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The different methods and techniques employed in the theory of electromagnetic induction in thin sheets are
reviewed and the methods for approximation to the solution are indicated. These depend on whether the sheet is
closed or finite and on whether the integrated conductivity and/or the frequency of variations is high or low.

- Results for induction in finite sheets which are suitable for ocean modelling are given. These include sheets of
perfect conductivity and sheets of finite conductivity which is either discontinuous or continuous at the boundary.
The dependence of the “coastline effect” for a global ocean on the location of the edge of the continental shelf,
the period of variation of the external field and the conductivity of the underlying earth is explained.

1. Introduction

The oceans constitute a surface layer to the earth
of relatively high conductivity. This layer, together
with the conductivity of the underlying earth modify
changes in the earth’s magnetic field. Thus the ob-
served change at the earth’s surface is the resultant
of the primary change and the secondary field of the
currents induced in the liquid and solid earth. It is im-
portant to separate the primary change (such as the
daily variation and the geomagnetic storm) from the
secondary. This separation also helps to reveal the
surface and other conductivity anomalies near a
particular station and provides further information
about the conductivity of the underlying earth.

Any idealised theoretical model of this situation is
bound to meet with extensive mathematical difficul-
ties. The abrupt change in the conductivity at the
coastline and the edge of the continental shelf adds
to the complications. Hence such models will only
throw light on the order of magnitude of the physical
quantities involved.

Several simplifications are made in most of the
models considered. The first is that we study the ef-
fect of one ocean, and not the whole distribution of
oceans over the surface of the earth. Second, the
ocean is usually represented by a thin conducting

layer, The surface, or integrated, conductivity of the
layer will depend on the depth of the ocean and hence
is not uniform. The integrated conductivity has been
assumed infinite in some models, uniform and finite
in others and non-uniform and tending to zero at the
coastline in the more realistic models.

In most of the models considered so far, the thin
sheet was either plane or spherical. The conductivity
of the underlying earth is usually represented by a
parallel conducting plane or a concentric spherical
shell of suitable conductivity at a suitable depth.
When only the overall effect of the ocean, but not
that of the coastline, is considered the conducting
shell representing the ocean is taken closed (i.e., an
infinite plane or a complete spherical shell). When
both effects are examined, the sheet is taken finite.
In the plane models, this finite sheet is taken for
mathematical convenience to be either a semi-infinite
plane or an infinite strip of uniform width in two-
dimensional models and a circular disk in the case of
three dimensions. For spherical models, the sheet is
usually taken as a spherical cap.

Earlier work on induction in thin sheets includes
that of Maxwell (1891) for the uniform plane and
spherical sheets and that of Lamb (18873, b) for the
non-uniform circular disk. The most important work
since these earlier investigations is that of Price (1949)
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who obtained the boundary condition at the surface
of the sheet in terms of the non-uniform distribution
of conductivity and the scalar magnetic potentials of
the inducing and induced fields. For application to

the ionosphere this condition can be modified to al-
low for non-isotropic distributions (Ashour and Fer-
raro, 1962, 1964; Ferris and Price, 1962, 1965). An
equivalent boundary condition can also be obtained

in terms of the vector potentials of the fields (Ashour,
1971a). Price’s condition, or its equivalent, allows the
solution for certain non-uniform, finite and closed
sheets to be obtained. Other methods of solution have
also been suggested. The symmetrical induction prob-
lem can be reduced to a Fredholm integral equation
(Ashour, 1950). This has been extended recently to
cover non-symmetrical problems (Hutson et al., 1972),
though they have not actually-dealt with any non-sym-
metrical problem. The induction problem can also be re-
duced to dual integral or series equations (Ashour, 1965a,
b; Weidelt, 1971).

Exact solutions can be obtained for very few dis-
tributions of conductivity. These include cases of
perfectly conducting finite sheets. For other distribu-
tions approximate methods have to be applied. Price
(1949) has suggested two general methods to be ap-
plied in cases of low and high conductivity. These
have been extended recently by Hutson et al. (1972).

Apart from the “thin sheet” model, other model
conductors have been considered. These include the
important case of the semi-infinite medium with a
plane boundary and a vertical discontinuity in the
conductivity to resemble the coastline (Weaver, 1971).
We shall, however, confine the present paper to the
thin sheet models. The following sections of the paper
will attempt to explain the methods and techniques
of solving the problem of induction in thin sheets and
the application to induction in the oceans.

