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Inversion problems and methods

Specific problems General methods

Helmuth von Moltke the Elder (1800-1891) 2



Two common approaches to inversion

Optimisation framework:
Minimising some misfit function…
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Bayesian Inference:
Probabilistic sampling

Requires a Likelihood function,
Involves probability density functions

Optimal Transport is directly relevant to both frameworks

Depends on a user defined data misfit function.



The distance between A and B
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A

B

What is the distance between A and B?

A misfit function corresponds to a transformation between predicted and observed data.
A misfit function is a distance between two objects (observations and predictions, etc)

The Euclidean distance between 
A and B is itself the solution 
to an optimisation problem



Transforming two Gaussians into one
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Equal steps along the 
Euclidean path 

between endpoints

2 Gaussians

1 Gaussian

Equal steps along the 
Optimal Transport path 

between endpoints

2 Gaussians

1 Gaussian

Animation of the 
linear (least squares)

path between the start 
and end distributions

Animation of the 
optimal transport

path between the start 
and end distributions

Only amplitude changes

Amplitude and position
changes



Optimal Transport of images

Makes use of Sinkhorn Convolutional Wasserstein algorithm of Solomon et al. (2015)

Rémi Flamary and Nicolas Courty, POT Python Optimal Transport library, 2017. https://pythonot.github.io/

Linear Optimal transport

A mathematical topic that originated in the 19th century that has yielded two Fields medals 
and a Nobel prize. A vast literature exists, from mathematics to computer science. 

Introduced into Geophysics by Engquist and Froese (2014). 

Source Source Target
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From Solomon et al. (2015)

Optimal transport of shapes in 3D
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From Cow to Duck to Torus



Optimal Transport: Napoleon’s problem

The modern subject of optimal transport traces its roots back to the tail of Napoleon and his mathematician Gaspard Monge.
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𝑊(
((𝑓, 𝑔) = ∫.𝑐(𝑥, 𝑇(𝑥))𝑓(𝑥)𝑑𝑥

𝑓(𝑥)

𝑔(𝑥)

How to optimally transport the sand 𝑓(𝑥) to the holes 𝑔(𝑥) ?

𝑔(𝑇(𝑥)) = 𝑓(𝑥)
The transport map

The work required to 
complete the task

𝑐(𝑥, 𝑦) is the distance
between 𝑥 and 𝑦

The modern field derives from the work of Kantorovich (1942); Villani (2003, 2008).

𝑥
𝑦

𝑇(𝑥)

𝑊(
( ∝ (distance)

(
x mass ∝ Energy

𝑊& = (∑
6
𝑑6
&𝑚6) ⁄9 & 𝑝 = 1 or 2



Optimal Transport and Bayesian Inference
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𝑝(𝑇(𝑚)|𝑑) = 𝑝(𝑚)

𝑝(𝑚|𝑑) = 𝑘×𝐿(𝑑|𝑚)𝑝(𝑚)Bayes’ rule

Optimal transport provides a `push forward’ deterministic map between continuous PDFs. 

where 𝑇(𝑚) is the `Transport Map’

El Moselhy, T. A., and Y. M. Marzouk (2012), Bayesian inference with optimal maps, Journal of Computational Physics, 231(23), 7815 – 7850.

Prior PDFPosterior PDF

𝑚

The transport map completely defines the posterior PDF and 
hence is an alternate way to describe the complete solution to the inverse problem. 

Prior PDFPosterior PDF

𝑚𝑇(𝑚)



Optimal Transport and Bayesian Inference
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An optimal transport map (deterministic) or plan (probabilistic) can be viewed as a 
general solution to an inverse problem

𝑝(𝑚|𝑑) = 𝑝(𝑇(𝑚))

A `push forward’ deterministic map between prior and posterior PDFs. 

No McMC required!

Posterior 𝑝(𝑚|𝑑)

Transport map Transport plan

𝜋(𝑥, 𝑦) 𝜋(𝑥, 𝑦)

Prior 𝑝(𝑚)

Deterministic Probabilistic
Figure adapted from Solomon (2015)



Optimal transport maps one PDF onto another

Linear programming formulation of Kantorovich (1942). Solve for transport plan 𝜋6,@

𝑊&
& = (Distance)I×(mass)

𝑊9 = distance x mass

𝑊(
( = (distance)

(
x mass

Figure adapted from Solomon et al. (2015)

𝜋(𝑥, 𝑦) = Transport plan
𝑐(𝑥, 𝑦) = distance between x and y
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𝑚𝑖𝑛
M(NO,PQ)

𝑊&
& = ∑

6,@
𝑐6,@𝜋6,@, ∑

6
𝜋6,@ = 𝑓(𝑥6), ∑

@
𝜋6,@ = 𝑔(𝑦6)

Source

Target
Transport plan



Analytical OT solutions in 1D: Hooray!
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Averaged compute time
over 10 random 

1D problems

Finite difference solution 
to Monge-Ampere eqn.

