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What is MagnetoTellurics (MT)?

composition             water content
temperature            melt content

determine electrical conductivity distribution
below  the surface.

Passive
technique

measures variations of the Earth’s electric and 
magnetic field.

Electrical
conductivity

(s)

Depends  
on:

Objective

Hogg (2016)

source



Importance of MT

Griffin et al. (2013)
Ore deposits

MT info:

thermal structure 

fluid content water in minerals

fluid pathways

hydrated veins

LAB

melt 
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Model space Data space

Inverse theory 
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magnetic field at 
the Earth’s surface 

In MT the forward is fast in 1D 
and 2D, but computationally 

expensive in 3D!!
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Model space Data space
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Model space Data space

Data uncertainties

Model 
uncertainties

Inverse theory

Non-uniqueness! Inverse
Problem 
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Gravity anomalies

Seismic Data3D MT Data

Joint inversion



Gravity anomalies

3D MT Data

Joint inversion



Deterministic or
Traditional  
Inversion

• Successfully used for 
inverting a large number of 
unknowns

limited uncertainty information  
on the  estimated parameters

‘bias’: features of the true model 
may not be resolved

Advantages Disadvantages

• Solution depend on the
choice of regularizations
and parameterizations



Single and ‘best’ model 
based on a single physical parameter

(vs,vp, etc)

Deterministic or
Traditional  
Inversion

limited uncertainty information  
on the  estimated parameters

‘bias’: features of the true model 
may not be resolved

Advantages Disadvantages

Afonso et al. (2016)

• Solution depend on the
choice of regularizations
and parameterizations

• Successfully used for 
inverting a large number of 
unknowns
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Probabilistic 
Inversion

Model space Data space

Data uncertainties

Model 
uncertainties

Posterior probability distributions 
(PDFs) over data and parameters
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3D MT into Multi-Observable Probabilistic Inversion

What is a Probabilistic Inversion?

Most general solution

Posterior PDF Prior PDF

Likelihood

m

1
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What is a Probabilistic Inversion?

Most general solution

Posterior probability density 
function (PDF)  over  m
sought via the   Bayes' rule:

the posterior conditional 
PDF of m  given the data (d).

is the prior PDF over m 

is the prior PDF over d 

Posterior PDF Prior PDF

Likelihood

m

1

0



3D MT into Multi-Observable Probabilistic Inversion

What is a Probabilistic Inversion?

Most general solution

Posterior probability density 
function (PDF)  over  m
sought via the   Bayes' rule:

the posterior conditional 
PDF of m  given the data (d).

is the prior PDF over m 

is the prior PDF over d 

Assuming  data errors following a Gaussian distribution: 

Likelihood

: conditional PDF of d given  m.

is the error function or misfit: 

Posterior PDF Prior PDF

Likelihood

m

1

0

Joint inversions of uncorrelated datasets: 



MCMC algorithms produce 
approximations of the true posterior
by repeatedly drawing models   

and evaluating their posterior
probability

3D MT into Multi-Observable Probabilistic Inversion

What is a Probabilistic Inversion?

MCMC 
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What is a Probabilistic Inversion?
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Metropolis-Hasting 
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Prior PDFLikelihood



MCMC algorithms produce 
approximations of the true posterior
by repeatedly drawing models   

and evaluating their posterior
probability

3D MT into Multi-Observable Probabilistic Inversion

What is a Probabilistic Inversion?

MCMC 

Metropolis-Hasting 

m2

m=(m1, m2)

m1

mt-1

mt

proposal distribution 

For a random number u in (0,1], accept proposed move  
with acceptance probability:

Posterior PDF
Prior PDFLikelihood
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MCMC algorithms produce 
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MCMC algorithms produce 
approximations of the true posterior
by repeatedly drawing models   

and evaluating their posterior
probability
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What is a Probabilistic Inversion?

MCMC 

Metropolis-Hasting 
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MCMC algorithms produce 
approximations of the true posterior
by repeatedly drawing models   

and evaluating their posterior
probability

3D MT into Multi-Observable Probabilistic Inversion

What is a Probabilistic Inversion?

MCMC 

Metropolis-Hasting 

m2

m=(m1, m2)

m1

mt-1

mt+1

proposal distribution 

For a random number u in (0,1], accept proposed move  
with acceptance probability:

Posterior PDF
Prior PDFLikelihood

Compute 
forward 

solutions for 
every sample! 



