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Overview

1. Tectonic Background of the Hikurangi 
Margin


2. Controversy of Subducting Topography


3. Seamounts in N. Hikurangi Margin


4. Resistivity in the C. and S. Hikurangi Margin


5. Concluding Remarks
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�3Hikurangi Margin Tectonics

• Pacific - Australian Plate 
convergence

• Hikurangi Plateau ~ 35 km 
thick

• From convergence to strike 
slip N to S

Wallace, 2020
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�4Along-Strike Variations

• Interseismic coupling 
decreases to the north

Bassett et al., 2014 
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Basaltic crust
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Subducting Topography and Fault Slip
• Camp A:                  

Subducting seamounts 
promote large EQs

�7

Cloos, 1992

Basaltic seamount 
jammed 

against base of overriding 
block acts as stick-slip 

seismic asperity

— Overriding Block — 
Accreted prism sediment 

or crystalline plate

Basaltic 
seamount  
subducting 
aseismically

— Shear Zone — 
Viscously flowing 

subducting sediments

— Descending Plate — 
Basaltic crust

• Camp B:            
Subducting seamounts 
promote small EQs and 
aseismic creep

Wang & Bilek, 2011
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Imaging Subducting Topography �9

Singh et al., 2011

• Surficial strike-slip faults from incipient 
seamount subduction

Fig 3B
Davidson et al., 2020
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Imaging Subducting Topography �10

Singh et al., 2011

• High res images, but seamount still 
shallow

Davidson et al., 2020
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The Marine Electromagnetic Method �14

DEEPER 
(Deeper Lithosphere 
and Asthenosphere)

Natural Magnetotelluric (MT) 
source field induces secondary 
fields in the ground

Controlled-source EM 
(CSEM) transmitter 
towed near seafloor 
receivers

SHALLOW  
(Upper Lithos)
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�15First CSEM survey across a subduction zone
Hydrated Outer-Rise Bending Faults at the Middle America Trench, Nicaragua

Naif et al., 2016
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�15First CSEM survey across a subduction zone
Hydrated Outer-Rise Bending Faults at the Middle America Trench, Nicaragua
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�16Hikurangi Trench Regional Electromagnetic Survey to
Image the Subduction Thrust

• Dec 2018 - Feb 2019


• 132 OBEMs for CSEM + MT


• 42 OBEMs for 3D MT grid


• 100% instrument recovery

Chesley et al., in prep
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Observations in N. Hikurangi �18

•     �  EM receivers 


•         IODP drill sites


•    �   Slip from the Sept-Oct 2014    
xxxx   SSE (Wallace et al., 2016)


•    �   subducting seamount from 
xxxx  magnetic data (Barker et al., 2018) 

•          fluid seeps (Watson et al., 2020)


•          repeating EQs associated with 
xxx   2014 SSE (Shaddox & Schwartz, 2019)


•          1947 tsunami EQ (Bell et al., 2014) bathymetry courtesy of NIWA

Chesley et al., 2021
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�19CSEM Data Quality

• Clean, low-noise data

• Obvious structural 
differences

T. Knoll
Forearc

0.75 Hz
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�20MT Data Dimensionality

Forearc Incoming Plate

S. Naif thesis, 2015
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�20MT Data Dimensionality

• 3-D for periods 
> 171 s

• Mostly 3-D on 
incoming plate

Forearc Incoming Plate

S. Naif thesis, 2015

Chesley et al., 2021
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Hikurangi 
Trough

Tūranganui 
Knoll

Chesley et al., 2021
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Archie’s Law �33

Bulk resistivity (ρ) 
 - constrained by EM data}

fluid resistivity (ρw) 
-  ρw = f(T*, P, salinity*) 

- depth variation due to 
thermal gradient  
(Constable et al., 2009) 

- geotherm from IODP 
U1518 and U1520

pore interconnectivity 
m = 2.4 

(Schwalenberg et al., 2017)
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Shallow, conductive 
sediments

Resistive subducting slab
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Tuaheni Basin

Deformation 
Front

• C1f —> Related to stress regime? 
Sediment underplating? 
Seamount damage zone? 
Connection to HRZ?