Analytical solution
Analytical solution

Linear programming
Optimisation

Relative computational costs

Initial PDF

Final PDF

𝑊&(𝑓, 𝑔) = [Δ𝐳[Δ𝐲] ⁄9 &

𝑓(𝑥) = ∑
6^9

_`
𝑓6𝛿(𝑥 − 𝑥6

V)

𝑔(𝑥) = ∑
@^9

_c
𝑔@𝛿(𝑥 − 𝑥@

W)

Exact for any 𝑝. Requires just one sort and a vector dot product. Exact derivatives available, 
𝜕𝑊&/𝜕𝑓6 .

Analytical solution for 1D continuous case in terms of inverse CDFs (Villani, 2003)

𝑊&(𝑓, 𝑔) = ∫f
9|𝐹T9 − 𝐺T9|&𝑑𝑦

Our 1D discrete solution 

where 𝐳(𝑥V, 𝑥W) depends only on point mass locations and 𝐲(𝑓6, 𝑔@) depends only on point mass weights. 

Point mass representation
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Optimisation challenges with squared waveform misfits

Inverse problems are either linear with simple 
misfit functions or nonlinear with potentially 
multi-modal misfits - and sometimes both!
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An animation of least squares data misfit vs model and waveform changes

Linearisation will converge from any initial guess with velocity changes

Linearisation fails for interface changes unless we are very close to answer.

Waveform 
misfit

Waveform 
misfit

Most nonlinear inversion problems are easy 
if you start close enough to the minimum.



Waveform misfits: Least Squares and OT
Transformations between two seismic waveforms.

start
end Amplitude, u changes at fixed time, t

Amplitude, u and time, t change together.

Uses the vertical separation as a measure
of distance between two signals. 

Uses the minimum work required to 
transform one signal onto another. 
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A least squares misfit 
does not `see’ the  other peak, 

just the local amplitude discrepancy 

PredictedObserved

PredictedObserved

𝐿( has local sensitivity

𝑊( has global sensitivity

∫ (𝑢"ij(𝑡) − 𝑢&klm(𝑡))(𝑑𝑡



Measuring the distance between complex objects

Uses the vertical separation as a measure
of distance between two signals. 

Least squares

Uses the minimum work required to transform
one signal onto another. 

Optimal transport

𝑊9 = distance x mass

𝑊(
( = (distance)

(
x mass

Amplitude, u changes at fixed time, t

Amplitude, u and time, t change together.

𝑊&
& = (distance) & x mass
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Optimal transport in seismic waveform inversion

A number of groups have applied variants of OT in geophysics, primarily to full waveform 
inversion (FWI) in exploration seismology.

Approaches differ between studies:

• Solution method for Wasserstein distance, 𝑊&, and also p value.

• Transform of seismic trace to a Probability Density Function (PDF).

• 1D OT Trace by trace or 2D reflection image.

These are all open issues. It is an evolving field.

Engquist and Froese (2014); Engquist et al. (2016);  - Monge-Ampere PDE solver (p=2)
Yang and Engquist (2018); Yang et al. (2018); 

Me ́tivier et al. (2016 a,b,c,d); Me ́tivier et al. (2018 a,b);     - Dual formulation optimisation (p=1)
Me ́tivier et al. (2019); Yong et al. (2018)

Hedjazian et al. (2019) - Seismic receiver functions; Huang et al. (2019) - Gravity inversion.

Books and lecture notes: 

Villani (2003, 2008); Ambrosio (2003); Santambrogio (2015).
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How to make a time series positive?
Several existing approaches in literature to transform a time series to be positive.

• Addition method: Add positive constant to f(x) and g(x)

Issues: Loss of convexity w.r.t. time shifts; Transformation becomes local. => Reject.

• Take absolute values. Quite common solution.

Issues: Loss of polarity information in signal. In FWI results in no sensitivity to impedance contrasts. 17



How to make a time series positive - 2

• Like with like: Separately transform +ve to +ve and -ve to -ve.

Issues: Loss of mass conservation; Artificial decorrelation between +ve and -ve parts. 

• Global strategy: Mix +ve and -ve parts between f and g.

Issues: Ensures preservation of mass conservation; 
If time signals are separated in time will map f+ to f- and g+ to g-.

From Engquist and Froese (2014)

18



…and yet another
• A new idea by Metivier et al (2018) Graph Space OT is to replace the time series by a point 

cloud of 2D points distributed along f(t) and g(t). This creates a 2D point cloud where the 
OT problem is to map from one to the other.

Initial One GSOT solution

Another GSOT solution

Different solutions are obtained depending on 
choices of distance scaling (which seems unavoidable).

