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Topics — Massive Scale CCS from a Geomechanical Perspective

* The Need for Massive Scale for Carbon Storage

 Saline Aquifers

e Basal Aquifers and the Critically-Stressed Crust
e Lessons from Induced Seismicity in Oklahoma

* Can we ldentify Potentially Active Faults Prior to Injection?

 Saline Aquifers
* Lessons from Induced Seismicity in the Delaware Basin

* Depleted Oil and Gas Reservoirs

* How Poroelastic Stress Changes Limit Induced Seismicity
* How Past Production has Affected Potential CCS Reservoirs

* Progress to Date



Massive Scale CCS?

Achieving the International Energy Agency’s (IEA) Sustainable Development
Scenario will require 6 Gt scCO, per year to be stored by 2050. Volumetrically
equivalent to 150% of current global oil production.

The CCS industry is expected to reach 1 Gt scCO, per year by 2030.

Today’s carbon sequestration industry must grow by 50 times. ~20 Mt per year of
anthropogenic CO, is currently being injected in 46 projects to reach 2030 targets.

It is estimated that about $1 trillion of investment will be needed to support this
growth, necessitating investment from capital providers across the entire
development pipeline (capture -> transport -> storage).

“Reaching net zero will be virtually impossible with CCUS” — IEA, September 2020



Topics — Massive Scale CCS from a Geomechanical Perspective

 Saline Aquifers

e Basal Aquifers and the Critically-Stressed Crust
e Lessons from Induced Seismicity in Oklahoma



Volumetric Assessments of Saline Aquifer Storage
Theoretically Available Pore Space
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SALINE FORMATIONS

Saline formations are layers of sedimentary porous and permeable rocks saturated with salty water called

brine. These formations are fairly widespread in both onshore and offshore sedimentary basins throughout
North America and have potential for CO, storage. Saline formation trapping mechanisms include solubility
trapping, mineral trapping, structural trapping, and residual trapping (see page 24 for more information). It
is important that a regionally extensive confining zone (often referred to as caprock or seal) overlies the
porous rock layer.

Saline formations represent an enormous potential for CO, storage, and recent project results suggest
that they can be used as reliable, long-term storage sites. Saline formation storage lacks the economic
incentives of oil and natural gas reservoirs or unmineable coal storage; however, they could serve as buffer
storage for EOR operations.

While assessment continues, DOE has documented approximately 2,379 billion metric tons to more than

21,633 billion metric tons of CO, storage resource in saline formations. For details on saline formation CO,
storage resource by State/Province, see Appendix C. For more information on the methodologies used to

estimate this potential, please see Appendix B.

CO, Storage Resource Estimates
for Saline Formations by RCSP*

Billion Billion Billion
Metric Tons Metric Tons Metric Tons
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Saline rock formations near Belfry, Montana.
Courtesy of John Talbott, BSCSP.



Realistically Assessing Capacity

Illustrative Sequestration Resource Volume
Volumetric Estimate vs. Realistic Estimate

Global Storage Resource Classification

Using SPE Storage Resources Management System (SRMS)

Sub—C%T/omercial Volumetric Estimate

Stored

/ 0.0003% Adjustment for Geologic
_ Attributes
Commercially
m Adjustment for Flow
N I 0 1
Modeling
The vast majority of the
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Basal Saline Aquifers

Basal Cambrian Sandstone,
Great Plains of the U.S. and Canada

* The aquifer with largest estimated
resources in the area

* Volumetric approach: 223 -721
Gt resources

e Storage formation for Quest and
Aquistore projects

Teletsky et al. (2019) argue that from a flow
modeling perspective, volumetric estimates
are ~10 x too high




Basal Saline Aquifers

OGCI assessment of the Great Plains

Basal Cambrian Sandstone storage

resource

* Flow modeling: ~3 Gt of capacity
based on injection from 16 major
sources in the area at ~100 MTPA

» Large gap between volumetric and
capacity assessments

* EERC report 2015-EERC-02-14
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Cumulative Number of
Magnitude 2.5+ Earthquakes

s Injection into Basal Formations Viable?
Triggered Earthquakes in Oklahoma
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Cumulative Number of Magnitude 2.5+ Earthquakes in Oklahoma

One M > 4 Eq per week
in Late 2015

and early 2016

Prior to 2009
One M >4 Eq per decade
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Produced Water Disposal is Triggering Earthquakes

WASTE WATER PO I PRODUCING
DISPOSAL WELL _fine @y s g < WELLS §
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Massive quantities of produced saltwater
(from formations like the Mississippi Lime)
was being injected into the basal Arbuckle

group.
About 3 billion barrels were injected in

north-central Oklahoma (AOIl) over a few
years.