2. The fundamental equations and formulae

2.1. The field equations

The equations for time-varying fields in e.m.u. are:
curl E=—-B’ )
curl H=4nJ+ D’ )]
div B=0 3)

We also have:
B=uyH, J =kE 4)

where E, H, B, D and J are the electric field, the mag-
netic field, the magnetic induction, the displacement
vector and the current density, respectively, and g, k

are the permeability and conductivity, respectively.

We assume our conducting sheet to be of infinite-
simal thickness d. The medium on both sides is as-
sumed to be non-conducting and the permeability is
taken as one everywhere. Further we assume that
the time variations of the fields are such that the dis-
placement current can be neglected.

From eq. 3 we thus find that the divergence of
the magnetic field vanishes. In the dielectric outside
the sheet where J = Q, eq. 3 shows that curl H is also
zero and hence outside the sheet the magnetic field
is derived from a scalar potential satisfying Laplace’s
equation:

H=—grad Q,V2Q=0 5)

From the boundary conditions at the surface of
separation of two media (see, for instance, Ferraro,
1954), we find that the tangential components of E
and the normal component of H are continuous on
crossing the sheet.

The integrated conductivity o of the sheet and the
integrated current density # flowing in its surface are
defined as:

d d
o= [ kal, i=i= Jar (6)
0 0

where gl is the element of thickness normal to the
surface of the sheet and the subscript s refers to the
tangential component. Integration of the equation
J =kE through the thickness of the sheet gives:

oE =iy )

From the theory of current sheets (Ferraro, 1954),
the relation between the current function ¥ and the
magnetic scalar potential of the sheet is given by:

¥ = [Q]/4n 8)

where [F] denotes the change in any function F on
crossing the shéet.

2.2, Prices’s boundary condition

We assume a conducting sheet as defined earlier.
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The sheet may be closed or finite, uniform or non-
uniform. We also assume that the sheet is subjected
to a time-varying magnetic field of origin external to
it. What is required is to determine the field of the
currents which is induced in the sheet. The funda-
mental step towards this end is to obtain the condi-
tion to be satisfied by the inducing and induced
fields at the surface of the sheet for a given distribu-
tion of conductivity. This was done by Price (1949).

Starting with eq. 1 and noting that £ is a sur-
face function of the sheet, eq. 1 reduces to:

curl E;= —n 3 H, (8¢ = n 329/3t an )

where 3/9n denotes differentiation in the direction
normal to the sheet and the subscript z refers to the
component in that direction and a denotes the unit
vector in the same direction. Substitution from eq. 7
in eq. 9 gives after writing p = 1/o:

curl (p ;) = p curl ig + grad p - iy = m3*Q/dndt (10)
Noting that:

ig=—nA grad ¥ 1y
and that from eq--5 and 8:

[H] = —grad O] (12)

we obtain:

p cutl(nA [H]) + grad pA(nA[H]) = —4nndH [3t
Taking the normal component of both sides yields:

p div [H] + grad p - [H] = 4mdH /ot (13)

Eq. 13 which is satisfied at the surface of the sheet,
gives the relation between the varying total magnetic
fields on the two sides of the sheet irrespective of
how they are produced. In our case:

Q=q°+Ql (14

where the superscripts e,i refer to the inducing and
induced fields respectively. Noting that the inducing
field is continuous at the surface of the sheet and
that in eq. 9 £ is replaced by i, eq. 13 reduces to:

pV2¥ +grad p - grad ¥ = —32(Q¢ + QY)/dr an  (15)
at the surface of the sheet.

If the inducing field is given, £2° will be a given
function of the time and the space variables. To find
the induced field, it is necessary to determine Qi

which satisfies Laplace’s equation, vanishes at a great
distance from the sheet and satisfies the boundary
condition (eq. 15) at the surface of the sheet.

When the method is applied, Q1 is usually expres-
sed as an infinite series (or integral) of harmonics.
When the sheet is ¢losed, the application of eq. 15
usually yields a difference equation for the coeffi-
cients of the series. We shall deal later with methods
of solution of this difference equation. But when the
sheet is finite and forms part of a closed surface, it
must be noted that eq. 15 expresses the boundary
condition at the surface of the sheet only. On the
remaining part of the closed surface, the corresponding
condition is that the current density is zero (or the
current function is constant).

