conductivity profile consistent with the data.
In Fig 4, the dotted line shows a staircase profile
from which artificial data were computed. The solid
curve is the result generated by my method using
these data. The maximum data frequency used cor-
responds to a skin depth of about 100 km, so the in-
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version resolves no structure finer than this. Fig.5
shows the same effect obtained by Weidelt’s method.
Here, real magnetotelluric data were used; the dotted
line was obtained by modelling (Vozoff and Ellis,
1966) and the solid line by Weidelt. As we shall see
later this is essentially a liniitation of the data, not of
the method. The lack of high-frequency information
obscures the fine structure no matter how the data
are treated; modelling methods merely put the fine
structure into the model a priori.

Another limitation inherent in real data is that the
lowest frequency used may not penetrate beyond a
certain depth. What does the exact method do in this
case? Fig.6 shows Bailey’s method applied to band-
limited data corresponding to a uniform sphere mod-
el. Beyond a certain depth, the errors in the local
response function have grown to be larger than the
information content, and the solution explodes.

Although the exact methods have practical draw-
backs, their very existence assures us that a perfectly
known response function can in principle uniquely
determine the conductivity, and indicates that an
imperfectly known one will give us at least an approxi-
mate solution. It should be pointed out here that the
Gel’fand-Levitan method has also been applied to
the secular variation problem by Johnson and Smylie
(1970). They show that the transfer function of the
mantle for secular variations as a function of frequen-
cy can be used to determine the conductivity profile
in the mantle. Since our knowledge of the secular
variation source spectrum is very limited, there are
unfortunately no data at present to which this can
be applied.

4, Heuristic inverse theory

The exact inversion methods are not suited to
quantitatively describing the errors and the smoothing
that result from real data. The heuristic method that
will be described here was specifically designed to do
this and therefore produces very useful results. Other
heuristic methods of varying degrees of rigor and use-
fulness exist (e.g., Moskvicev, 1965; Miecznik, 1966;
Wu, 1968; Nabetani and Rankin, 1969; Schmucker,

1969) but have not been applied to the global problem.

The method was developed by Backus and Gilbert
(1967, 1968, 1970) for solving in a practical way a

wide range of geophysical inverse problems. Parker
(1970) applied it to the geomagnetic sounding prob-
lem, and his paper is the basis of this outline of the
method.

In principle the method is simple. The problem is
linearized; that is, an initial conductivity profile must
be chosen by informed guesswork, and this profile
is adjusted to fit the data exactly. If this guess is wide-
ly inaccurate, the adjustment procedure, which is
based on linear perturbation theory, may not converge.
If it is a reasonable guess, it will converge. Let us
formulate this mathematically. Let the data consist
of N measured observable quantities, denoted by g;.

It does not matter what these quantities are as long
as they are functions of the profile. As well as mea-
suring these quantities we can compute what they
ought to be for the initial model profile. We can
also calculate how small changes in our model pro-
file will affect these observables. To first order,
these must be of the form:

b
5g; =f K, 8o (r)dr

where a—b is the interval over which the conductiv-
ity exists. The kernels K; can be computed numeri-
cally. By taking the difference between the observed
values of the g; and the values calculated for our mod-
dl, we can also obtain the required 8g;.

How do we obtain the required perturbation 6o
() of our model to fit the data exactly? To answer
this, consider a linear combination of the 8g;, such as:

N
L= a5g;
i=1

where the coefficients a; are as yet undetermined.
Substitute the expressions for the 8g; involving the
kernels K; and the perturbation 80(r). This gives:

L =f [ évi aK(r) ]Ba(r)dr

If we could choose the coefficients a; so that the
quantity in square brackets was a Dirac delta function
centered on some radius of interest 7, then L would
be simply 0(rg), the quantity we require. In practice,
we cannot obtain a delta function, but, by choosing
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the coefficients a; carefully, we can usually get a func-
tion that is sharply peaked at r. L is then an estimate
of 80(ry) with a resolution equal to the width of this
function. Once we have found the coefficients a;

for each height of interest, we can compute §0(r)
simply as:

N
8o(r) = 2 2, dg;

At the same time we have automatically computed
the resolution of all our estimates.

