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—  QOverview —

Introduction to inverse problem and joint inversion

Deterministic and probabilistic inversion

Reduced Basis Method

RB+MCMC approach

Joint 3D MT+SW probabilistic inversion
* Structure of the code
* Parameterisation
 Sampling strategy

* Synthetic example
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—— What is MagnetoTellurics (MT)? ——

(o)

Passive measures variations of the Earth’s electric and
technique magnetic field.
o determine electrical conductivity distribution
Objective below the surface.
EIectriFa-I Depends composition water content
[conductivity temperature melt content

on:

/ source J

;

Hogg (2016)



—— Importance of MT —

MT info:

\»

thermal structure _T: -
melt

fluid content X_T: water in minerals

fluid pathways

hydrated veins

Ore deposits\

i-Cuzx
Diamonds Ni-Cu=PGE

Refertilized SCLM
High-degree melting

Low-degree melting

Plume

Porphyry Cu (Mo,Au), W-Sn Au-rich deposits

Water lost from
slab triggers high-degree
melting in mantle wedge

Griffin et al. (2013)
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Inverse theory ——

Model space \

Forward
Problem

Data space \

M

conductivity model

G(m)=d7

In MT the forward is fast in 1D
and 2D, but computationally
expensive in 3D!!

a

Electric and
magnetic field at
the Earth’s surface




Inverse theory —

Model space \

Data space \

B

Electric and
magnetic field at
the Earth’s surface




Inverse theory —

Model space \

conductivity model

[
[

Data space \

Inverse
Problem

\

=)

Electric and
magnetic field at
the Earth’s surface




Inverse theory —

Model space \

Inverse
Problem

\

Data space \

)

Data uncertainties




—— Inverse theory —

Model space \ Data space \

Model
uncertainties

:\

: — ] Data uncertainties

. Inverse
Non-unigueness! Problem X




Joint inversion

3D MT Data
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Joint inversion
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Joint inversion

Gravity anomalies

T

120"

)
Nluminating Australia’s deep earth =

* Planned sitos (Exploring for tho Futuro Program) © Acquisition in progress
© Planned sitos ® Acquired (as of June 2018)




Joint inversion

Gravity anomalies

T

Nluminating Australia’s deep earth =

* Planned sitos (Exploring for the Futuro Program) @ Acquisition in progress
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Joint inversion

o sate\lile-

to-satellite
tracking
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Joint inversion

Gravity anomalies
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Joint inversion

Gravity anomalies
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Deterministic or
Traditional
Inversion

Advantages

Disadvantages \

Successfully used for
inverting a large number of

unknowns

e Solution depend on the
choice of regularizations
and parameterizations

*  limited uncertainty information

on the estimated parameters

= ‘bias’: features of the true model
may not be resolved

Only one ‘ best solution’ per
inversion!




g
Deterministic or
Traditional
Inversion
g
/ Advantages Disadvantages \

-110° -105° -100

Successfully used for
inverting a large number of

unknowns

e Solution depend on the
choice of regularizations
and parameterizations

*  limited uncertainty information

on the estimated parameters

= ‘bias’: features of the true model
may not be resolved

Only one ‘ best solution’ per
inversion!

Afonso et al. (2016)

Single and ‘best’ model

based on a single physical parameter
(vs,vp, etc)
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Probabilistic

Inversion

Model space \ Data space X
Model Forward
_—_\ uncertainties Problem

\\

___\ — D Data uncertainties
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Inversion < 180
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Mg# litho
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MOdel Forwa rd / Perli;d (s)
uncertainties : 120
\ Problem
\\ Posterior probability distributions
\ (PDFs) over data and parameters
\
—Ll —l
_J D Data uncertainties
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3D MT into Multi-Observable Probabilistic Inversion

Likelihood 1 K
[ Most general solution
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3D MT into Multi-Observable Probabilistic Inversion

Likelihood 1 K
[ Most general solution

Posterior probability density i
function (PDF) over m
sought via the Bayes' rule:

L(dm)P(m) m

P(m|d) = P(d)

P(m|d) o< £(d|m)P(m).

P(m|d) the posterior conditional
PDF of m given the data (d).

P(m) isthe prior PDF over m

P(d) isthe prior PDF over d
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3D MT into Multi-Observable Probabilistic Inversion

Likelihood 1 K
[ Most general solution

Posterior probability density i
function (PDF) over m
sought via the Bayes' rule:

£(d|m)P 0
Py S .
) / Likelihood \
P(m|d) o £(d|m)P(m). L(d|m) : conditional PDF of d given m.