Price’s boundary condition is particularly useful
in the application to non-symmetrical problems. The
non-symmetry does not add any difficulty. Further,
if we have two (or more) concentric spherical sheets
(or parallel plane sheets), the boundary condition can
be applied at each surface and the solution may be
obtained as in the case of one sheet.

2.3. The boundary condition at the surface of the
sheet in terms of the vector potential

The boundary condition (eq. 15), due to Price,
involves the resistivity of the sheet and its gradierit
and thus difficulties arise when the resistivity and/or
its gradient are discontinuous in the sheet. An
equivalent formula which involves only the integrated
conductivity of the sheet but not its gradient can be
obtained in terms of the vector potentials 4¢ and A1
(Ashour, 197 1a). The details of the derivation will
not be given here. This condition® is:

[04}/3n] = 4mcd(A + Al)/ot (16)
where:

H=curl4,divA=0 ) (17
and outside the sheet:

v24i=0 (18)

The form (eq. 16) of the boundary condition to
be satisfied at the surface of the sheet is useful in the

* The particular form of this condition for a uniform plane
sheet was given by Smythe (1968).
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application to finite sheets with conductivity zero at
the edge, i.e., when the conductivity of the closed
surface of which the sheet is a part is continuous
(but not necessarily its derivatives). This form of the
condition is also particularly suitable for application
to symmetrical and two-dimensional problems, be-
cause in such problems the vector potential has one
component only, and is derived from one potential
function only.

When non-symmetrical problems are considered,
care must be taken that 41 is derived from two in-
dependent functions. To illustrate this point, we con-
sider spherical polar coordinates. In these coordinates,
the expression for A1 which satisfies eq. 18 with div
A =0 is given by Smythe (1968):

1= curl (U)+grad ¥V (19)

where U and V satisfy Laplace’s equation, and r the
position vector relative to the origin. The term in-
volving V in eq. 19 does not contribute to the mag-
netic field and so it is tempting to ignore it. This is
justified in the axi-symmetric case because 4 has one
component only in this case. But when both tangen-
tial components exist, we cannot neglect V because
eq. 16 will be equivalent to two equations, one for
each of the components of A1, In this case, taking V

“into account affects U and hence indirectly contributes
to the magnetic field (Ashour, 1973).

3. Electromagnetic induction in closed sheets

3.1. General method of solution when the scalar or
vector potential is expressed as an infinite series
of harmonics

If the potentials of the inducing and induced fields
are expressed outside the sheet as harmonic solutions
of Laplace’s equation, then even if the distribution of
conductivity assumes a simple form there will not
be a one-to-one correspondence between the harmon-
ics of the inducing and induced fields. When the con-
ductivity depends on one surface coordinate only of
the sheet, an infinite series of harmonics in the poten-
tial of the induced field will generally correspond to
each harmonic in that of the inducing field. By sub-
stitution in the proper equation (15 or 16) and using

the orthogonal properties and recurrence relations of
the harmonics, this equation is reduced to a difference
equation in the unknown coefficients C,, of the

series. In most of the cases this equation is of the
form:

Cpe1=9,(D)C,+b,(D)C,_; n>1
(20

C,=a,(D)C, +DH(t)

where D is the operator 3/dt, H(t) is a given function
of the time depending on the inducing field and q,,
and b,, are given functions of D and n. The following
method of solution was suggested by Price (1949).
Clearly from eq. 20 any C,, can be expressed in
terms of C; only. The fact that C,, must vanish as
n - oo in order that the potential series may converge
is used to obtain successive approximations for C; .
Thus it can easily be verified that eq. 20 can be
written in the form:

C, =p,D)C, + D, (DYH(), @1

where p, (D) and q,(D) satisfy the difference equa-
tion (eq. 20) and have given initial values, namely:

p =1 by=a; q1=0’ q,=1 (22)

In fact p,(D) and q,,(D) are polynomials of degree n
and n—1 in D. Hence, since C,, = 0 as n - o:
C, = —li . H 23
=iy O @
Successive approximations Cq; to Cy and C,;5 to C,,
are obtained by taking C; = 0. These are given by:
q,(D)

D=__H({), s=1,2,...