• C2f —> Damage zone (fracture 
network) created by seamount


• C3f —> Sediment underplating? 
Seamount damage zone?


• C4f —> Subducting sediment


• R1f —> Core of subducting 
seamount (comparable to R1p)

Chesley et al., 2021
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Burst-type Repeating EQs

• Associated w/aseismic slip or fluid migration

�50

Shaddox & Schwartz, 2019
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Chesley et al., in prep

CSEM + MT

slip from 
2002-2014 SSEs

afterslip 2016 
Kaikōura EQ

deep slip from 
2006-2008 SSEs

Chesley et al., in prep
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Resistivity of the Central Hikurangi Margin �53

• Compared to the 
north…

• Simpler incoming plate and forearc structure
• No evidence of large seamounts

Forearc Incoming Plate
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Chesley et al., in prep

Resistivity of the Southern Hikurangi Margin
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Chesley et al., in prep

bathymetry courtesy of NIWA

Resistivity of the Southern Hikurangi Margin
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Resistivity of the Southern Hikurangi Margin �56

• Compared to northern 
and central…

• Much thicker 

sediments on 
incoming plate


• Simpler resistivity 
structure (both 
incoming plate & 
forearc)

~ 4-6 km 
sediment

10 Ωm
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Comparisons with seismically interpreted boundaries

• 10 Ωm contour on 
incoming plate in 
agreement w/seismic 
top of Hikurangi 
Plateau 

�57

~ 4-6 km 
sediment

10 Ωm

Bland et al., 2015 & Mochizuki et al., 2019
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~ 4-6 km 
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10 Ωm

• Anomalous resistors in 
shallow forearc
• Likely free gas and/or 

gas hydrate (Barnes et al., 2010; 
Plaza-Faverola et al., 2012; Crutchley 
et al., 2015; Fraser et al., 2016; Wang 
et al., 2017; Crutchley et al., 2018; Han 
et al., 2021)

Bland et al., 2015 & Mochizuki et al., 2019
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• Likely free gas and/or 

gas hydrate (Barnes et al., 2010; 
Plaza-Faverola et al., 2012; Crutchley 
et al., 2015; Fraser et al., 2016; Wang 
et al., 2017; Crutchley et al., 2018; Han 
et al., 2021)


• R1 and R2 occur 
above base of GHSZ

Bland et al., 2015 & Mochizuki et al., 2019
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Comparisons with seismically interpreted boundaries
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~ 4-6 km 
sediment

10 Ωm

• Anomalous resistors in 
shallow forearc

• Likely free gas and/or 

gas hydrate (Barnes et al., 2010; 
Plaza-Faverola et al., 2012; Crutchley 
et al., 2015; Fraser et al., 2016; Wang 
et al., 2017; Crutchley et al., 2018; Han 
et al., 2021)


• R1 and R2 occur 
above base of GHSZ

• Concentrate at ridges/

paleo-ridges 

Bland et al., 2015 & Mochizuki et al., 2019
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• First-order trend: Porosity decreases with depth
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Chesley et al., in prep

Remove dominant 1-D trend
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Porosity Anomaly

• Negative porosity anomaly deepens as seds approach trench

• Early stages of protothrust zone

�62

More porous 
than vert. 

compaction 
would predict

Less porous 
than vert. 

compaction 
would predict

Chesley et al., in prep
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Conclusions
• First EM image of subducting topography


• Seamounts carry an underappreciated 
volume of H2O to SZs


• Heterogeneity of resistivity along Hikurangi 
Margin likely related to seamount 
exposure


• Subducting seamounts/rough seafloor 
seems to be linked to shallow SSEs


• EM is a powerful tool for studying SZs
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