P(m)|d) the posterior conditional Assuming data errors following a Gaussian distribution: £(d|m) o exp [—S(m)],

PDF of m given the data (d). -5(m) s the error function or misfit: S(m) = 3(::1 dewie)! Cp ' (d — deare)

P(m) isthe prior PDF over m
Joint inversions of uncorrelated datasets:

P(d) isthe prior PDF over d
L(m) = Hi:j{lll}.
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3D MT into Multi-Observable Probabilistic Inversion

——  What is a Probabilistic Inversion? ——

/ vae \

MCMC algorithms produce
approximations of the true posterior
by repeatedly drawing models m;
and evaluating their posterior
probability

P(m|d) < £(d|m)P(m).




What is a Probabilistic Inversion? —

3D MT into Multi-Observable Probabilistic Inversion

I\ §CCF5

MCMC

/[

Metropolis-Hasting

\

\

MCMC algorithms produce
approximations of the true posterior
by repeatedly drawing models m;
and evaluating their posterior
probability

P(m|d) < £(d|m)P(m).

Likelihood

q(-|-)

proposal distribution

m=(m?, m2)

> m]_
Prior PDF

Posterior PDF
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3D MT into Multi-Observable Probabilistic Inversion

——  What is a Probabilistic Inversion? ——

/ Metropolis-Hasting \
/ vae \
m? __ proposal distribution ¢(:|)
MCMC algorithms produce
approximations of the true posterior
by repeatedly drawing models my; C N
and evaluating their posterior m,
probability My,
_ m=(m1, m?2
P(m|d) < £(d|m)P(m). ( )
> m1
Lali Posterior PDF
Likelihood Prior PDF

For a random number u in (0,1], accept proposed move
with acceptance probability: R

P(m;|d) g(m;_;|my) }

y(m;_;.m;) = min< 1. —
{1 t) { P(m;_,|d) g(m;/m;_;)
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3D MT into Multi-Observable Probabilistic Inversion

——  What is a Probabilistic Inversion? ——

/ Metropolis-Hasting \
/ vae \
m? __ proposal distribution ¢(:|)
MCMC algorithms produce
approximations of the true posterior
by repeatedly drawing models my; TN “.
and evaluating their posterior m,
probability My,
_ m=(m1, m?2
P(m|d) < £(d|m)P(m). ( )
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Lali Posterior PDF
Likelihood Prior PDF
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What is a Probabilistic Inversion? —

3D MT into Multi-Observable Probabilistic Inversion
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3D MT into Multi-Observable Probabilistic Inversion

——  What is a Probabilistic Inversion? ——

/ Metropolis-Hasting \
/ vae \
m? __ proposal distribution ¢(:|)
MCMC algorithms produce
approximations of the true posterior
by repeatedly drawing models m; V2 U
and evaluating their posterior m,,,
probability My,
_ m=(m1, m?2
P(m|d) < £(d|m)P(m). ( )
> m1
Lali Posterior PDF
Likelihood Prior PDF

For a random number u in (0,1], accept proposed move
with acceptance probability:

P(m;|d) g(m;_;|my) }

y(m;_;.m;) = min< 1. —
{1 t) { P(m;_,|d) g(m;/m;_;)
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Macquarie's Geophysics
and Geodynamics Group

——  What is a Probabilistic Inversion? ——

3D MT into Multi-Observable Probabilistic Inversion

/ Metropolis-Hasting \
/ MCMC \
m? | __ proposal distribution q(-|-)
MCMC algorithms produce
approximations of the true posterior
by repeatedly drawing models m; Ve U
and evaluating their posterior ® % m,
probability M1
m=(m1, m?2
P(mld) oc £(d|/m)P(m). ( )
> ml
Lali Posterior PDF
Likelihood Prior PDF

For a random number u in (0,1], accept proposed move
with acceptance probability:

P(m;|d) g(m;_;|my) }

alm;_;.m;) =min< 1.
(11, ) { P(m;_;|d) g(m¢|m;_,)
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[ Advantages

Period (s)

* Extensive information w0 120

about unknown parameters

* Inversion results are almost
independent of initial values

" Global and robust

Posterior probability distributions
(PDFs) over data and parameters

Result: a lot of models that
are likely to fit the data!




