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Regional Geology

The Owen Valley region consists of Owens River
Gorge, Mono Basin and Long Valley Caldera

Located in the Basin and Range province east of
the Sierra Nevada Mountain range
(California/Nevada)

Extensional tectonics = stretching/thinning of
crust, which allows hot mantle to rise to the
surface and causes uplift/downdrop of blocks
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Long Valley Caldera

0.76 Ma

Bishop Tuff — 600 cubic km spread over
more than 2000 km area

POsrC
0 lder, lavas and fill
basement

congealed magma
Volcanism is fed through a northwest

striking dike allowed by ‘basin and range’
topography

- pasalt
injections
Resurgent doming has occurred in the last
100 thousand years

basalt
injections



Mono Basin
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Uplift of the Sierra Nevada and White Mountain escarpments with
down-dropped blocks, forming the basin

Inyo-Mono Crater chain consists of 30+ explosive eruptions
beginning about 50,000 years ago

-Youngest rhyolitic volcanos in the western United States

-Highly ranked volcanic threat in the United States Bl Voronyo volcaric chain
[:l Postcaldera basalt
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Bounded on the
west by the Sierra
Nevada fault




Inyo-Mono Crater Chain
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Mono Lake

180 km2 saline lake (81 g/I) with a max depth of 48 meters

Local volcanism poured basalt into nearby valleys creating natural
dams — water filled into the area to create Mono Lake

Tufa towers from freshwater springs mix with saline lake water

Calcium rich water + carbonate rich (saline) water = CaCO, (limestone)

Paoha Island
9.2 km? formed around 350 years ago

Composed of lake-bed sediments and
volcanic material



Motivation
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Motivation
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Objectives for this study

1) Processing land and lake-bed MT data using multi-station processing schemes
2) Combination of data types for 2D inversion

3) To interpret 2D conductivity models to further study the volcanic systems in the Mono
Basin area

4) To develop a process for upward continuation of lake-bed MT data in order to use in
ModEM 3D code



Why MT?

Contrast between resistive host rock and
electrically conductive targets (fluids, melt, etc.)
in deeper structures

Method is sensitive to where fluids currently are
and where they have been

Natural currents span a broad range of
frequencies, thus wide range of penetration
depths

A good method for seeing deeper structures at
multiple kilometers



Imaging the magmatic system of Mono Basin, California,
with magnetotellurics in three dimensions

J.R. Peacock!, M. T. Mangan', D. McPhee', and D. A. Ponce'

1U.S. Geological Survey, Menlo Park, California, USA
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Mono Lake Collection (2017)

21 stations in the lake,
logged 2 days each

Remote magnetics
recorded several km
south of the lake

SIO seafloor EM
receiver

A completely autonomous
seafloor data logging system




Land data (2018

24 stations, recorded overnight using Zonge ZEN receivers

6-channel wideband system

Legend
& Lake-Bottom
O Land




Modifications to land data

Files from Zonge instruments rewritten into a
format compatible with multi-station
processing code

Remote magnetic data (Scripps format) were
down-sampled to match the land data
sampling frequency (1000 Hz to 256)

Some resolution lost from going from 32-bit to
24 but not detrimental

Magnetic channels and remote data in good
agreement

Small shift due to difference in instruments



Robust multiple-station magnetotelluric data processing

Gary D. Egbert

College of Oceanic and Armospheric Sciences, Oregon State University, Corvallis, QR 97331-5503, USA. E-mail: eghert@oce.orst.edu

Commonly used processing methods are based on univariate statistical procedures; conversely use
multivariate statistical processing

Use data from all channels to improve signal-to-noise ratios and diagnose possible biases due to
coherent noise

Data were sectioned into different groupings of stations to determine the best for processing output
-Typically used one noisy station with better stations to improve noisier station
-Clean stations were processed with clean stations



Apparent Resistivity ({1m)
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North side land data processed using both
single-station and multi-station technigues
Remote reference not used in orange points

Most differences appear in longer periods

Data was particularly clean, however in a
noisier environments we’ve seen it clean up
the data very well



MARE2DEM

MARE2DEM (Modeling with Adaptively Refined Elements for 2D Electromagnetics) Key (2016)

Finite element code for 2D forward and inverse modeling
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MARE2DEM uses Occam inversion method (Constable et al., 1987)
“A practical algorithm for generating smooth models from electromagnetic sounding data”



2D Inversion

-119.4°

Sites were chosen along a 135° line (line of
strike) in two parallel profiles
A: 13 land sites and 9 lake bottom sites
B: 13 land sites and 6 lake bottom sites

Data was cleaned up using Matlab codes
Very noisy data were removed (mostly at the
longer periods)

Data interpolated to the same frequencies post-
processing for consistency
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_ Remote

magnetic
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Modeling in Mamba2D
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Starting model is a 3-layer lake (fixed
parameter) in a uniform 1 Ohm-m half space
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Mono Lake
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log10(ohm-m)
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3D Inversion

3D inversion code (ModEM) can’t compute the fields properly if
the receivers are in the water

“Data propagation” to model the response on the surface of
the lake

For 1D case, impedance of the top of each layer is a function of
the top of the layer beneath it
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k term is complex wavenumber, depending upon the frequency
and layer conductivity




Forward modeling

2D forward modeling done in MARE2DEM

Model: 3-layered lake overlaying a uniform halfspace

Effect is larger at higher frequencies due to
depth of penetration

Difference in results confirm the need for
modification of the data for inversion

Recelvers at the lake bottom
Receivers ot the lake surface
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1D approximation

Apparent Resistivity TM ) Apparent Resistivity TE




Validation using 2D inversion
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3D inversion using ModEM

Ran on the USGS Yeti Supercomputer by Jared
Peacock

Started with 100 Ohm-m halfspace with the
lake as a fixed conductive feature

Lake stations were processed with
multi-station processing and upward
continued to the surface

Station rotations done before upward
continuation (validated with 1D
modeling)
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Shallow conductor aligns with
earthquake clusters on the north

side

Could be hydrothermal fluids,
partial melt, or both?

Suggests volcanism is still moving
northwards, next eruption likely
north of Mono Lake
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Conclusions

We’ve identified a shallow conductive feature under Mono Lake connected to a deeper
conductor that feeds into a shallower portion of the subsurface possibly through a
fracture — hydrothermal fluids?

A shallow conductor sits directly north of Mono Lake, suggesting northward progression of
volcanism

Results agree with previous studies of Long Valley and Mono Basin



Conclusions

There is need for a process to modify lake bottom data for use in 3D inversion to mitigate
lake effect on response

Upward continuing using the 1D MT recursion relation proves to be successful in
accounting for this

This technique is useful for future shallow water MT work



What’s next?

More MT data north of the last data set
would show the extent of the conductive
features towards the Bodie Mountains

Near surface work focusing on the upper 5
km of the area to better map the
hydrothermal systems

Time-dependent data could show at what =
rate these features are growing/moving and
would help forecast the next big eruption ==
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