Probabilistic 
Inversion

Advantages

• Extensive information 
about unknown parameters

• Inversion results are almost 
independent of initial values

Global and robust
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about unknown parameters

Computationally expensive 

Application limited to problems
where fast forwards are available
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independent of initial values
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• Needs to run forward solutions
millions of times

LA
B

  [
km

]

Posterior probability distributions 
(PDFs) over data and parameters



Probabilistic 
Inversion

Advantages Disadvantages

• Extensive information 
about unknown parameters

Computationally expensive 

Application limited to problems
where fast forwards are available

• Inversion results are almost 
independent of initial values

Global and robust

• Needs to run forward solutions
millions of times

LA
B

  [
km

]

Posterior probability distributions 
(PDFs) over data and parameters



How do we compute fast forwards and 
include 3D MT into joint probabilistic 

inversions?



How do we compute fast forwards and 
include 3D MT into joint probabilistic 

inversions?



GreenRed

Reduced basis, in a simple way

Primary or  basis colours

• If we want to obtain:

• Combine:

= 0.04 + 0.06 + 0.9 

Blue

RB+MCMC approach for 3D MT



GreenRed

Reduced basis, in a simple way

• If we want to obtain:

• Combine:

= 0.04 + 0.06 + 0.9 

Blue

For fast 3D MT forwards:

Bases: full forward solutions
for certain conductivity models

Approximation of the full
forward solution: RB solution..

…as a combination of the 
bases

Primary or  basis colours

RB+MCMC approach for 3D MT



Reduced basis scheme

3D MT
Forward

Initial 3D conductivity model

Compute full forward

Base 1

RB+MCMC approach for 3D MT
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Random 3D conductivity fields in 
MT mesh

3D MT
Forward
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RB solution using

RB+MCMC approach for 3D MT

Initial 3D conductivity model
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Random 3D conductivity fields in 
MT mesh

3D MT
Forward

Reduced basis scheme

Different enough?

NoYes

Base 1

Base 2

Base 3

Compute full forward RB solution using

3D Multi-Observable 
Probabilistic InversionGeoid

SHF

Receiver 
Functions

Elevation

Seismic

R & L

Gravity anomalies

Xenoliths

RB+MCMC approach for 3D MT

Initial 3D conductivity model



Yes

Random 3D conductivity fields in 
MT mesh

Reduced basis scheme

3D MT
Forward

3D MT

NO need of 
expensive 
forward

Reduced Basis 
Solution

Super fast!

Compute full forward

Different enough?

No

RB solution using

Base 1

Base 2

Base 3

3D Multi-Observable 
Probabilistic InversionGeoid

SHF

Receiver 
Functions

Elevation

Seismic

R & L

3D MT

Xenoliths

Gravity anomalies

RB+MCMC approach for 3D MT

Initial 3D conductivity model



3D MT forward problem

3D MT into Multi-Observable Probabilistic Inversion

Using the secondary field 
formulation of Douglas  et al. (1999, 
2000) and the absorbent boundary 
conditions defined by Sheen (1997), 
the MT forward problem in 3D is 



3D MT forward problem

• Discretised problem to solve:

3D MT into Multi-Observable Probabilistic Inversion

Full forward (high-fidelity) 
solutions are sought via an 
optimized version of the  
finite element (FE) code 
developed by Zyserman & 
Santos (2000). We use the 
parallel solver MUMPS

U is a vector containing the 
unknown coefficients for the 
electric field in the whole 
domain



Reduced Basis strategy

• Generate a space of NRB linearly independent 
solutions or snapshots of  (4) 

3D MT forward problem

• Discretised problem to solve:

3D MT into Multi-Observable Probabilistic Inversion



• For every new sample we first seek for the 
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• For every new sample we first seek for the 
solution in             as a linear combination  
of the basis functions

Reduced Basis strategy

• The RB solution is found solving a system a 
of equation of size 

• Generate a space of NRB linearly independent 
solutions or snapshots of  (4) 
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3D MT into Multi-Observable Probabilistic Inversion



• For every new sample we first seek for the 
solution in             as a linear combination 
of the basis functions

Reduced Basis strategy

• The RB solution is found solving a system a 
of equation of size 

• Generate a space of NRB linearly independent 
solutions or snapshots of  (4) 

3D MT forward problem

• Discretised problem to solve:

3D MT into Multi-Observable Probabilistic Inversion

We have included:
• Variable tolerance
• Orthonormalization



How do we implement the RB 
approach for the joint MT+SW

inversion?



Parallel implementation and solvers



From tens of 
minutes to 
~1 sec per 

simulation!

Parallel implementation and solvers



How do we parameterise our models 
for the joint MT+SW inversion?