__ 240}
E 220
Probabilistic m 200}
Inversion < 180}
0.88 0.9 0.92 D.g4
Mg# litho
(.

Station 307

Vel Phase Rayleigh (m/s)

[ Advantages / Disadvantages X
\

e Extensive information * Needs to run forward solutions
about unknown parameters millions of times

Period (s)

100 120

. Computationally expensive
* Inversion results are almost

independent of initial values ™ Application limited to problems
* Global and robust where fast forwards are available

Posterior probability distributions
(PDFs) over data and parameters

Result: a lot of models that
are likely to fit the data!




__ 240}
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Probabilistic m 200}
Inversion < 180} =
0.88 0.9 0.92 0.94
L Mg# litho
— Station 307
Vel Phase Rayleigh (m/s)
[ Advantages / Disadvantages X
. ‘ Period (s)

 Extensive information * Needs to run forward solutions 100 120 140 10

about unknown parameters millions of times

. Computationally expensive

* Inversion results are almost - S Posterior probability distributions

independent of initial values Application limited to problems (PDFs) over data and parameters
* Global and robust where fast forwards are available

wwel
ensive!
Result: a lot of models that 3D MT forwards rea\|.\\l. i)-(pmversion‘-
i i ta! ; babilistic
are likely to fit the da Never used ina pro




How do we compute fast forwards and
include 3D MT into joint probabilistic
inversions?




How do we compute fast forwards and
include 3D MT into joint probabilistic
inversions?




——  RB+MCMC approach for 3D MT —

Reduced basis, in a simple way

Primary or basis colours

 |f we want to obtain: -

e Combine:

=004 +0.06 " +09 N




——  RB+MCMC approach for 3D MT —

Reduced basis, in a simple way

Primary or basis colours For fast 3D MT forwards:

m m m — |Bases: full forward solutions
for certain conductivity models

* Ifwewanttoobtain: [ — 5 | Approximation of the full
forward solution: RB solution..

e Combine:

=004 +0.06 " +09 N /)

...as a combination of the
bases




——  RB+MCMC approach for 3D MT —

Initial 3D conductivity model Reduced basis scheme

Grid Info.:
Cells #in X-direction, Nx = 20
Cells #in Y-direction, Ny =20
Cells #in Z-direction, Nz =19
-80 -40 0 40 80

3D MT Compute full forward

Forward

—

Depth (km)

Log10 [Resistivity (ohm.m)]
3 4
[ [



——  RB+MCMC approach for 3D MT —

Initial 3D conductivity model Random 3D conductivity fields in Reduced basis scheme
MT mesh
2 o w0 e e Different enough?

3D MT \
Forward

—

No

RB solution using

Depth (km)

Log10 [Resistivity (ohm.m)]
3

4 5 6
[ [




——  RB+MCMC approach for 3D MT —

Initial 3D conductivity model Random 3D conductivity fields in Reduced basis scheme
MT mesh

- Different enough?

3D MT /
Forward

Yes

—

Compute full forward

Cose2

Depth (km)

Base 2

Log10 [Resistivity (ohm.m)]
3 4 5
[ [



——  RB+MCMC approach for 3D MT —

Initial 3D conductivity model Random 3D conductivity fields in Reduced basis scheme
MT mesh
2 o w0 e o Different enough?

3D MT \
Forward

—

No

RB solution using

Depth (km)

Log10 [Resistivity (ohm.m)]
3

4 5 6
[ [




——  RB+MCMC approach for 3D MT —

Initial 3D conductivity model Random 3D conductivity fields in Reduced basis scheme
MT mesh

Grid Info.:

e Sy o o Different enough?

-80 -40 0 40 80

| ll e ...=lllll--_ 3 D T / \
——— R £ llIllI“ - =====lili---_ Forward
Yes No

—
Compute full forward RB solution using

Depth (km)

Log10 [Resistivity (ohm.m)]
3 4 5 6

Elevation / ‘Gravity anomalies ]

SHF
3D Multi-Observable
Geoid f Probabilistic Inversion
R&L
Receiver
Functions/ Seismic l Xenolithsl




Initial 3D conductivity model

Grid Info.:
Cells #in X-di

ells #in X-direction, Nx = 20
Cells #in Y-direction, Ny =20
Cells #in Z-direction, Nz = 19

Depth (km)

SHF

Geoid ;

Log10 [Resistivity (ohm.m)]
3 4
[ \

RB+MCMC approach for 3D MT

Elevation / ‘Gravity anomalies /

Receiver
Functions

|

3D Multi-Observable
Probabilistic Inversion

Seismic / Xenoliths/

Random 3D conductivity fields in
MT mesh

=i g =

NO need of

expensive

l 3D MT/ forward %

R&L

Reduced Basis

Solution ¥
"

Reduced basis scheme
Different enough?