Note how (b) seems to map some points of the blue 
signal to the zero line of the red signal while (c) does 
not. This would appear to be a failing of the approach 
as its more a characteristic of L2, than Wp.
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Our way: Create a 2D `Fingerprint’ from 1D waveform

Seismologists will recognise this calculation because it is identical to that of propagating a 
seismic wavefront, initially in position 𝑢(𝑡), both upward and downward according to Huygens’ principle (geometric ray theory) in a medium with constant velocity. 

Step 1: Rather than treating the +ve and -ve parts of a time series, 𝑢(𝑡), differently, we create a 

2-D positive function, 𝑑(𝑢, 𝑡), which is the minimum distance from (𝑢, 𝑡) to the waveform.

Efficiently done with the Fast Marching method of Sethian (1996,1999); Sethian and Popovici, (1999); Rawlinson and Sambridge, (2004).
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Our way: Create a 2D `Fingerprint’ from 1D waveform

Step 2: Take the exponential of the distance function, 𝜙(𝑢, 𝑡) = 𝑒Tm(p,q)/r

Small 𝜆 Large 𝜆
21



Marginal Wasserstein in 2D

We sum over each axis, and average Wasserstein distances between 1D Marginals.
Synthetic fingerprint

Advantages:
• Takes advantage of 1D analytical OT solutions.
• Handles different time windows about predicted and observed waveforms.  
• Computational cost scales with 𝑛 rather than 𝑛( for 𝑛×𝑛 grid. 

Faster than Sliced Wasserstein with similar results.

• Derivatives 𝜕𝑊&
&/𝜕𝑢 can be calculated. 22

Observed fingerprint

Our waveform misfit becomes the Wasserstein distance between observed and synthetic PDFs



Computation of the Wasserstein distance between 
seismic fingerprints

Breaking down the calculation into 4 steps:

𝑊&
& =

Earth
model 

parameters

Seismic
waveform

2D
Fingerprint

nxn grid

2D PDFOptimal 
Transport 
between 

PDFs

𝑃jP_(𝑢, 𝑡)

𝑃"ij(𝑢, 𝑡)

𝑑(𝑢, 𝑡) 𝑢(𝑡)

Data

𝑒Tm(p,q)/r 𝐦

Marginal 
Wasserstein
(2𝐷 → 1𝐷)
Analytic

23

Analytic Fast Marching Forward solver



Example: Double Ricker wavelet fitting

Change Time shift

Change Amplitude

Change Frequency

Fit the noisy waveform by 
adjusting three parameters

Observed Predicted

Noise is 𝑁(𝜇, 𝜎()

𝜎 =
𝜇 =5% of maximum Ricker amplitude

50% of maximum Ricker period 24



Least squares misfit and Wasserstein distance 
between a pair of double Ricker wavelets

L2 misfit

Time shift

Wasserstein distance

Ricker wavelets

After Engquist and Froese (2014) 25



L2 waveform misfit surface

Least squares waveform misfit as a function of 
Time shift and Amplitude parameters

Red line indicates global minimum
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Wasserstein and L2 waveform misfit surfaces

Red line indicates global minimum

Wasserstein distance,𝑊9 Wasserstein distance,𝑊(
(

Least squares misfit, 𝐿(

Wasserstein based on 
2D fingerprint PDF
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Calculating derivatives of Wasserstein distance

For the Wasserstein distance to be useful within an optimisation framework derivatives of the Wasserstein distance, 
|}~

~

|�Q
, (𝑗 = 1,… ,𝑀),

Effectiveness of optimisation requires accurate derivatives at every step. Analytical derivatives are exact!

|}~
~

|�Q
= ∑

�

|}~
~

|p�

|p�
|�Q

(𝑗 = 1,… ,𝑀).

Other authors implementing OT to FWI have all done something similar with details depending on the choices made in applying Optimal 
Transport, e.g. Finite Difference solution of Monge-Ampere equations (Enquist and co workers, 2014-) 

or  constrained optimisation using the Monge-Kantorovich dual formulation (Metivier and co-workers 2016-).

In our case

𝜕𝑊&
&

𝜕𝑚@
=

Earth
model 

parameters
𝑚@

Seismic
waveform

2D Fingerprint2D PDFOptimal 
Transport 
between 

PDFs

𝑃jP_(𝑢, 𝑡)

𝜕𝑃�
𝜕𝑑�

𝜕𝑑�
𝜕𝑢6

𝜕𝑢6
𝜕𝑚@

Analytical Analytical: Source 
location derivatives

Depends on 
Forward model

Marginal Wasserstein
Analytical derivatives 
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with respect to underlying Earth model parameters are required. (This is the discrete analogue of the Adjoint method in waveform inversion)

The chain rule must be applied for each intermediate variable

One step of the chain rule

Four nested steps of the chain rule



Minimizing the Wasserstein distance 𝑊(
(

Wasserstein based on 
2D PDF of fingerprint

Least squares
waveform misfit

Waveform fit
Wasserstein distance

Time

Low amplitude start

Iteration

Iteration 29



Source location and Centroid Moment Tensor inversion
with Wasserstein Waveform misfit

Synthetic example set up:
• 11 receivers each with 3 component (High rate GPS) displacement seismograms (with correlated noise) 

• Alternating source location (x,y,z) and CMT solution (CMT solved using linear theory).