Cis=— D) 29

C, s =P,(D)C; *+ Dq, (D) H(?),

When the fields vary harmonically, the operator D
can be taken in the steady state as equal to a pure
imaginary constant and the process of approximation
is continued till the coefficients and the series giving
the components of the fields as calculated from two
consecutive steps differ negligibly. On the other hand,
if we require to calculate the effects of a sudden rise
in the inducing field, i.e.,if H(¢)is given by:
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H()=0 t<0
(25)

=H, t=20
we need to apply the Heavyside operational rule,
namely:

D
D+a

H(f)=Hy e (26)

If the operator q(D)/py(D) can be expressed as a sum
of partial fractions and eq. 26 is applied Cy; and C,,;
will be expressed in the forms:

s

—a_t

Cy, =H021Ave % @7
r=

s
- —Oept
Cns _HO 2 Av pn(_asr. e

n=1,2,...5—1 (28)

where —a,(r=1,2,...,5) are the zeros of p(D) and:

Ag = qn(_asr)/ Ppn (—asr )

It is to be noted here that in this method it is implied
that the time constants of the sheet are discrete (i.e.,
the ay, are all different, real and positive). If this is
the case, one usually obtains a good approximation
from a few steps. Otherwise, i.e., if the time constants
for the particular conductivity distribution considered
are not discrete, the method will not converge.

The above procedure has been successfully applied
by Ashour and Price (1948) for induction in a spheri-
cal shell with 0 = 6/(1 + € cos 8) by a non-symmetri-
cal field, by Price (1949) for induction in a plane
sheet for which o varies harmonically with x and in
several other problems of closed sheets of continuous
conductivity (Ashour and Ferraro, 1964; Ashour,
1969).

An alternative method to solve the difference equa-
tion (eq. 20) is to regard it as a system of infinite
linear equations (Ashour, 1971 a). The method of ap-
proximating to the solution in this case is to neglect
C,, for n> s and consider the first s equations only *.
The process is continued till it is found that the series
giving the components of the field as calculated from
two consecutive steps s and s+1 do not differ appreci-

* See for instance Kantorovitch and Krylov (1964).

ably. The advantage of this procedure is that all the
coefficients are obtained in one step and so any error
in C ¢ does not pile up when calculating the following
coefficients as may happen in the first method of
solution.

3.2. Iterative methods of solution

Price (1949) suggested two iterative methods of
solution to the problem of induction in thin sheets
for the two cases wo small or large (w = [ D]). These
methods are explained in Professor Price’s review in
the present issue. Here we only give the relations con-
necting two consecutive steps (s and s+1) in the itera-
tion process in each of the two cases. When wo is
small, we have using Price’s boundary condition:

Vz\Ils+1 +ograd o~! - grad V., = —0wH® +Hi&) (29
and when ow is large, we have:

=_H%+ (wa)’l(Vz\Ils +ograd 671 - grad )
(30)

H.

s+l

where the subscript 7 has been omitted.

The two procedures have been applied by Price to a
special case for which an exaet solution is known,
namely that of the uniform infinite plane sheet and

in both cases the process of approximations converged
to the solution.

Most of the other iterative solutions which have -
been suggested including those for finite sheets, fall
within the above two methods. Further discussion of
iterative methods of solutions will be given later in
connection with finite sheets.

Bullard and Parker (1970) modified eq. 29 slightly
by expressing H; on the L.H.S. in terms of the cur-
rent function ¥,. They also extended eq. 29 to cover
the case when there is a perfectly conducting concen-
tric sphere in addition to the spherical finite sheet.

3.3. Surface integral formulae -

Hobbs and Price (1970) derived surface integral
formulae expressing any one of certain field quanti-
ties, namely current functions and normal compo-
nents of magnetic fields, in terms of any one other
for currents flowing in concentric spherical surfaces.
These formulae are useful in obtaining the vertical
magnetic field, which is usually represented by series
which are either divergent or slowly convergent at
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lines of discontinuity of the conductivity, in terms

of the current function whose series is usually quickly
convergent. Hobbs (1971) successfully applied these
integral formulae to electromagnetic induction in a
hemispherical shell representing the Pacific Ocean sur-
rounding a concentric perfectly conducting sphere.

4. Finite sheets
4.1. Perfectly conducting sheets

When the sheet is perfectly conducting, the bounda-
ry condition at its surface reduces to the vanishing of
the total normal magnetic field. Hence the.induction
problem in this case is the same as that of the irrota-
tional flow of a perfect inviscid fluid across the sheet
and is therefore relatively simpler than when the con-
ductivity is finite. Exact solutions can be obtained in
special cases.