3D MT / \
Forward

Yes No

—
Compute full forward RB solution using
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3D MT into Multi-Observable Probabilistic Inversion

3D MT forward problem

o(x,0)E-VxH = —F (1)

iwpoH+V xE = 0 (2)

(1-i)PrdE+vxH = 0 ondR=1, (3)




Macquarie's Geophysics
and Geodynamics Group

3D MT forward problem

o(x,))E—VxH = —F (1)
iwpoH+VxE = 0 (2)

(1-iPadE+vxH = 0 ond2=I. (3)

* Discretised problem to solve:

K(0)U(0) = F(8) (4)

3D MT into Multi-Observable Probabilistic Inversion

L\ @ecrs

where K is the stiffness matrix and F
is the nodal vector forces.

size of K: NFE X NFE

Full forward (high-fidelity)
solutions are sought via an
optimized version of the
finite element (FE) code
developed by Zyserman &
Santos (2000). We use the
parallel solver MUMPS




3D MT into Multi-Observable Probabilistic Inversion

Reduced Basis strategy

3D MT forward problem * Generate a space of N, linearly independent
solutions or snapshots of (4)
ox,)) E-VxH = -F (1) Urp = span{u,qy, Uy, - Wyrpy ) C U
iwpoH+V xE = 0 (2)

(1-i)PrdE+vxH = 0 ondR=1, (3)

* Discretised problem to solve:

K(0)U(0) = F(0) (4)

where K is the stiffness matrix and F
is the nodal vector forces.

size of K: NFE X NFE
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where K is the stiffness matrix and F
is the nodal vector forces.

(1-i)PrdE+vxH = 0 ondR=1, (3)

3D MT forward problem

ox,)) E-VxH = —-F (1)

iwpoH+V xE = 0 (2)

Discretised problem to solve:

K(0)U(0) = F(0) (4)

3D MT into Multi-Observable Probabilistic Inversion

L\ @ecrs

size of K: NFE X NFE

Reduced Basis strategy

Generate a space of Ngg linearly independent
solutions or snapshots of (4)

Urp = -Spﬂ-'n-{uh(l)e Wy (), - Up(rp)} C Un

For every new sample we first seek for the
solution in Urpi as a linear combination
of the basis functions

f\-‘rRB

URB = Z (L.f_U.,:_ = Uma

i=1
| 1 NpgxN
URB‘ = _Ul-. UQ””’UNRB_ FEXINRB

al — [0-1- a9, ---a—NRB]
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3D MT forward problem

ox,)) E-VxH = —-F (1)
iwpoH+V xE = 0 (2)

(1-i)PrdE+vxH = 0 ondR=1, (3)

* Discretised problem to solve:

K(A)U(F) = F(H) (4)

where K is the stiffness matrix and F
is the nodal vector forces.

3D MT into Multi-Observable Probabilistic Inversion

L\ @ecrs

size of K: NFE X NFE

size of KRBZ NRB X NRB
Nrp < Npg

Reduced Basis strategy

Generate a space of Ngg linearly independent
solutions or snapshots of (4)

Urp = span{upqy, Wy(2), - Wprp)t C Un

For every new sample we first seek for the
solution in Urpi as a linear combination
of the basis functions

f\-‘rRB

URB = Z (L.g_U.g_ = Uma

i=1
[ 1NpgxN
URB = _Ul-. UQ....,UNRB_ FEXINRB

al = |a1. a9, ...anp;]

The RB solution is found solving a system a
of equation of size Nrp < Npp

(Upg! K(8)Ugg)a = Ugg’ F()

Kgg(f)a = Frp(f)




3D MT forward problem

o(x,))E—VxH = —F (1)
iwpoH+VxE = 0 (2)

(1-iPadE+vxH = 0 ond2=I. (3)

* Discretised problem to solve:

K(0)U(0) = F(8) (4)

where K is the stiffness matrix and F
is the nodal vector forces.