Earthquakes occurring on pre-existing
critically-stressed faults in basement due to
small increases in pore pressure in the
Arbuckle Group

Potentially active faults are likely to be
permeable and extend from the crystalline
basement up into the Arbuckle.



Monthly injected saltwater volume [m3]

Using the Seismogenic Index Model to Predict How the Rate of
Produced Water Disposal Controls the Rate of Earthquake Triggering
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Produced Water Disposal is Triggering Earthquakes
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M > 3)

Monthly number of induced earthquakes (

Using the Seismogenic Index Model to Predict How the Rate of
Produced Water Disposal Controls the Rate of Earthquake Triggering
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* Earthquakes Occur in Basement Rocks
Nearly Everywhere in Intraplate Areas

* The Occurrence of Reservoir-Induced
Seismicity Indicates that Very Small
Pore Pressure Perturbations are
Capable of Triggering Seismicity, Even in
“Stable Areas”
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The Critically-Stressed Crust
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A Lithosphere in Failure Equilibrium

<—

Plate-driving o
forces ~ 3 x 16 Nm

Zoback et al. (2002)

Brittle Failure in Critically-Stressed Crust
Creep in Lower Crust and Upper Mantle



Stress Measurements Confirm Critically-Stressed Crust
(and the Applicability of Coulomb Faulting Theory)

S1-$3
0 100 200 300 400 MPa
rmrrr17r 110171717171 1717 1717 17717 17T 17T 17T 177 717 T17TTT
\ [ [ [ [ [
\
\
Y Temp? C
\ —
\ . .
-\ Stress Orientation
\ —
\
N Differential | 100° —]
<*" Stress Magnitudes
- - g _
== (06 < U< 07)
— \
- 150°—
\
— —a
_A-\; —
+
i < 200° __
S
- \ ]
\
\ (o)
\ 2507 |
- \
\
\
i I | —
0 10 20 30 \ ok 10 300°
; N160°E(+10 —
. Number of inducegd (+10)
Earthquakes  / Brittle-Ductile —
" _.-" Transition ? 350°
/ Zoback and Harjes (1997)

Reservoir
Geomechanics

Mark D. Zoback

These principles are applicable to brittle sedimentary formations



ENAS

Earthquake triggering and large-scale geologic storage of
carbon dioxide

Mark D. Zoback®' and Steven M. Gorelick®
Departments of 2Geophysics and °Environmental Earth System Science, Stanford University, Stanford, CA 94305

Edited by Pamela A. Matson, Stanford University, Stanford, CA, and approved May 4, 2012 (received for review March 27, 2012)

Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO, emissions
associated with coal-based electrical power generation and other industrial sources of CO, [Intergovernmental Panel on Climate Change
(2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group lll of the Intergovernmental Panel on

Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185-
5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO, into the brittle

rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO,

repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions.
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Earthquake Magnitude Depends on Whether Injection Increases
Potentially Activate Basement Faults
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2016 Pawnee, M5.8 mp

2020 Mentone, M4.9
2011 Eagle Ford, M4.8

2015 DFW, M4.0 msp

Typical microseismic
events during
hydraulic fracturing

Shallow (Strata-bound) vs Basement-Rooted Faults
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CO, Injection Into the Mt. Simon Sandstone
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Goertz-Allman et al. (2017, JGR)

* Injection of 1 million tons of CO,
over a 3-year period into the Mt. Simon
(8 million barrels, 1.3 million m?3)

At Decatur, Illinois

« Small earthquakes define faults in
Precambrian basement

* Pressure change less than 1 MPa
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Depth below MSL
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New Injection Zone is Still in the Mt. Simon (Above a Mudstone Baffle)
Seismicity is Continuing (at a Lower Rate) on the Same Basement Faults
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Basal Saline Aquifers

Example

e Basal Cambrian Sandstone,
Great Plains

* The aquifer with largest
estimated resources in the
area

e Storage formation for Quest
and Aquistore projects

s it Feasible to Consider Large-Scale
CO, Storage in Basal Saline Aquifers?




2016 Pawnee, M5.8 mp

2020 Mentone, M4.9
2011 Eagle Ford, M4.8

2015 DFW, M4.0 msp

Typical microseismic
events during
hydraulic fracturing

Shallow (Strata-bound) vs Basement-Rooted Faults
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Topics — Massive Scale CCS from a Geomechanical Perspective

* Can we ldentify Potentially Active Faults Prior to Injection?



Can We Avoid Injection into Potentially Active Faults?