In the case of the infinite strip of uniform width
and the circular disk subjected to a normal uniform
inducing field, simple solutions can be obtained
using elliptic and oblate spheroidal coordinates be-
cause these two sheets are natural boundaries in the
two systems respectively (Smythe, 1968; Lamb,
1945). For more complicated inducing fields, the
exact solutions are obtained by reducing the problem

to a system of dual integral equations (Ashour, 1965a).

When the sheet is in the form of a spherical cap,
the solution for symmetrical inducing fields can be
obtained from that for the disk or independently
(Collins, 1961; Ashour, 1965a, b; Doss and Ashour,
1971). The non-symmetric case has also been solved
by reducing the problem to a system of integral equa-
tions (Ashour, 1965b, ¢; Doha, 1972).

The results for perfectly conducting sheets can be
summarised as follows:

(1) The vertical component of the total field is
zero in the sheet and is infinite just outside its bound-
ary.

(2) The tangential component of the total field
normal to the boundary of the sheet tends to = at
the boundary of the sheet and is negligible outside it.

(3) The tangential component parallel to the
boundary is finite and continuous at the boundary.

(4) The current density is infinite at the boundary
but the total current in the sheet is finite.

The infinities appearing in the components and
the1 current density at the boundary are all of order
x"2asx—>0.

4.2. Exact solutions for certain finitely conducting
sheets

4.2.1. Lamb’s solution for the circular disk

Lamb (1887b) considered the principal time con-
stant of a circular disk and restricted himself to axi-
symmetric currents decaying freely in the disk. He
showed from simple physical principles that if the
surface conductivity at distance p from the centre is
given by:

1
o(p) = 05(1 — p*/a®)*"2/F(-n,%,2,0%/a%)  (31)
the current density will be given:by:

1
y=I L@+ D .g[l _p? ] 32)

ar\(n_‘_%) a a2

and the principal time constant of the sheet by:
r=T(n+})a 2 0y/2T (n+1) (33)

where n +3 > 0 and F is the hypergeometric function.
Two cases of special importance have been con-
sidered by Lamb, namely n =% and n = 1.
When n =7 the conductivity is finite everywhere
in the sheet and does not vanish at the edge. The cor-
responding current density is clearly finite at the
edge.
When r = 1, the conductivity is given by:

o(p) = 40,(a® — p?)/(4a> - 3p%) (34)

This distribution is almost constant all over the sur-
face of the disk and falls sharply to zero at the edge,
i.e., it is continuous at the edge. This distribution is
very suitable for ocean modelling. The current density
is zero at the edge and it can be proved (Ashour,
1971a) that the field induced in such a sheet is also
finite and continuous there.

4.2.2. Weidelt’s solution for two thin half sheets

Weidelt (1971) considered electromagnetic induc-
tion in two adjacent half-sheets with different uni-
form conductivities. His system of conductors also
included a perfectly conducting parallel sheet. The
inducing field is such as to render the problem two-
dimensional,
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The problem was reduced to two dual integral
equations which could be solved using a method of
contour integration due to Clemmow (1951, 1953).
The results obtained by Weidelt show that as long as
the conductivities of the two half-sheets are finite and
unequal, the current density and the tangential mag-
netic field are both finite and discontinuous at the
line of discontinuity. The normal component of the
field has a logarithmic infinity at the line of discon-
tinuity and on both sides.

A similar result was also rigorously obtained by
Parker (1968) who considered the two-dimensional
problem of induction in an infinite strip by a parallel
symmetrical current line.

4.3. The reduction of the problem to a Fredholm
integral equation and allied methods

When the sheet is in the form of a surface of revo-
lution and both the conductivity and inducing field
have axial symmetry, the problem of induction in
the sheet can be reduced to that of a Fredholm inte-
gral equation (Ashour, 1950). This is done by re-
garding the sheet as composed of an infinite number
of coaxial annular circuits. Thus if the equation of
the surface of the sheet in cylindrical coordinates is:

z=£(p) (35)

and its integrated conductivity is o(p), the integral
equation for the current density i(p) is:

P2
i(p)=—pDH(p, t)o—% f i(pYM(p, p')
p1

A+ 2 ds'  (36)

where p; and p, are the radii of the boundaries of
the sheet, H(p, ?) is the flux across the circuit of
radius p due to the inducing field, M(p, p") is the
coefficient of mutual induction between the two cir-
cuits of radii p, o' and D= 9/d¢ as before.

