
Thanks!

1

Dr. Alan Jones



Fundamentals of Inversion

2

Doug Oldenburg, Seogi Kang, Lindsey Heagy 
& the UBC-GIF team



Collaborators

3

Seogi Lindsey Dom Thibaut



Some background and personal perspective
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• Doug inspired by Bob Parker, Freeman Gilbert and George Backus:  The Geophysical Inverse Problem

Result: Computing power + advances in inversion methodology à we can now solve most EM 
geophysics problems



Outline

• Choices for numerical implementation
• Linear Inverse problem (IP)
• Non-linear inverse problem (DC)
• Including other information
• Summary

5



Generic geophysical experiment?

All require ways to see into the earth without direct sampling
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Survey: DC / IP

● Direct Current (DC) resistivity: 
sensitive to contrasts in resistivity 

● Induced Polarization (IP): sensitive to 
chargeability 

● DC and IP can be acquired in a single 
survey 

● Recovering resistivity from DC data is 
a non-linear inverse problem

● Recovering chargeability is a linear 
inverse problem



Century Deposit: geology + physical properties

Mutton, 2000

Mineralized sequence:
● ~40 m thick 
● Pb, Zn within black carbonaceous 

shales (BCS) 

Resistivity
● Provides structural information 

(faults)
● Needed input to IP

Chargeability
● Associated with mineralization

Yaoguo Li circa 1996

https://doi.org/10.1190/1.1444878


Century Deposit: DC / IP data  

DC Resistivity data

IP data

What earth model generated these data?

Survey
dipole – dipole
a = 100m
n = 1, 7



Our statement of the inverse problem
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• Given observations: 
- Uncertainties: 
- Ability for forward modelling:

• Find the earth model that gave rise to the data. 

dobsj , j = 1, . . . , N

✏j
F [m] = d
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Inverse problem

• Non-unique
• Ill-conditioned

The Inverse Problem is ill-posed

Any inversion approach must address these issues



Example of extreme non-uniqueness

DC experiment
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I V

Data

Recovered models
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Constraining the inversion

- Geologic structure
- Geologic constraints
- Reference model

- Bounds
- Multiple data sets
- Physical property measurements

Geophysical 
data

Prior information

Inversion

Physical property 
model

What information is available?

How do we achieve our goal?
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Need a Framework for Inverse Problem

Find a single “best” solution by solving 
optimization

Tikhonov (deterministic) Bayesian (probabilistic)

Use Bayes’ theorem

minimize � = �d + ��m

subject to mL < m < mH

�d: data misfit
�m: regularization
�: trade-o↵ parameter
mL,mH : lower and upper bounds

n

P (m|dobs) / P (dobs|m)P (m)

P (m): prior information about m

P (dobs|m): probability about the data errors (likelihood)

P (m|dobs): posterior probability for the model

n

Two approaches:
(a) Characterize 

(b) Find a particular solution that 
maximizes 
(MAP: (maximum a posteriori) estimate

P (m|dobs)

P (m|dobs)
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• Many components to achieving a 
quality result

• Success is in the details

• Evaluate each step in the box 
critically before going on

Flow chart for the inverse problem
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• Survey and observations

• What processing has been done?

• Normalization of data

• Ability for forward model

• Assemble geologic, petrophysical 
information

• Build a reference model

• What is the question you want 
answered from the inversion?

Starting up



Forward modelling approaches
Maxwell’s equations can be solved as:

• Integral equation (IE)

• Differential equation (DE)
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~E(~r) = ~Ep(~r) +

Z

V
G(~r,~rs)�a(~rs) ~E(~rs)dvs

r⇥ µ�1r⇥ ~E + ı!� ~E = �ı! ~Js



Desired qualities for a mesh

• Conform to structure being modelled

• Small number of cells to reduce computation time

• Be able to discretize equations on the mesh

• “Easy” to solve (sparse matrices)

• Visualize fields and models
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Unstructured Semi-structured Structured 
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What type of mesh? 