3D MT into Multi-Observable Probabilistic Inversion

L\ @ecrs

size of K: NFE X NFE

size of KRBZ NRB X NRB
Nrp < Npp

Reduced Basis strategy

Generate a space of Ngg linearly independent
solutions or snapshots of (4)

Urp = spa-n.{uh(l), Up (2, .- uh(RB)} C Uy

For every new sample we first seek for the
solution in Urpi as a linear combination
of the basis functions

How good is the RB solution? |
Egrs = URB ~ U

NrB - KU
KE = KURB
Unpp = E a; U; = Uppa B KErsB | KUrB — E|
Pt Res =~ ~ |Fl

Ugp = [Ul-. U, ... UNRB]NFE *xNgrB RgpB K to\

al = |a1. a9, ...anp;]

The RB solution is found solving a system a
of equation of size Npp < Nrp

(Upg! K(8)Ugg)a = Ugg’ F()

KRB(Q)EL — FRB (9)




How do we implement the RB
approach for the joint MT+SW
inversion?




Parallel implementation and solvers

Master cpu

MCMC simulation:

>1,500,000 MCMC

conductivity model
—>|temperature model

steps

Sampling: LAB + nodes
|

- Adaptive strategies

SW forward model

(surrogate and

sampling)

Cascade metropolis

-Delayed Rejection

—> if model accepted

v

Data misfit

cpus

solvers/subs

Computation efficiency strongly
depends on:
- cpu architecture

model not accepted - version of compilers
< — — randomiv— —» 3D MT forward model - consistency when compiling
4 e.g. libsrb compiled with gcc 2010
freq 1 freq 2 freq n or 2018—-> 6x time difference!
q q q
- - new max3d
mode1 | [mode2 |[model| | mode2| |model||mode2 :
: . - efficient
| | | FEM K —» | mMapping
Time per simulation: ' '
‘ ‘ Basis space B per| < sparse K*B |— |~ mkl
freq and mode | : - sparse blas
l_;;. Int;;s-l cel:lntosﬁ | | | _libsrb
rodwell: I
1base 0.3 sec | Bt'k*B | [~mk
30 bases 0.5 sec | | | | | :EE(:,“ blas
150 bases 1.2 sec ‘ ‘ - lapack
| | RB SD|Uti0n — - = MUMPS — |- sparse blas
- Intel centos8 ‘ ‘ | - metis
cascade lake (NCI): | if eroRB >tol “Tapack
30 bases 0.3 sec | | | | | . - sparse blas
FEM so - MUMPS —>| _ metis




Parallel implementation and solvers

From tens of

minutes to
~1 sec per

simulation!

MCMC simulation:

>1,500,000 MCMC
steps

- Adaptive strategies
(surrogate and
sampling)

-Delayed Rejection

Master cpu

conductivity model
temperature model

Sampling: LAB + nodes
|

SW forward model

Cascade metropolis

model not accepted

—> if model accepted

v

3D MT forward model

Data misfit

cpus

solvers/subs

Computation efficiency strongly
depends on:

- cpu architecture

- version of compilers

- consistency when compiling

< — — randomly— > e.g. libsrb compiled with gcc 2010
freq 1 freq 2 freq n or 2018—-> 6x time difference!
: - new max3d
model | imode2||model | | mode2| |[model||mode2 :
. . - efficient
| | | | FEM K —» | _mapping
Time per simulation: ' '
‘ ‘ Basis space B per| sparse KB |— | mkl
freq and mode | : - sparse blas
- Intel centos6 T
brodwell: ‘ ‘ | | | I i
1base  0.3sec BU'K*B | (=M
30 bases 0.5 sec | | | | | | :EE‘;" blas
150 bases 1.2 sec ‘ ‘ - lapack
| | | RB SD|Uti0n — - = MUMPS —»| - sparse blas
i - Intel centos8 ‘ ‘ | | - metis
cascade lake (NCI): | if erroRB >tol Tapack
30 bases 0.3 sec | | | | | | . - sparse blas
FEM so - MUMPS —>| _ metis




How do we parameterise our models
for the joint MT+SW inversion?