The above equation can easily be transformed to
another Fredholm integral equation with symmetrical
kernel (Whittaker agd Watson, 1920) of the form:

£(p)=2F(p) + A [ g(p)K(p, ) dp’ (37
a

where A varies with the conductivity and the fre-
quency. The kernel of either of these two equations:

has an infinity of order log |p—p'| when p = p’. This
does not however raise difficulties when applying
Fredholm’s solution, because it was proved by
Hilbert (1924) *, that these infinities can be replaced
by zeroes without altering the solution of the equa-
tion provided that a positive number § < } can be
found such that:

lim (p—p"¥ K(p,0)=0 (3%)
p—rp

Condition (38) is clearly satisfied in our case.

When A is small, i.e., for low conductivity and slow-
ly varying fields the method of continued substitu-
tion, namely:

b
a1 (M =AF@) A [ g,()K(p.0)do' (39

can be used to obtain the approximate solution of
the equation. In fact Hille and Tamarkin (1930) have
proved that when K (p, p") is symmetric and has dis-
continuities when p = p', eq. 37 admits a convergent
solution by the method of continued substitution,
provided that: (1) F(p) is integrable; and (2)
1/(-a) §2 K(p, p") dp < -1

Ashour (1950) considered the special case of a
uniform circular disk subjected to a uniform inducing
field normal to it and calculated the amplitude and -
phase of the current density by using the method of
continued substitution and also Fredholm solution.
He also estimated the principal time constant of the
sheet. For an ocean of global dimensions this is
about 4 hours.

Two-dimensional problems can also be reduced to
the solution of a Fredholm integral equation by re-
garding the sheet as composed of an infinite number
of thin strips. Roden (1964) considered induction in
a uniformly conducting strip with a perfectly con-
ducting plane underneath it. He reduced the problem
to a Fredholm integral equation and his solution is
similar to that of Ashour (1950) for the circular
disk.

It should be noted here that the method of con-
tinued substitution used by Ashour (1950) and by
Roden (1964) is in fact identical with the method
suggested by Price (1949) for low conductivity and
slowly varying fields.

* See also BScher (1914).
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When ow is large, the method suggested by Price
is met in the case of finite sheets by the difficulty
that the first approximation, which corresponds to
the case of infinite conductivity, involves infinities
in the current density and induced field at the bound-
ary of the sheet.

Doss and Ashour (1971) considered induction in a
finitely and highly conducting hemispherical shell
with the aim of finding the range of frequencies for
which an ocean of global dimensions acts as if of in-
finite conductivity except near the coastline. The
problem was reduced to two dual Bessel integral equa-
tions. To avoid the above-mentioned difficulty, a
special inducing field was assumed for which no in-
finities appear at the boundary. The second approxi-
mation was obtained for a value 4naow = 100. This
corresponds to a period of 2.4 hours. The results
obtained differed negligibly, except near the coastline,
from those for an ocean of infinite conductivity.
Hence it was concluded that for the overall effect of
the ocean, it can be taken as perfectly conducting for
periods less than 2.4 hours*®.

The method of the Fredholm integral equation
has been recently extended, though not applied, to cover
- non-symmetrical problems by Hutson et al. (1972). The
equation they obtain for a general sheet involves the sca-
lar electric potential in addition to the current density.
For the symmetrical case, this equation reduces exactly
to that derived by Ashour. The authors considered the

integral equation for a symmetrical problem of induction

in a hemispherical shell and gave a proof, using theorems

in Functional Analysis, that the current density is finite at

the boundary** of the sheet. They also gave a modifica-
tion to the method of continued substitution to cover
the case of high conductivity, thus extending Price’s

* Due to an arithmetic error, it was mentioned in the paper
that the value 102 for 1 /4nacw corresponds to a 24
hours period. The results obtained are, as mentioned here,
for a 2.4 hours period.

** Doss and Ashour (1971) were criticised by the authors
on the grounds that they claim that the current density is
infinite at the boundary. In fact, this was not claimed.
The infinity which appears is the result of the second ap-
proximation and cannot be taken as the rigorous solution
at the boundary. Further, reference was given by Doss and
Ashour to Parker (196 8) and Weidelt (1971) who proved
that the current density is finite at the boundary.

first method to apply to this case. This modifica-
tion is simply subtracting ag,,.and ag, from

the left- and right-hand sides of eq. 37. It was
stated that a, an arbitrary constant, could always be
chosen to give a convergent series of approximations
provided that neither the conductivity nor the fre-
quency is infinite. No physical significance was how-
ever given for a. Also no way was indicated of how

to choose an optimum « for a particular problem. The
method was illustrated by a numerical case for which
4maow = 16: This, for a global ocean, corresponds

to variations of period about 15 hours, and thus
could have been adequately dealt with by the ordinary
continued substitution method (a = 0). This does

not, however, lessen the potentialities of the method
and it is hoped that it will be applied to problems
which could not be solved by previous methods. It

is also hoped that the method of calculating the field
components at the boundary, and not only the cur-
rent density, will be clarified in future publications.