To consider: 
• Complex geometry
• Matrix size / sparsity 
• Visualization 
• Complexity of generating

To consider: 
• Ease of programming 
• Discretizing to “infinity”
• Cell size / element size changes



Problems on unstructured or structured meshes can be solved using

Complexity
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• Finite Difference Method (FDM)

• Finite Volume Method (FVM)

• Finite Element Method (FEM)

Solving differential equations



Solving the forward problem 

Methodology depends on
• Small: use SVD or back-slash (and equivalent)
• Intermediate: direct solver                           or
• Very big: iterative techniques

E.g. Airborne TDEM
• Forward problem: 1000 Tx, 50 timesteps à 50,000 solves
• Inversion: 20 GN iterations and using CG solver à 20,000,000

21Forward problem must be efficient; need lots of processors for big problems 



Sanity checks for forward modelling

• Test numerical results against a (semi-) analytic solution (eg. halfspace, 
sphere)

• Estimate numerical modelling errors (this can useful later when assigning 
“uncertainties” in the inversion) 

• Forward model your reference model and see how them match the data. 
Check: Normalization errors? Coordinate system? …
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Inversion model parameters
• In the forward problem

is our sought function    
(conductivity, density, ….)

• Inverse problem: we have options 
(eg log sigma, parametric ….)
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Inversion as an optimization problem

• Find a single “best” solution by 
solving optimization
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minimize � = �d + ��m
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Flow chart for the 
Inverse problem



Dealing with uncertainties

Observed datum
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dobsj = Fj(m) + nj

dobsj = Fj(m) + nj

True statistics of “noise”  is complicated.
In practice, assume errors are Gaussian

Noise      includes
• Modelling errors 

- dimensionality errors (1D v. 3D)
- incomplete physics
- discretization errors

Noise      includes
• Noise on data 

- instrument / sensor noise
- survey parameter errors
- wind …



Dealing with uncertainties

Consider 

Define �2
N =

NX

j=1

x2
j

Chi-squared statistic with N 
degrees of freedom

random variable, xj 2 N (0, 1)

Expected value: E(�2
N ) = N

Variance: Var(�2
N ) = 2N

Standard deviation: std(�2
N ) =

p
2N

n



Misfit function
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Reality: we do not know uncertainties

Try: 

✏j = %|dobsj |+ floor

Define data misfit: 

Define

Crucial steps for any misfit: (1) Specify the metric used
(2) Determine target misfit 

Wd = diag(1/✏1, . . . , 1/✏N )

E[�d] ' N

�d = kWd(F [m]� dobs)k22

We use L2 norm (least squares statistic)

is now a         variable �2
N�d



Flow chart for the 
Inverse problem
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Model norms
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Smallest model:

Flattest model:

Combination:

Discretize:

�m =

Z ⇣dm
dx

⌘2
dx

�m =

Z
(m�mref )

2dx

�m = ↵s

Z
(m�mref )

2dx+ ↵x

Z ⇣dm
dx

⌘2
dx

�m = ↵skWs(m�mref )k22 + ↵xkWx(m)k22

First define our model norms as functions and then discretize



Flow chart for the 
Inverse problem
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Linear problem                       à

Perform inversion: Linear Forward problem

32

Quadratic objective function (for a single variable)
@�
@m = 0

g = rm�

g = 0

A 2 RM⇥M is full rank

m,b 2 RM{



Role of beta

Tikhonov Curve
• Desired misfit

• Choose       such that 
33

�(m) = �d(m) + ��m(m)

�⇤
d ' N

� �d(m) = �⇤
d



Linear inversion app (demo) 
Develop survey

34

Run inversion

curvenote.com/@geosci/inversion-module/linearinversion

mailto:curvenote.com/@geosci/inversion-module/linearinversion


Linear IP problem

Linear model for IP (Seigel, 1959)
○ Chargeability: η
○ Effect increases resistivity

An IP datum can be written as:

Where Ji,j are the sensitivities for the DC 
problem Governing linear equation



Field example: IP Century deposit

𝛼! = 0.1
𝛼" = 1, 𝛼# = 1

IP data

Recovered chargeability (without positivity) 



Non-linear inversion
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Non-linear inversion
• Inverse problem

• For linear problem:
- And quadratic regularization:

- This is quadratic so we can solve in one step

• Problem becomes non-linear if:
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minimize � = �d + ��m

�d =
NX

j=1

⇣Fj(m)� dobsj

✏j

⌘2

d = GmZ

v
(m�mref)

2dv

(i) F [m] is non-linear

(ii) �d is not l2 (e.g.
P���Fi[m]�di

✏i

���)
(iii) �m is not quadratic



Non-linear optimization

• Single variable    :

• Case I: f is quadratic

• Suppose
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x minimize f(x) f(·): function

f(x) =
1

4
x2 � 3x+ 9 = (

1

2
x� 3)2

Minimum: f 0(x) = 0

f 00(x) > 0

f 0(x) = (
1

2
x� 3) = 0 x = 6

f(x) = (
1

2
x� 3)2 + ax3 + bx4



Non-linear optimization

• Single variable    :

• Case I: f is quadratic

• Suppose
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x minimize f(x) f(·): function

f(x) =
1

4
x2 � 3x+ 9 = (

1

2
x� 3)2

f 0(x) = (
1

2
x� 3) = 0 x = 6

f(x) = (
1

2
x� 3)2 + ax3 + bx4

Local
Global



Local Quadratic: f̂(xk + �x) = f(xk) + f 0(xk)�x+
1

2
f 00(xk)�x

2 +O(�x3)

Non-linear optimization

• Newton’s Method
i. Begin with 
ii. Solve a local quadratic for 
iii.

xk

xk+1 = xk + �x

�x that minimizes f 00(xk)�x = �f 0(xk)

or �x = � f 0(xk)
f 00(xk)

f̂(xk + �x)

f̂

xk xk+1

�x

�x



Convergence conditions
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f 0(x) < tolerance

k�xk < tolerance

f 00(x) > 0

�x

f 0(x)



Summary: Newton’s method
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Linear Non-linear
f̂

xk xk+1 x⇤
x⇤x0

f 00(x)�x = �f 0(x)

x⇤ = � f 0(x)

f 00(x)

Solution in one step

f 00(xk)�x = �f 0(xk)

or �x = � f 0(xk)
f 00(xk)

xk+1 = xk + ↵�x ↵ < 1

Iterate to convergence



Multivariate functions
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�(m) m 2 {m1,m2, ...,mM}

�(m+ �m) = �(m) + (rm�(m))T �m+
1

2
rmrm�(m)�m+O(�m3)

f(x+ �x) = f(x) + f 0(x)�x+
1

2
f 00(x)�x2 +O(�x3)

Minimize

Taylor expansion

Note similarity to single variable



Define

45

Gradient: g(m) = rm� =

0

B@

@�
@m1

...
@�

@mM

1

CA

Hessian:
H(m) = rmrm� =

0

BBBBB@

@2�
@m2

1

@2�
@m1@m2

· · · @2�
@m1@mM

@2�
@m2@m1

@2�
@m2

2
· · · @2�

@m2@mM

...
...

. . .
...

@2�
@mM@m1

@2�
@mM@m2

· · · @2�
@m2

M

1

CCCCCA

g 2 RM

H 2 RM⇥M

Symmetric Hi,j =
@
2
�

@mi@mj

Minimum defined: g(m⇤) = 0

H(m⇤) is positive definite



Finding a solution

46

(i) Begin with m
(k)

(ii) Solve H
�
m

(k)
�
�m = �g

�
m

(k)
�

c.f. {f 00(x)�x = �f
0(x)}

(iii) m(k+1) = m
(k) + ↵�m



Our inversion
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�(m) =
1

2
kF [m]� dobsk2 + �

2
kmk2Minimize:

Gradient: g(m) = rm� = JT
�
F [m]� dobs

�
+ �m

Sensitivity:
rmF(m) = J

Jij =
@Fi[m]

@mj

Final

H(m) = rmg(m) = J
T
J + (rmJ)T

�
F [m]� d

obs
�
+ �

neglect
Hessian:

H�m = �g
(JTJ + �)�m = �(JT �d+ �m)

�d = F [m]� dobs



General algorithm: 
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minimize � = �d + ��m

�d

�⇤
d

�m

(m(0),�(0))

(m(k),�(k))

Initialize m(0),�(0)

until convergence

H�m = �g

m(k+1) = m(k) + ↵�m

�(k+1) =
�(k)

�

(line search)

(cooling)

Many variants: - Solving system 
- Cooling rate
- ….



Summary
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�(m) =
1

2
kF [m]� dobsk2 + �

2
kmk2

Linear Non-linear

(JTJ + �)�m = �(JT �d+ �m)(GTG+ �)�m = �(GT d+ �m)

�d = F [m]� dobs

d = Gm d = F [m]

m(k+1) = m(k) + ↵�m

All understanding from linear problems is valid for nonlinear problems



DC resistivity 

Governing PDE: electrostatic Maxwell’s equations  

● Faraday’s law

● Ampere’s law

● Ohm’s law

Governing PDE



DC inversion 

● Forward modelling 

○ Nodal discretization for

○ Neumann boundary conditions 

○ Discrete equations

● Inversion

○ Invert for log resistivity (ensures positivity): 

51Tutorial: Cockett et al 2016, Pixels ad their neighbours 

https://doi.org/10.1190/tle35080703.1


Evaluate results

Same as for linear problem

• Plot Tikhonov curve and some 
resulting models

• Misfit

• Evaluate models
52



Example 2D DC resistivity
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True resistivity model 

• Pole-dipole array
- n-spacing = 8
- Electrode-spacing = 100 m
- # of data = 151

• 5% Gaussian noise added

Apparent resistivity pseudo-section Log10 (Voltage)

Pole-Dipole



Tikhonov curve

DC inversion: iteration 1

𝛼! = 0
𝛼" = 1, 𝛼# = 1



Tikhonov curve

DC inversion: iteration 5

𝛼! = 0
𝛼" = 1, 𝛼# = 1



Tikhonov curve

DC inversion: iteration 7

𝛼! = 0
𝛼" = 1, 𝛼# = 1



DC resistivity: Century

resistivity modelobserved data

predicted data

normalized misfit

Tikhonov curve



Century deposit
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Step 1: invert DC data

Step 2: invert IP data using sensitivities from recovered model in Step 1

DC/IP Inversion is a 2-step process

resistivity model

chargeability model
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Constraining the inversion

- Geologic structure
- Geologic constraints
- Reference model

- Bounds
- Multiple data sets
- Physical property measurements

Geophysical 
data

Prior information

Inversion

Physical property 
model

What information is available?
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Constraining the inversion

Generic model norm

Exploring the standard model norm
• Alpha weightings

• Weightings w’s 

• Reference model

• Combinations offer great flexibility 

𝛼! = 0
𝛼" = 1, 𝛼# = 1

𝛼! = 0
𝛼" = 1, 𝛼# = 0

𝛼! = 0
𝛼" = 0, 𝛼# = 1

𝛼! = 1
𝛼" = 0, 𝛼# = 0
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Reference model and its uses

Generic model norm

• Simple or complex
• Used in derivative terms or not
• w’s used to attach confidence in 

the reference model
• Can be used to 

• incorporate additional information
• Hypothesis testing
• Depth of investigation for survey

𝛼! = 2×10"#, 𝛼$ = 1, 𝛼% = 1,𝑚&'( = 38 Ω𝑚

𝛼! = 2×10"#, 𝛼$ = 1, 𝛼% = 1,𝑚&'( = 150 Ω𝑚

150 Ω𝑚

38 Ω𝑚



Use of a reference model for depth of investigation

Background to DOI

63

Resistivity model above the DOI (DOI index=0.5)