• Source location using gradient based minimisation of 1) Least squares waveform misfit and 2) Wasserstein distance, 𝑊(, 

between observed and predicted 2D seismogram fingerprints.

• 1D Earth model, displacement seismograms and source derivatives calculated using the software package pyprop8

(Valentine, 2021 in prep), based on the approach of O'Toole & Woodhouse (2011), O’Toole, Valentine & Woodhouse (2012).
30

GEONET High rate GPS station distribution 
detecting the 𝑀�6.6 2005 Fukuoka earthquake, 
(From O’Toole, Valentine and Woodhouse, 2012.)

Synthetic noisy displacement seismograms (solid) and starting waveforms (dashed) (stations 1065, 1066)

Displacement waveforms of true and starting guess

Starting source is 56km away and CMT is equal to truth.

An example of Wasserstein waveform misfit minimisation

Station 1065

Station 1066



Amplitude and time windows for Waveform fingerprints

Transform waveform amplitude, 𝑢, and time, 𝑡, to dimensionless (0,1) box

31

Observed and predicted Waveform fingerprints of horizontal components for station 1065.

• Independent time windows with common linear scaling: 𝑡� = qTq�
�[���

• Independent amplitudes with common nonlinear scaling: 𝑢� = 9
( +

9
M tan

T9 (pTp�)
�p + (pTp�)

�p
−∞ < 𝑢 < ∞

Amplitude range (𝑢f, 𝑢9) defines main sensitivity interval for amplitude transform.

Time (𝑡f, 𝑡9) and amplitude range parameters (𝑢f, 𝑢9) defined by observed waveform.

𝑡f ≤ 𝑡 ≤ 𝑡9

Δ𝑢 = 𝑢9 − 𝑢f

Δ𝑇"ij = 𝑡9 − 𝑡f



Cross sections of least squares waveform misfit

Cross sections through misfit function in source location. 32

• True source location
(Not at misfit minimum 

due to noise)



Cross sections of misfit functions with source location
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Fingerprint scale factor, 𝜆 = 0.04.

Least squares waveform difference Wasserstein distance, 𝑊(
(

• True source location Marginal Wasserstein algorithm used.

𝑊(
((𝑃"ij, 𝑃&klm) =

1
2
(𝑊q

( +𝑊p()
∫q�
q�(𝑢"ij(𝑡) − 𝑢(𝑖,𝐦))(𝑑𝑡

𝑃(𝑢, 𝑡) = exp(−𝑑(𝑢, 𝑡)/𝜆)



Gradient based minimisation of Wasserstein distance 
Initial and final waveform fits

Example: Initial source 56km from true solution; source (x,y,z) solved for; simultaneous fitting of 33 seismogram pairs.
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Initial waveform fit

Final waveform fit

Observed

Predicted

Station 1065

Station 1066

Time (s)

Time (s)
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)

𝑊( source location
< 1km from truth.

𝐿( source location 
~32km from truth.

𝐿( solution waveformStation 1065

Station 1066

𝑊( solution waveform



Optimisation performance: 
Least squares vs Wasserstein distance
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• True source location

Results of 48 Repeat relocations from different starting guesses up to 85 km from true source location.

Optimisation Initial location

Initial depths, 10, 20, 30, 40 km 

𝐿( location error vs 𝑊( location error

Within 1 km of 
true source location

❖ 29% converged minimizing Least squares norm of waveform misfit

❖ 79% converged minimizing 𝑊( distance between waveforms

Both 𝐿( and 𝑊(
converged

𝐿( converged

𝑊
(

co
nv

er
ge

d

True source is at 20km depth. Trial locations 10-40km.



Conclusions and directions

Least squares 
misfit

Wasserstein 
distance 36

• A new approach to optimal transport in waveform fitting 
Could be generalised to other time signals, surfaces…

• Exploiting analytical solutions and derivatives to facilitate 
optimisation framework. 
Quantitative evidence of improvement in convergence of 
derivative based optimisation

• Could be used as starting point for linearised uncertainty 
analysis or probabilistic sampling.

• Some new directions building on earlier work in seismic FWI.
but many open issues…use of transport plans/maps

• Less attention on transport plans/maps, but may find 
new applications, e.g. Bayesian inference, and anywhere that 
makes use of transfer functions.