4.4. Results for finitely conducting sheets with dis-
continuous conductivity at the edge

The results for sheets with finite but discontinuous
conductivity at the edge can be summarised as fol-
lows:

(1) The current density and tangential compafrents
of the induced field are finite at the boundary of the
sheet and have discontinuities on crossing it.

(2) The vertical component of the inducing field
has a logarithmic infinity at the boundary, this com-
ponent is reversed at the boundary.

4.5. Sheets with conductivity decreasing to zero at
the edge

A more realistic model for representing the ocean
is a finite sheet for which the conductivity decreases
to zero at the edge and thus is continuous there.
Ashour (197 1a) considered such sheets in the forms
of a circular disk, an infinite strip of uniform width
and a hemispherical shell, The conductivity for the
disk was that assumed by Lamb (1887b), and given
by eq. 34.

It can easily be proved that for such sheets the
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current density is zero at the edge. Using spheroidal
harmonics (in the case of the disk), applying the
boundary condition (eq. 16) in terms of the vector
potential and starting by an expansion for the current
density which vanishes at the edge, it was proved

that the magnetic field is finite and continuous at

the boundary. The problem was reduced to a differ-
ence equation of the form of eq. 20. For the geomag-
netic application an ocean of global dimensions and

a uniform (or dipole) inducing field with time varia-
tions of 1—24 hours or sudden changes were con-
sidered. The results which were obtained from a satis-
factory number of terms of the series show that:

(1) The induced vertical component is enhanced
manyfold at the coastline inland and in sea. It is not
reversed at the coastline (as in the case of a discon-
tinuity in the conductivity there), but in the region
around the edge of the continental shelf, The ob-
served total vertical component is not reversed.

(2) The horizontal component is enhanced is sea
only just off the coast.

In a following paper, Ashour (197 1b) considered
a model which consists of a hemispherical ocean
covering a pertectly conducting concentric sphere.
The distribution of conductivity in the outer con-
ductor was given by:

0(0)=0y(1 +a)cos (1 +a cos? )1 (40)

where « is a constant. Thus o0(8) vanishes at the edge
and by changing «, the location of the edge of the
continental shelf could be changed and its effect
studied. Also, the effect of the depth of the effective
conducting mantle could be examined by changing
the radius of the inner conductor. The problem was
reduced to an infinite system of linear equations

and the results for a global ocean indicate, in addition
to the results of Ashour (1971a), that: v

(1) The position of the edge of the continental
shelf is a very important factor in the shielding of geo-
magnetic variations by a large ocean. For periods of
more than one hour, the enhancement in the observed
total field in sea and land is minimal unless this posi-
tion is sufficiently near the coastline.

(2) The enhancement of the components of the
total field is more and occurs nearer to the coastline
for the shorter periods of variation. For periods of
one hour or less the effects are almost the same as for
a perfectly conducting ocean except that the field is
finite at the coastline.
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(3) The coupling between the earth and ocean
reduces the screening effects of the ocean by a factor
ranging between 20 and 50% *. Hence the enhance-
ment of the total field for periods up to 24 hours,
though reduced when both ocean and earth are taken
into account, should be observable for stations in the
location of the coastline provided the shelving of the
ocean does not occur far from it.

5. Conclucions

For improving our analytical techniques in the
theory of induction in thin sheets we need to know
more about integral equations, dual integral and
series equations, infinite system of linear equations
and their numerical solution.

The utmost that the theory of thin sheets can offer
for electromagnetic induction in the oceans is to
find the currents and the field induced by the dif-
ferent geomagnetic field variations in a spherical
shell whose integrated conductivity at any point
varies with the depth of the liquid earth at that
point, and in an inner conductor representing the
conductivity of the solid earth to the best of our
knowledge. This is an ambitious and difficult task,
but even if it is accomplished, we should not forget
the limitations of the thin-sheet model (Schmucker,
1970). Model experiments may have more to offer
in this respect,
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