DOI index

0.5

m!: recovered model with m"#$
!

m%: recovered model with m"#$
%

(Oldenburg and Li, 1999)

Example from Century deposit



Use weighting functions
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model norm:

• Incorporate confidence in model or derivative 
• Hypothesis testing
• Used to incorporate sensitivity weighting
• Important for potential fields
• Generate more realistic models 



Magnetic data Recovered susceptibility

Sensitivity weighting
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Consider  𝐺𝑚 = 𝑑 and minimize ||𝑚||'

Easiest way to generate signal is to locate 𝑚 where 𝐺 is large.

In magnetics this produces a module with susceptibility at the surface

Sensitivity weighted  susceptibility



Sensitivity weighting
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I V

Consider  𝐺𝑚 = 𝑑 and minimize ||𝑚||'

Easiest way to generate signal is to locate 𝑚 where 𝐺 is large.

Sensitivity in a DC experiment 



Sensitivity weighting for DC

67

Without sensitivity 
weighting

With sensitivity 
weighting

𝑖-th datum
𝑗-th model



Bound Constraints
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• Physical property bounds in each cell

• Projected Gradient Gauss-Newton (Kelly, 1999; Haber, 2015)
- At each GN iteration

�m = H
�1�d+ ↵g

H: Hessian for cells not at the bounds

g: gradient for cells at the bounds

↵: scalar

m � 0Positivity



Enforcing positivity
Chargeability model

with positivity

Susceptibility model

without positivity

with positivity

without positivity



Structural information 
• Body is at about the right depth but it is still smoothed out 
• Want a solution that produces a thin mineralized zone
• Makes the faults more distinct

70

We can do this by altering the model norm



Why Lp?
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• Work so far we have used L2 norms

• General Lp-norm

�m =
MX

i=1

m2
i vi

Discretize

�m =
MX

i=1

|mi|pvi 0  p  2

p=2 p=1 p=0.5 p=0
69 55 54 100

m(x)

x

�m =

Z
m2(x)dx

�m



General character
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�m =
MX

i=1

|mi|pvi
• Geometric character

- p=2: all elements close to zero
- p=1: sparse solution, # of non-zero elements are ≤ # of data
- p=0: minimum support,  model with the fewest number of elements

• 1D problem
p=2 p=1 p=0

�s

�xonly

only



Each component of a 3D objective function can have its own Lp-norm 
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0  pj  2

General Lp objective function



Lp inversion of DC data 
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Resistivity

𝑝! = 𝑝$ = 𝑝% = 0

Fournier and 
Oldenburg, 

2019

observed data

𝑝! = 𝑝$ = 𝑝% = 2

https://doi.org/10.1093/gji/ggz156


Lp inversion of DC data 
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Resistivity

𝑝! = 𝑝$ = 𝑝% = 0

Fournier and 
Oldenburg, 

2019

observed data

𝑝! = 𝑝$ = 𝑝% = 2

https://doi.org/10.1093/gji/ggz156


Lp inversion of IP data 
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Chargeability modelsResistivity model (L2)

𝑝! = 𝑝$ = 𝑝% = 0

L2 resistivity

Fournier and 
Oldenburg, 

2019

𝑝! = 𝑝$ = 𝑝% = 2

Lp resistivity

https://doi.org/10.1093/gji/ggz156


77

What other information is available?

- Petrophysics
- Well-logs

Drill cores
Multiple properties

Petrophysics: each rock units each with range of physical properties

Geology: Lithology from drill holes



Petrophysical characterization and geological identification are encoded in model norm. 

78

Linking Geophysics, Petrophysics and Geology

Astic and 
Oldenburg, 

2020

https://doi.org/10.1093/gji/ggz156


Thank you! 
● SimPEG: 

https://simpeg.xyz/
● Inversion resources: 

curvenote.com/@geosci/inversion-module
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https://simpeg.xyz/
https://curvenote.com/@geosci/inversion-module/linear-tikhonov-inversion