THE GEOLOGICAL SOCIETY
OF AMERICA®

Yes, if we Know the Key Parameters — State of
Stress, Fault Orientations and Pore Pressure
Perturbation

Probabilistic assessment of potential fault slip related to injection-
iInduced earthquakes: Application to north-central Oklahoma, USA

F. Rall Walsh, Ill, and Mark D. Zoback
Department of Geophysics, Stanford University, 397 Panama Mall, Stanford, California 94305, USA

[ GEOLOGY

Data Repository item 2016334 | doi:10.1130/G38275.1

© 2016 Geological Society of America. For permission to copy, contact editing@geosociety.org.
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Can We Avoid Injection into Potentially Active Faults?

THE GEOLOGICAL SOCIETY
OF AMERICA®

Yes, But We Need to Incorporate the Uncertainties
of Key Parameters — State of Stress, Fault
Orientations and Pore Pressure Perturbation

Probabilistic assessment of potential fault slip related to injection-
iInduced earthquakes: Application to north-central Oklahoma, USA

F. Rall Walsh, Ill, and Mark D. Zoback
Department of Geophysics, Stanford University, 397 Panama Mall, Stanford, California 94305, USA

[ GEOLOGY

Data Repository item 2016334 | doi:10.1130/G38275.1

© 2016 Geological Society of America. For permission to copy, contact editing@geosociety.org.
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* Detailed Mapping of Stress
Orientation and Relative
Magnitudes

« Wellbore Observations

« Earthquake FM
Inversions

« Slowly Varying Relative
Stress Magnitudes

e Utilize Information About
Pre-Existing Faults (Darold
and Holland, 2015)

« Combine Data to Identify
Potentially Active Faults
Knowing the Maximum
Change in Pore Pressure
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Free, Online Software uses QRA to Assess Fault Slip Potential

(URL SCITS.stanford. edu)

Stress Regime: Strike-Slip Faulting Select Well A
x 10
a0 2
£ 15 3
E
=, >4\ @15
o =]
c 10 8
£
:
> 5 x §
5 05
0 10 20 072020 2030 2040 2050 2060
— x easting [km)] date
P

Injection Wells and Faults

a 800 -
!E‘
& 600-
®
R CTTROY 100 3
”" g 400
g0 Q-
0 T 200-
9 : % 5 10 15 20
S Distance [km]
v Show he Circl:

10 20
. easting [km]

Hydrology

1 £
effective [psi]

ot All

/ Fault Slip Potential

Stanford Center for Induced & Triggered Seismicity

0 5000 10000 15000
effective [psi]

3307 —~-30

-
10 20 7, e
rasting [km] 7 / o
24077 o v.‘-120
Geomechanical 2iv-_so
An a I yS I S ereonet Show.  projected Curves v

e (V5 2 1-
;‘;

sritical @ 10% risk 808
% 06
(%]
s 04
o
5

_.-876 = S R TR S N
Aol < a— - " -~
= 00 2000 4000 6000 8000 10000
4 Pore Pressure to Failure [psi)
Max Delta PP [psi] 10000
Sensitivity Analysis for Fault #8
10 20 [ ‘

easting [km]

Calculate Fault Slip

Potential

=g

33



Number of Realizations

Number of Realizations

Estimating Uncertainty in Key Parameters / FSP

(More Complicated than it Seems) s 2 POt
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Fault Slip Probability (2 MPa Max Pressure Change)
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|dentification of Faults That are Not Likely to be
Problematic is Important Too!
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Does FSP Work? In Retrospect, Every Significant Eq in OK
Can be Explained by Coulomb Faulting Theory
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Application to the Fort Worth Basin

Faults

Stress

Fault Slip Potential

Fort Worth Basin Boundary _,l!( —
Population Centers
Major Roadways
2 Counties
# Farthquakes

R»d River Uplife

5
from SMU N TX Catalog, Justinic et al (2013, \ \
Ogwari et al, (2018) N ™A N "\
Specific sequences studied: N\ 'i\ Wy
(A) Adle/Reno, (C) Cleburne, \, \ 1

(D) DFW Alrport, (1) iving-Dallas, (V) Venas

SWD Wells Injecting
into Ellenburger Gp.
Cumulative Injection 2000-2017

§ > 50 million bis
4 25 50 million bls
<25 million bis

Subsurface Fault
Interpretation Control
01! published info, 20 mapping.
outcrops
B3] analysis of horiz well Landing
interval, earthquakes

Y 10 seismic interpretation
anddata

Fault Traces at
Top Precambrian
o on Cown-Thrown side

high con'idence
’l‘mounae confiderce
/ outcropping fault

Contours on top
of pC (m subsea)

¥,
7 Outcrop Fault Location:

1. Cambrian sediments at Hoover Point

2. Eflenburger Gp. at Lhoist Quarry

Fort Worth Basin Boundary J
Population Centers {

Major Roadways

Counties

Sheac
Orientation Quality
A
s/
c/
Earthquake Fault

Plane Solutions
usexd for stress interpretation

7]

Ay=1.21
Stress Area 1

fled River Upjife

o

Stress Area 2
A,=1.0
S /']

:[ /
b 1/ 7\ A=08
{ g |/ / stress Area 3
Stress Area 4\ | ®
A,=0.8 ¥ I
Stimes ]
f ]
A%} 4
/ /
! / ‘Wace
) A&
A,g@-
V5
el
\ 8
. S
::_ _‘ / o
outcropping p€ '/‘/
J LA
I s I % 4
— PP N
retin I

100 km

Fort Worth Basin Boundary J
Population Centers J

Major Roadways
Counties |

4’Eanhquakes
trom SMU N 1X Catalog, Justinic et 3. (2013),
Ogwarl et 31, (2018)
Specific sequences studied:
() Azle/Reno, (€) Cleburme,
(D) DFW Rirpoet, (1) inving-Dalias, (V) Venus.

Shvar

d p""’ Lrlm

Ag=121
Stress Area 1

SWD Wells Injecting
into Ellenburger Gp.
Cumulative Injection 2000-2017|
§ > 50 million bis
# 25-50 million bis
+ <25 million bis

Fault Slip Potential (0-1.0) |
with 1 MPa Pp increase *

l! 010203040506

Stress Area 2

Ay=1.0

Shivas

Bend Areqy

1

L Figure 4¢

Av=08
 Bstress Area 3

-z

100 km

Hennings et al. (2019)

38




All Faults
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Topics — Massive Scale CCS from a Geomechanical Perspective

 Saline Aquifers
* Lessons from Induced Seismicity in the Delaware Basin
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In the Seismically Active Area the Delaware
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In the Seismically Active Area the Delaware

Mountain Group and Bone Spring are Saline Aquifers
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Small Pressure Changes Induce Seismicity in the Delaware Mountain Group
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Topics — Massive Scale CCS from a Geomechanical Perspective

* Depleted Oil and Gas Reservoirs
* How Poroelastic Stress Changes Limit Induced Seismicity



Shallow Seismicity in DMG Induced by
Very Small Pressure Changes

T DMIG Pore 1J'exNet and
Pressure Increase NMT i
1 from Model Earthquakes
+~200 psi @ 3.5+
3.0-3.5
End 2020 . 2530
~0 psi . 2.025
L. |

L4
Cumulative DMG
SWD 2015-2020
(MMbbl)

o <5
© 5-10
© 10-20
@ 20-30
@30-671
]

Geological Model:
Smye et al. (2021) Journal
of Sedimentary Geology

Pore Pressure Model:

Ge et al. (in review) Journal of

Hydrology — Regional Studies

P. Hennings, pers. comm.

MK

No Shallow Seismicity Where There Has Been
Previous DMG Production

Swvea Soaty

.‘-_.,A.'X, E

Catvguabea 17530
v wwew Masis
Srvap i 5 wemr
P OCutd 1B

——

3R 008 . A0 e
50K 000 - 1 20m 000

foved
Ca

Dvory and Zoback (2021)



No Earthquakes are Not Being Triggered Where
There Has Been Past Production
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Deformation Analysis in Reservoir Space (DARS)

 To understand the deformation mechanisms of

a producing reservoir utilizing relatively simple
laboratory tests and in situ measurements

* DARS is a formalism for estimating the evolution
of porosity (and permeability) and the potential
for induced normal faulting in a producing
reservoir
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Topics — Massive Scale CCS from a Geomechanical Perspective

* How Past Production has Affected Potential CCS Reservoirs
* Progress to Date



Weak Sands of the Gulf of Mexico

The Good News:
* Weakly-Cemented Sands are Not Likely to Produce Earthquakes
* Both Depleted Reservoirs and Saline Aquifers are Relatively Well Characterized




Weak Sands of the Gulf of Mexico
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Requires Further Study:
 How Has Production Has Affected Depleted Oil and Gas Reservoirs?
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Compaction and Permeability Loss in Weak GOM Sands
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S,=72.5 MPa

Vicksburg Formation
(McAllen Ranch, onshore GOM Texas)

Q 1: What happened during production?
40% reduction of porosity
NF line (1=0.6) Q 2: How will stress evolve during CO, injection?
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Topics — Massive Scale CCS from a Geomechanical Perspective

* Progress to Date



Global CCS Projects 2020
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There is a large gap (0.6 GtCO; per year) between industry targets
and the capacity of CCS projects currently being planned.

70-100 new

projects must be

commissioned

annually to achieve

the necessary rate
of growth.
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