—— Parameterisation : background + conductivity anomalies ——
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—— Parameterisation : background + conductivity anomalies ——
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—— Parameterisation : background + conductivity anomalies ——

Y Axis
-500000

X AxisS00000 0 500000
0 ‘ . 500000, yi s Log- conductivity
ATt B - .
Full conductivity model oF @> A Station 248 \Q’;’T 7 6 5 -4 3 2 -1 0
o
Z Axis
Small scale conductivity
Z Axis . .
Large scale thermochemical R anomalies: as fluid pathways,
. ~500000 = 400000 melt-rich regions, hydrogen-
background: temperature, . 500000 rich domains. anomalous
pressure and bulk composition_~ \ . ’
mineral assemblages
LAB-parameters Node-parameters

(black columns) (white dots)

LIRS X Axis

Z Axais )
Z Axia

Y Axis



—— Sampling strategy ——

Parameters Sampling strategy Proposals Cascaded Metropolis

Stagel __5 |ABdepths —> Independentsampler =~ — Gaussian distribution _}1- Evaluate L1{mt} with SW forward
randomly selects centered at the

1 LAB at a time current sample m, ¢ with probability P.(my)/Py (M)

2. Evaluate L (m ) with MT forward

accept m_with probability P,(m,)/P, (m,)



—— Sampling strategy ——

Parameters Sampling strategy Proposals Cascaded Metropolis
Stagel __5 |ABdepths —> Independentsampler =~ — Gaussian distribution _}1- Evaluate L (m ) with SW forward
randomly selects centered at the . -
1 LAB at a time current 5amp|e m ¢ with prDbablh’[\f Pl(mt)/Pl (mt-l)

2. Evaluate L (m ) with MT forward

accept m_with probability P,(m,)/P, (m,)

# MCMC steps= LAB_stage —» start sampling nodes

Gaussian distribution 5, o o stage 1
centered at the
current sample m,

LAB depths —> Independentsampler ~——
randomly selects
select 1LAB at a time
» 1. L (m) keeps previous value

Stage 2

random :
Conductivity —— Independent sampler ~ — Log-Gaussian
nodes randomly selects _ dlstﬂbu‘fmr! c:entered 2. Evaluate L_(m ) with MT forward
n_ .. nodes atatime at each individual node 2t
accept m_with probability P,(m,)/P, (m,)

# MCMC steps= LAB_adapt — compute 1 multi-variate proposal for all LABs



—— Sampling strategy ——

Parameters Sampling strategy Proposals Cascaded Metropolis

# MCMC steps= LAB_adapt — compute 1 multi-variate proposal for all LABs

>tage 3 LAB depths —>» Independentsampler ~ —3 Multi-variate Gaussian 3. Same as stage 2
randomly selects proposal centered at the
select n_, LAB at atime current sample m,
random
. Conductivity —>» Independentsampler ~—3 Log-Gaussian —  Same as stage 2
nodes randomly selects distribution centered

nl nodes at atime at each individual node

nodes



—— Sampling strategy ——

Parameters Sampling strategy Proposals Cascaded Metropolis

# MCMC steps= LAB_adapt — compute 1 multi-variate proposal for all LABs

>tage 3 LAB depths —>» Independentsampler ~ —3 Multi-variate Gaussian 3. Same as stage 2
randomly selects proposal centered at the
select n_, LAB at atime current sample m,
random
. Conductivity —>» Independentsampler ~—3 Log-Gaussian —  Same as stage 2
nodes randomly selects distribution centered
nl nodes at atime at each individual node

nodes

# MCMC steps= NODES_adapt —» compute layer-wise multi-variate proposal for nodes

Stage 4
. LAB depths ——» [Independentsampler ~—3 Multi-variate Gaussian —3  Same as stage 2
randomly selects proposal centered at the
select n _ LABatatime current sample m,
random

Conductivity —— Independent sampler ~ — Multi-variate proposal —»
randomly selects to update values of
n2 nodes at atime alln2 __ nodes

nodes

Same as stage 2

~a

nodes



Synthetic Example




—— Synthetic Data —

The MT synthetic data are full impedance tensor computed for 12 periods between 3.2 and 10000 seconds
at 400 stations.

The data errors are assumed to be uncorrelated and normally distributed.

The standard deviation is assumed as 5% of max(|Zxx|,|Zxy|) for the components Zxx and Zxy of the impedance
tensor, and 5% of max(|Zyy|,|Zyx|) for the components Zyy and Zyx.

The SW data are the Rayleigh wave phase velocities for periods between 15 and 175 seconds,
computed at the locations of the MT stations.

We assume normally distributed data errors with a standard deviation of 1% of the velocity in meters.