If the formula above involves strong cancellation
between terms, the resulting errors in § 6(7) (which
can be calculated using simple error theory) may
be much larger than the original experimental errors
in the 6g;. In this case, broadening the resolution by
adjusting the a; reduces the errors in §o(r). This situa-
tion is analogous to the Heisenberg uncertainty princi-
ple; accuracy and spatial resolution cannot simulta-
neously be optimized. This is where the Backus-Gil-
bert method displays its power; not only does it tell
us both the resolution and-the accuracy of our esti-
mate, but it allows us to vary the compromise be-
tween them to suit our needs. There are a number of
numerical methods for finding the coefficients a; that
simultaneously attempt to minimize the smoothing
and the errors. This is primarily a computational prob-
lem and I will not go into it here. They are described
in the papers of Backus and Gilbert, and others (see
Wiggins, 1972).

Parker has applied the Backus-Gilbert method to
the geomagnetic induction problem. As observables
he used the modulus of the geomagnetic response of
the earth in the Pi0 mode at 35 frequencies between
0.01 and 0.2 cycles/day; as data he used Banks’ re-
sults (1969). He found that the Backus-Gilbert
method would not generate any model that exactly
fitted Banks’ data. He did find it possible to fit it
within one standard deviation. He concluded that
Banks’ data contains unphysical features, but that
the true response curve lies within one standard de-
viation of Banks’ data. Parker’s conductivity profile
down to a depth of about 1,500 km is shown in
Fig. 7 with 20% errors and the corresponding resolu-
tion widths, with Bank’s model for comparison. Be-
low this depth errors are so large as to make any esti-

mate meaningless. The two curves disagree signifi-
cantly near the surface. Parker’s value of 0.1 mho/m
there is more than a standard deviation greater than
Banks’ value of 0.005 mho/m. In Fig. 8 Parker’s
curve is compared with Bailey’s exact inversion of
the same data. These results resemble each other
more than either resemble Banks’ curve, at least
above the depth (about 1,000 km) where the exact
method is overwhelmed by accumulated errors.

Very recently Parker (1972) has gone on to pub-
lish a paper which shows a very realistic approach
to geophysics, called “Inverse Theory with Grossly
Inadequate Data”. The inversion problem of geomag-
netic sounding, as we have seen, requires a very ex-
tensive, in fact infinite, range of data to yield an
exact conductivity profile. What, then, is the use of
making a single measurement such as the 11-year
response of the earth? Clearly even this one mea-
surement must tell us something about the earth,
even if it is only in the form of a constraint on a
single parameter, such as the mean conductivity. To
this problem Parker has applied the methods of
Backus and Gilbert and shown how one calculates
such constraints. He illustrates this with-an example
drawn from the geomagnetic inversion problem: he
shows that the complex response of the earth in the
1’,p mode at the single period of 100 days is enough
to show that the conductivity in the earth must
somewhere exceed 0.84 mho/m. In itself, this result
is not new, intended as it was as an example. The
main purpose of the paper is to:show exactly how
very small amounts can be used rigorously to full
advantage.

5. Results

We have concentrated so far on the methods, and
the results have been quoted without much comment.
In finishing, I will try to summarize the information
obtained so far aboug the actual conductivity distri-
bution. All recently obtained profiles display three
common features: a region of low conductivity in the
top several hundred kilometers, followed by a sharp
rise, and a very poorly defined region below 1,000
km depth where the conductivity may level off.
Within this framework, there is still significant dis-
agreement. i



242 R.C. Bailey, Global geomagnetic sounding

<4~ Parker (1970)
— Banks (1969)

102

3

mh
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Fig.8. Comparison of exact (Bailey, 1970) and heuristic (Par-
ker, 1970) methods using Banks (1969) data..