Full conductivity model 

Parameterisation : background + conductivity anomalies



Full conductivity model 

Large scale thermochemical
background: temperature,
pressure and bulk composition

LAB-parameters
(black columns)

Parameterisation : background + conductivity anomalies

+

Station 248

Station 293



Full conductivity model 

Small scale conductivity 
anomalies: as fluid pathways, 
melt-rich regions, hydrogen-
rich domains,  anomalous 
mineral assemblages

Node-parameters
(white dots)

Large scale thermochemical
background: temperature,
pressure and bulk composition

LAB-parameters
(black columns)

Parameterisation : background + conductivity anomalies

+

Station 248

Station 293



Sampling strategy

P P

PP2(mt)/P2 (mt-1)
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Sampling strategy

P2(mt)/P2 (mt-1)

P1(mt)/P1 (mt-1)

P2(mt)/P2 (mt-1)



Sampling strategy



Sampling strategy



Synthetic Example 



Synthetic Data

• The MT synthetic data are full impedance tensor computed for 12 periods between 3.2 and 10000 seconds 
at 400 stations. 

• The data errors are assumed to be uncorrelated and normally distributed. 

• The standard deviation is assumed as 5% of max(|Zxx|,|Zxy|) for the components Zxx and Zxy of the impedance 
tensor, and 5% of max(|Zyy|,|Zyx|) for the components Zyy and Zyx.

• The SW data are the Rayleigh wave phase velocities for periods between 15 and 175 seconds,
computed at the locations of the MT stations. 

• We assume normally distributed data errors with a standard deviation of 1% of the velocity in meters.



95% percentile
• after 700,000 simulations

Data Misfits



95% percentile
• after 700,000 simulations

Model setup

• The inversion area is sub-divided into 324 columns of size 80×80×460 km 

• 1155 conductivity nodes sparsely located within the inversion volume (1440×1440×410 km)

• The vector of model parameters contains 324 LAB values and 1155 nodal conductivity values (1479 parameters) 



95% percentile
• after 700,000 simulations

Model setup

Prior and proposal distributions

• The inversion area is sub-divided into 324 columns of size 80×80×460 km

• 1155 conductivity nodes sparsely located within the inversion volume (1440×1440×410 km)

• The vector of model parameters contains 324 LAB values and 1155 nodal conductivity values

• The priors for the LAB depths are uniform distributions defined in a range of ±70km, centered on the true value of each 
column. 

• The proposals used in the first stage are Gaussian distributions centered on the current sample with a standard 
deviation of 20 km.

• For the conductivity nodes, we use Gaussian prior distributions centered on the background conductivity value (in log-
scale) with a standard deviation of 1.5 log10 (S/m).

• The initial proposal distributions are log-normal centered on the current node value and  standard deviation of 0.9 
log10 (S/m).



Large scale example 

Joint probabilistic inversion of 3D MT and SW synthetic data

• Model size= 

1200x1200x460 km

• 12 frequencies

• 400 stations

Parameters: 

• 324 LAB + 1155  conductivity nodes

RUN 1,000,000 MCMC steps

• tol1= 0.068

• tol2 =0.058 

• 2 processors (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz) per frequency

• Inversion took 14 days, with an average of 1.2 sec per simulation 



LAB depth 
PDFs 

(after 1,000,000

simulations)

Large scale example 

Joint probabilistic inversion of 3D MT and SW synthetic data

• Model size= 

1200x1200x460 km

• 12 frequencies

• 400 stations

Parameters: 

• 324 LAB 

• 1155 nodes 



Conductivity
nodes PDFs

(after 1,000,000
simulations)

Large scale example 

Joint probabilistic inversion of 3D MT and SW synthetic data

• Model size= 

1200x1200x460 km

• 12 frequencies

• 400 stations

Parameters: 

• 324 LAB 

• 1155 nodes 



Joint probabilistic inversion of 3D MT and SW synthetic data



Joint probabilistic inversion of 3D MT and SW synthetic data



Best model after 1,000,000 simulations 

Joint probabilistic inversion of 3D MT and SW synthetic data



Mean model after 1,000,000 simulations 

Joint probabilistic inversion of 3D MT and SW synthetic data



95% percentile
• after 700,000 simulations



Surface-waves data pdfs



MT data pdfs: station 293
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MT data pdfs: station 244
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95% percentile
• after 700,000 simulations

Bases 

Misfit
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Efficient parameterisation of background + conductivity anomalies 
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• Inversion using field MT and SW data
• Efficient sampling MCMC strategies (trans-

dimensional scheme, parallel tempering, 
etc..)   
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e-mail: 
maria-constanza.manassero@mq.edu.au

Any questions??
Future work

Efficient parameterisation of background + conductivity anomalies 

Conclusions

Parallel-in-parallel
structure + Reduced Basis

methods + Adaptive strategies 
(MCMC and the 
surrogate model

+

Develop the 1st numerical platform (RB+MCMC) to jointly
invert 3D MT data and seismic data in a  probabilistic way

• Inversion using field MT and SW data
• Efficient sampling MCMC strategies (trans-

dimensional scheme, parallel tempering, 
etc..)   

Thank you!

Fast 3D MT forwards:
less than 1 sec!