—— Data Misfits —

ra ta - I:F'FT'

::,'

(L)
std;;

Nsta = PFT'

oMT = 3 _ > (gu ”)

,II;
dat T3 §=1

1
Psw = 3

i=1 j3=1

ea,

Nsta and N, are the number of stations and periods for each dataset;

d;; and i correspond to the observed and computed data (with the MT or the SW forward) for station i and period j,
std;; is the standard deviation for data dij.

Na: is the total number of MT data used for each station and frequency



— Model setup —
* The inversion area is sub-divided into 324 columns of size 80x80x460 km

1155 conductivity nodes sparsely located within the inversion volume (1440x1440x410 km)

The vector of model parameters contains 324 LAB values and 1155 nodal conductivity values (1479 parameters)



— Model setup —

* Theinversion area is sub-divided into 324 columns of size 80x80x460 km
e 1155 conductivity nodes sparsely located within the inversion volume (1440x1440x410 km)

* The vector of model parameters contains 324 LAB values and 1155 nodal conductivity values

— Prior and proposal distributions —

* The priors for the LAB depths are uniform distributions defined in a range of £70km, centered on the true value of each
column.

* The proposals used in the first stage are Gaussian distributions centered on the current sample with a standard
deviation of 20 km.

* For the conductivity nodes, we use Gaussian prior distributions centered on the background conductivity value (in log-
scale) with a standard deviation of 1.5 log,, (S/m).

e The initial proposal distributions are log-normal centered on the current node value and standard deviation of 0.9
log,, (S/m).



—— Joint probabilistic inversion of 3D MT and SW syntheticdata ——

Initial model. All LAB at 180km depth

/Large scale examplé\ 0
Z (km)
100
* Model size=
1200x1200x460 km 200
e 12 frequencies 300
* 400 stations
Parameters: X (km) 600
-600 600 Y (km) Log- conductivity
324 LAB + 1155 conductivity nodes ) [ “

|
7 6 5 -4 3 2 -1 0

RUN 1,000,000 MCMC steps

* tol1=0.068

e tol2=0.058

* 2 processors (Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz) per frequency

* Inversion took 14 days, with an average of 1.2 sec per simulation



—— Joint probabilistic inversion of 3D MT and SW syntheticdata ——

0.02 0.02 0.02f
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0.01 0.01 0.01 .01 001
1200x1200x460 km . . . '0 '0
180 200 220 100 150 200 100 150 200 100 150 200
* 12 frequencies 0.02 0.02
#21 #39
0.02 0.02 0.02}
: 0.01
* 400 stations 0.01 0.01 0.01 0.01}
0 0 0 0 ol
Parameters: 180 200 220 100 150 200 100 150 200 100 150 200
0.02
0.02 0.02
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0.01 :
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LAB depth
0 0 0 0 0
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#6 #24110.02 #4211 0.02 #60 ¥78
(after 1,000,000 0.01 001 o o ooil
simulations) 0 S I 0 . 0
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LAB depth [km]



—— Joint probabilistic inversion of 3D MT and SW syntheticdata ——

0.6
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—— Joint probabilistic inversion of 3D MT and SW syntheticdata ——

a) Maximum a posteriori model b) Mean model
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—— Joint probabilistic inversion of 3D MT and SW syntheticdata ——

c) Lower bound of the 95% confidence interval d) Upper bound of the 95% confidence interval
b =

100- | \ LAB background
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—— Joint probabilistic inversion of 3D MT and SW syntheticdata ——

Best model after 1,000,000 simulations




—— Joint probabilistic inversion of 3D MT and SW syntheticdata ——

Mean model after 1,000,000 simulations







Surface-waves data pdfs
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MT data pdfs: station 293
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MT data pdfs: station 244
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Misfit

Bases
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——  Conclusions —

Adaptive strategies

Parallel-in-paralle + Reduced Basis + (MCMC and the % Fast 3D MT forwards:
methods
structure surrogate model less than 1 sec!

+ \Efficient parameterisation of background + conductivity anomalies/

N2 Thank you! @

Develop the 15t numerical platform (RB+MCMC) to jointly
invert 3D MT data and seismic data in a probabilistic way

——  Future work —

Any questions??

* Inversion using field MT and SW data
e Efficient sampling MCMC strategies (trans-
dimensional scheme, parallel tempering,

etc..) e-mail:
maria-constanza.manassero@mg.edu.au