For the near surface conductivity, both Parker
(1970) and Bailey (1970) using Banks’ (1969) da-
ta find values of 0.1 mho/m or greater. On the other
hand, Banks as well as Lahiri and Price (1939) and
some magnetotelluric studies (e.g., Caner, 1971)
find values less than 0.05 mho/m. Parker states that
this difference is greater than the errors. The discre-
pancy between Parker’s and Banks’ results gbtained
from the same data can probably be put down to
the inherent ambiguities of the modelling method
that Banks used, but this does not explain the other
low values obtained. Data errors seem to be the most
likely explanation of this. Banks’ high-frequency re-
sponse (periods from 5 to 10 days) is significantly
different from Chapman and Price’s storm response
for the same periods. Banks himself stated that his
high-frequency results have suspicious features: in
particular, his results for the phase of the response
at high frequencies are physically impossible. Al-
though Parker used only Banks’ amplitudes and not
the phases, the inconsistencies in Banks’ data should
make us wary of accepting Parker’s result without .
confirmation. Parker’s rejection of the lower values
of the conductivity is based on error bounds derived
from Banks’ estimate of errors in the response;
Banks had no means of estimating these accurately.

The deeper conductivity, in particular the rise
from 300 to 700 km depth, obtained by Parker de-
pends more on Banks’ low-frequency data, and is
probably more reliable. The calculated resolution
of Parker’s profile is everywhere worse than 0.05
Ry or 300 km. Because of this, we cannot say how
steep the rise is or precisely where it is located. This
is annoying, because it has been suggested that all or
part of this rise may in fact be a discontinuity asso-
ciated with a phase-change in the mantle (Akimoto
and Fujisawa, 1965). Parker’s result does not rule
this out, as Fig.9 shows. Here a discontinuity at 700
km depth has been smoothed with a resolving kernel
of spread 0.05 Rg; the result fits Parker’s model quite
well.

The region below 1,000 km is very imperfectly
probed. Banks’ data do seem to indicate the exis-
tence of a plateau here at about 1 mho/m. Parker
has shown, however, that this levelling off is just at
the limit of resolution. Clearly the curve cannot re-
main at this value down to much greater depths, as
it has to rise by a factor of 100 towards the bottom
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Fig.9. Parker (1970) profile compared with smoothed step
model.

of the mantle to explain the secular variation resuls.

How much can our knowledge be improved? At-
tempts to extend the lower frequency limit of the
data have not been particularly successful. Eckhardt
et al. (1963), for example, could not extract the
11-year sunspot variation from the secular variation.
On the other hand, to use data much above 0.2 cy-
cles/day invites errors due to shallow deviations from
spherical symmetry, which we are not interested in
here. A radical extension of the useful data band-
width seems to be ruled out. The other possibility is
to improve the accuracy of the present data. Parker
has looked at the improvements that this would pro-
duce. He found that if Banks’ data had been obtained
with no erross at all, the resolution could still not be
narrowed much below 300 km. As a consequence,
geomagnetic deep sounding on a global basis appears
inadequate to prove or disprove the existence of dis-
continuities in the upper mantle. On the other hand,
penetration with this resolution to the bottom of the
mantle would be possible in principle.

The assumption of no errors at all is exceedingly
unrealistic. Parker repeated the same calculation
assuming 2% errors in Banks’ data. He found that
this would delineate the conductivity profile down
to about 2,000 km with the same accuracy and reso-
lution as are now obtained down to 1,000 km. This

would tell us whether a plateau exists below 1,000
km. Whether or not the required data can be ob-
tained with this accuracy remains to be seen. Banks
used a limited amount of observatory data in deriving
his response function. It seems likely that an exhaus-
tive study along the same lines could significantly
reduce the errors. Finally, it appears that studies of
the top few hundred kilometers are best left to local
magnetotelluric and short-period geomagnetic meth-
ods. These high-resolution methods can deal with the
local conductivity variations that global studies
neglect.
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